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Abstract

In this article, we review the current state of the field of high resolution magic angle spinning 

magnetic resonance spectroscopy (HRMAS MRS)-based cancer metabolomics since the beginning 

of the field in 2004; discuss the concept of cancer metabolomic fields, where metabolomic profiles 

measured from histologically benign tissues reflect patient cancer status; and report our HRMAS 

MRS metabolomic results that characterize metabolomic fields in prostatectomy-removed 

cancerous prostates. Three-dimensional mapping of cancer lesions throughout each prostate 

enabled multiple benign tissue samples per organ to be classified based on distance to and extent 

of the closest cancer lesion as well as Gleason score (GS) of the entire prostate. Cross-validated 

PLS-DA separations were achieved between cancer and benign tissue, and between cancer tissue 

from prostates with high (≥4+3) and low (≤3+4) GS. Metabolomic field effects enabled 

histologically benign tissue adjacent to cancer to distinguish the GS and extent of the cancer lesion 
itself. Benign samples close to either low GS cancer or extensive cancer lesions could be 

distinguished from those far from cancer. Furthermore, a successfully cross-validated multivariate 

model for three benign tissue groups of varying distances to cancer lesions within one prostate 

indicates the scale of prostate cancer metabolomic fields. While these findings could be potentially 

useful in the prostate cancer clinic at present for analysis of biopsy or surgical specimens to 

complement current diagnostics, the confirmation of metabolomic fields should encourage further 
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examination of cancer fields and can also enhance understanding of the metabolomic 

characteristics of cancer in myriad organ systems. Our results together with the success of 

HRMAS MRS-based cancer metabolomics presented in our literature review demonstrate the 

potential of cancer metabolomics to provide supplementary information for cancer diagnosis, 

staging and patient prognostication.

Graphical Abstract

Building upon the concept of cancer metabolomic field effects, we report a semi-quantitative, 

three-dimensional method of mapping cancer lesions and HRMAS MRS-scanned samples which 

enabled the distance-dependent existence of metabolomic fields and particularities regarding 

pathological features of the closest cancer to be identified in prostates, using histologically benign 

tissue.

1. Introduction and Review

Cancer annually causes multi-million deaths globally and is the second leading cause of 

death after cardiovascular diseases1. While investigations of cancer genomics and 

proteomics have shown great potential to enhance the collective understanding of cancer and 

detection and treatment options, cancer metabolomics, which measures the output from 

these upstream processes in form of small molecules, presents direct signatures of 

biochemical activity and can be more closely associated with disease phenotypes2.

Metabolomics aims to investigate relationships between the ensemble of metabolic 

alterations and disease phenotypes by revealing metabolic differences measured among 

samples of different clinical and pathological status. The introduction of high-resolution 

magic angle spinning magnetic resonance spectroscopy (HRMAS MRS) in 19963 allowed 

for analysis of intact human tissue samples at high spectral resolution4–7, while preserving 
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tissue histological structures. It inspired widespread studies of global metabolite profiling by 

showing that compared with single metabolites, metabolomics analyses could distinguish 

cancer from non-cancer tissue with improved accuracy. In an early work, Tate and 

colleagues showed that unsupervised principal component analysis (PCA) could distinguish 

kidney cortical cancer tissue from normal, and supervised linear discriminant analysis 

(LDA) presented the possibility of distinguishing them with 100% accuracy8.

Considering the current state of HRMAS MRS-based metabolomics and our recent work to 

expand its utility in investigations of histologically benign tissue adjacent to cancer, in this 

article, we will first review the field of HRMAS MRS-based metabolomic (meaning not 

purely single metabolite) investigations of human cancers conducted with multivariate 

analysis (along with or without univariate methods); and then demonstrate the utility of 

human prostate cancer metabolomics in characterization of the disease with analyses of 

multiple cancer and histologically benign intact tissues sampled throughout surgically 

removed prostates from prostate cancer patients.

1.1 The Current State of HRMAS MRS-based Human Cancer Metabolomics

Our review of the literature indicated that investigations of human cancer tissue with 

HRMAS MRS-based metabolomics have been conducted in many organ systems since 

2004, including adrenal9–11, bone12, brain13–17, breast18–29, colorectal30–32, esophagus33, 

lung34, pancreas35, prostate36–41, rectum42, skin43, stomach44, thyroid45–47, etc. Selected 

papers with sample sizes ≥ 100 are summarized in Table 1.

1.1.1 Methodological considerations

The reviewed studies have invoked unsupervised or supervised multivariate analytical 

methods to generate metabolomic profiles. The unsupervised analyses include PCA, 

hierarchical cluster analysis (HCA), or self-organizing maps (SOM), while the supervised 

studies primarily used partial least squares-discriminant analysis (PLS-DA), orthogonal 

partial least squares-discriminant analysis (OPLS-DA), or support vector machines (SVM). 

Rigorous analysis requires a training-testing cohort design, with a separate testing cohort to 

be analyzed when sample size permits, or permutation testing, repeated cross validation, 

such as Monte Carlo cross validation (MCCV), or leave-one-out approaches in the case of 

smaller sample sizes. To ensure the relevance of the measured metabolomic profiles with 

disease status, the metabolomic profiles need to be evaluated for disease-relevant metabolic 

pathways48.

In addition, HRMAS MRS preserves tissue histopathological structures and thereby enables 

metabolomic profiles to be directly correlated with the percentage of different pathological 

features. Mass spectrometry (MS) or mass spectrometry imaging (MSI), in contrast, destroy 

the sample during metabolite extraction from the tissue (MS) or the laser ablation process of 

measuring a tissue slice (MSI). While MS techniques are more sensitive and can detect as 

low as picomolar concentrations rather than just the millimolar concentrations of HRMAS 

MRS, the selection of ions to detect complicates the MS measurement process. Furthermore, 

MS measurement takes usually three times longer than MRS. These characteristics, and in 

particular the preservation of tissue in HRMAS MRS make it especially useful for human 

Dinges et al. Page 3

NMR Biomed. Author manuscript; available in PMC 2020 July 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cancer tissues since each sample unavoidably contains a heterogeneous mixture of 

pathological features, such as cancer, stroma, and benign epithelia in prostate tissue, or 

necrosis and fibrosis/inflammation in other tumors. However, only a few studies actually 

considered the different pathological components in samples, and thus far there is no 

uniform analytical approach to account for pathology heterogeneity. In a variety of studies, 

metabolites were analyzed by percentages of pathological features with linear 

regression49,50 or least-square regression analyses51–54. Other methods include separating 

samples into high tumor load (>50%) and low tumor load (<50%) groups55, using PCA56, 

utilizing a partial volume artifacts approach employed for in vivo imaging57,58, or simply 

measuring a pure tissue of nanoliter sample size59, which is a technical marvel but 

challenging for general clinical applications.

Metabolomics has also been investigated in conjunction with its upstream biological 

processes of genomics and transcriptomics. Correlating HRMAS MRS results with gene 

mutations and transcript alterations helps to relate the measured metabolomic profiles to all 

the involved metabolic pathways and assists in sub-classifying cancers26,60–62. The strengths 

of such multi-modal investigations were demonstrated by use of a machine learning 

framework which combined metabolomics data and gene transcriptome profiling for human 

brain tumors; the heterogenous data combination outperformed analysis conducted with 

either single ‘-omics’ data type63.

HRMAS, as an ex vivo method, has also been correlated with in vivo MRS observations64,65 

and with PET and MRI19,64. These studies highlight the ability of HRMAS MRS to 

complement in vivo imaging modalities in the clinic by offering additional diagnostic or 

prognostic information, or demonstrate the potential for it to directly translate to clinical 

applications in vivo MRS.

1.2 Fields of investigation and clinical applications

Metabolomic studies have also extended to cancer pharmacology evaluations for the effects 

of therapies, such as those seen in primarily breast cancer23,64,66–68 and brain tumor 

glioblastoma69, and have formed a field now termed as pharmacometabolomics.

The primary goal for the development of HRMAS MRS-based cancer metabolomics is to 

assist diagnosis and treatment decision-making in the clinic. This can be accomplished by a 

variety of methods, ranging from needle biopsy to surgical settings, the latter being 

demonstrated by a study that reported successful distinction between ductal carcinoma in 
situ lesions with or without an invasive component20. The challenge of determining surgical 

margins during breast cancer surgery can also be addressed potentially by using metabolic 

profiles of resected tissue to reduce the potential of re-surgery and risk of recurrence22. To 

enable utilization of these findings, there has been increasing establishment of automated 

MRS facilities attached to surgical theaters70.

HRMAS MRS metabolomic measurements of cancer field effects in purely histologically 

benign tissues from cancerous organs can also be useful for clinical applications. The 

concept of cancer fields was first termed by Dr. Danely Slaughter in 1953 to describe 

histological abnormalities in grossly normal-appearing tissue and explain multifocality and 
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local recurrence in oral squamous cell carcinoma71 and is deemed one of the landmark 

concepts of cancer research in the past 100 years72. However, it has now evolved to describe 

disease-related molecular alterations in microscopically normal or histologically-benign 

tissue73, observed in cancers of many organ systems and detectable at the epigenomics74,75, 

genomics76–80, proteomics81–84, or metabolomics levels31,33,41,50,70,85,86. Metabolomic 

field effects were reported with a gastrointestinal tumorigenesis APCMin/+ mouse model87, 

with human esophageal cancer70,85, oral squamous cell carcinoma86, colorectal cancer31, 

and prostate cancer41,50. Most significantly and of great clinical translational potential, 

histologically benign tissue adjacent to human colorectal cancer could distinguish tumor 

stage with higher predictive capacity than results from tumor tissues for prediction of 5-year 

survival (AUC = 0.88)31. Major findings in ex-vivo MRS studies on metabolomic cancer 

fields in humans are summarized in Table 2.

1.3 Investigation of Prostate Cancer Metabolomic Field Effects—In 2011, 

Stenman et al reported that key metabolites in histologically benign tissue adjacent to cancer 

vary significantly depending on the GS of the closest cancer50. In histologically-benign 

tissue samples a GS of 3+3 vs. 3+4 in adjacent cancer at various distances was strongly 

correlated with myo-inositol/scyllo-inositol (p=0.002) and choline/creatine (p<0.001) ratios. 

Most recently, we have reported that analyses of histologically benign prostate tissue from 

cancerous prostates allows differentiations of not only Gleason score but also pathological 

stage, and recurrence potential of human prostate cancer41. We attributed these distinctions 

to the existence of metabolomic fields. Since these measurements, in principle, can be 

carried out at the time of biopsy prior to prostatectomy or other radical procedures, HRMAS 

MRS metabolomics stand to become a complementary method to aid routine histopathology 

and assist clinical decision making for cancer diagnosis and treatment planning. This ability 

would be particularly useful for prostate cancer management, as it could reduce the high 

number of false negative biopsies by enlarging the biopsy target zones or provide further 

certainty about the aggressiveness of prostate cancer lesions to prevent overtreatment55. 

Another use of histologically benign tissue for clinical decision-making is for tackling the 

challenge of handling Gleason score heterogeneity within one prostate. Stenman et al. found 

that specimens containing a particular fraction of tumor tissue showed substantially higher 

inter-sample variations in some spectral regions than non-malignant tissue samples, which 

suggests that benign tissue may be a more reliable metabolic indicator than cancer tissue.

Stenman et al. also reported that metabolite ratios change with increasing distance from 

lesion. The distance to the nearest tumor was correlated with the myo-inositol/scyllo-inositol 

(p = 0.03) and (glyercophosphocholine + phosphocholine)/creatine (P < 0.001) ratios, but 

they noted it was a significant but weak correlation. Additionally, analyses that examine the 

effect of distance and Gleason score were not conducted, and only a limited range of GS 

were included in the study (3+3 and 3+4). Also, the extensiveness of cancer patterns and the 

crossed effects of pattern and distance were not examined. To further investigate these 

observed cancer metabolomic field effects, we measured HRMAS MRS metabolomics for 

multiple tissues sampled systematically throughout prostatectomy-removed cancerous 

prostates.
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2. Methods

2.1 Patient Recruitment and Sample Collection—The study was approved by the 

institutional IRB at Massachusetts General Hospital (MGH). Tissue specimens and related 

clinical data were collected with written consent from 10 patients undergoing radical 

prostatectomy at MGH. The patients had not received any cancer treatment prior to surgery. 

After surgical removal, the organs were kept at 4oC and sectioned within 1 hour. The apex 

and base were sectioned off. The organ was cut into quarters and slices. Sixteen rectangular 

~5mm x 5mm tissue samples about 3 mm away from the margin were collected from the 

peripheral zone (Figure 1), to preserve surgical margins. Photos of prostate sections where 

samples were obtained were recorded with a ruler for quantitative measurements. The 

collected tissue samples were placed on dry ice and then stored at −80oC until MRS 

analyses. Standard H&E staining (Figure 1) and clinical pathology were performed for the 

entire removed prostates per routine clinical pathology. Sample collection details are 

summarized in Table 3.

2.2 HRMAS MRS and Histopathology

HRMAS.: Tissue samples of ~10 mg were scanned using HRMAS MRS on a vertical 

Bruker AVANCE spectrometer operating at 600 MHz (14.1T) (Figure 1). A 4mm zirconia 

rotor with Kel-F 10μl inserts was used, with D2O added for field locking. Spectra, with and 

without water suppression, were recorded at 4oC using a rotor-synchronized Min(A,B) 

protocol with spinning at 600 and 700 Hz88. Data were processed and curve fit using an in-

house developed MATLAB program, and metabolite intensity was calculated by normalizing 

each curve fitted peak by the intensity of the creatine region (3.03 ppm) from the full 

integral value of the water-unsuppressed file. Spectral regions between the ppm values 0.5 

and 4.5 ppm where >80% of samples had detectable values (n = 63) were further analyzed 

and matched to corresponding relevant metabolites (Supplementary Table S1). As one region 

contains several metabolites due to overlapping peaks, we talk about ppm values rather than 

concrete metabolites thought the manuscript.

2.3 Histopathology.—Following HRMAS MRS, tissue samples were fixed in 10% 

formalin, embedded in paraffin, cut into 4 5-μm sections, and H&E stained (Figure 1). The 

histopathology analysis was conducted by a single pathologist with >15 years’ experience, 

blinded to spectroscopic results. Tissue samples were read for percentage of three 

pathological features (stroma, glands, cancer) to the nearest 5%. Gleason score (GS) and the 

presence of nerves and vessels, inflammation, low-grade prostatic intraepithelial neoplasia 

(LGPIN), and high-grade (HG) PIN were also recorded. The area of each tissue specimen 

was measured using the software imageJ89. Volume percentage (Vol%) for each pathological 

feature was calculated for each sample under the assumption of equal thickness of the tissue 

samples. Clinically-processed prostate slides were examined for the presence, Gleason 

score, and patterns of cancer to identify the location and nature of cancer lesions throughout 

the prostate.

2.4 MRS Sample Categorization—We used a categorical system to estimate the three-

dimensional distances between the measured tissue samples and the closest cancer lesions. A 

distance of 5 mm was designated as the cut-off point because when prostates are sectioned 
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after removal, they are cut into 5 mm-thick slices to fit in histopathology processing 

cassettes. Histologically benign (Hb) samples were assigned to three categorical groups 

according to their distance to the closest cancer lesion(s) (HbA < 5mm; 5mm ≤ HbB ≤ 

10mm; HbC >10mm) and the pattern of the closest cancer lesion, with ‘more’ indicating a 

cancer pattern to be ‘extensive’ or ‘many’, and ‘less’ to be ‘moderate’, ‘small’, or ‘focal’.

2.5 Statistical Analysis—Autoscaling and mean centering was applied to the data set 

prior to analyses90. Unsupervised (PCA) and supervised (PLS-DA) multivariate statistical 

analyses were performed. Outliers were identified in the PCA plot (Supplementary Figure 

S1). The predictive performance Q2 of the PLS-DA model was obtained by 10-fold cross 

validation (CV). To account for the statistical paradigm of several samples measured from 

the same patient, a “leave one patient out” CV was conducted. Receiver operating 

characteristic (ROC) curves were determined using cross-validated predictive Y-values of 

the PLS-DA data, and the area under the curve (AUC) was also calculated for each model. 

For univariate analysis, Wilcoxon rank sum tests with Benjamini Hochberg correction for 

multiple comparisons were conducted. Relative intensity of fold changes were determined 

for the discriminant metabolite signals for all models. Analyses were performed in 

RStudio91 and on the web-based platform MetaboAnalyst92.

3. Results

3.1 Sample Classification—From 10 patients (age: median, 62; range, 53–77 years) 

with prostatic acinar adenocarcinoma undergoing radical prostatectomy, 16 samples were 

collected from each prostate, resulting in a total of 160 samples. Characteristics for all cases 

and MRS-scanned samples are summarized in Table 3. Following three-dimensional 

mapping of the locations of cancer lesions for each prostate, histologically benign (Hb) 

samples were assigned to the previously defined three categorical groups according to the 

distance to the closest cancer and two groups based on cancer patterns (Table 4). Due to the 

multifocality of prostate cancer, there were only small numbers of samples in the HbB and 

HbC groups. Thus, these two groups were merged to form group HbBC (n =10) except for 

analyses at the individual prostate level. lesion(s) In addition, all samples were also grouped 

based on a ‘low’ (≤3+4) or ‘high’ (≥4+3) Gleason score (GS) of the individual prostate from 

which they originated according to the pathology reports (Table 4). Four samples of group 

HbA were excluded due to measurement issues or identification as outliers in the PCA score 

plot (Supplementary Figure S1). Lastly, percentage of pathological features was compared 

between sample groups. Univariate comparisons between HbAless vs. HbAmore vs. HbB 

indicated no significant differences for percentage of benign epithelial glands or stroma 

(Supplementary Figure S3). Cancer samples were significantly different (all p < 0.002) from 

each group only for stroma percentage (Supplementary Figure S2). Representative spectra 

for each group are displayed in Figure 2.

3.2 Cancer samples: Differentiating cancer vs. benign and high vs. low 
Gleason score—We evaluated the metabolomic differences between cancer and 

histologically benign samples (Figure 3) and between cancer samples with low (≤3+4) and 

high (≥4+3) Gleason score (Figure 4). Visual inspection of PCA score plots revealed 

tendencies for group separation (Figure 3a and Figure 4a, respectively). A 10-fold cross-
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validated PLS-DA model showed good separation between cancer and benign samples with 

good predictability (R2Y = 0.33 and Q2Ycum = 0.18, Figure 3b). An excellent separation 

between CaGS low (≤3+4) and CaGS high (≥4+3) was also achieved among the cancer samples 

in a 10-fold cross-validated PLS-DA model (R2Y = 0.84 and Q2Ycum = 0.48) (Figure 4b).

Major contributing regions were identified by applying the criterion of variable importance 

of projection (VIP) > 1 in the PLS-DA models (Figure 3c and Figure 4c) in combination 

with p < 0.05 in univariate Wilcoxon rank sum analysis with Benjamini Hochberg false 

discovery rate adjustment (Supplementary Table S2). In addition to the 15 significant 

metabolic regions seen in PLS-DA for cancer vs. benign samples (Figure 3c), 4 other 

regions (2.97–2.95, 2.81–2.79, 2.09–2.07, 1.73–1.71 ppm) were also significant in univariate 

analysis. All 19 regions showed increased spectral intensities in cancer when compared with 

histo-benign samples. Among the most significant metabolites are taurine, phosphocholine 

and lipids. For the differentiation of CaGS high versus CaGS low, univariate analysis revealed 

10 significantly different regions, with 5 shared among the above 19 regions. Apart from the 

3.90–3.89 ppm and 2.45–2.43 ppm regions, the remaining eight regions were also identified 

in the multivariate model (Figure 4c). For these 10 regions from the univariate analysis, the 

spectral intensities were increased in the CaGS high group for all except 2.53–2.50 ppm 

(Supplementary Table S3). Glutamate, taurine and tyrosine were identified as major 

distinguishing metabolites. Remaining relevant metabolites associated with each spectral 

region are located in Supplementary Table S1.

3.3 Histologically benign samples close to cancer (HbA): Distinguishing 
between cancer grade and pattern—Prostate tissue metabolomics revealed differences 

in cancer status between tissue groups that were histologically benign. In univariate analysis, 

we identified significantly different regions by comparing histologically benign tissue (HbA) 

in a prostate of low GS (≤3+4) (n = 60) with high GS (≥4+3) (n = 60). All 29 significant 

spectral regions showed higher values for HbAGS low (Supplementary Table S4). Analysis of 

benign tissue adjacent to more extensive patterns of cancer (HbAmore, n = 99) revealed 17 

significantly different regions that all presented higher values than benign tissue near less 

extensive cancer (HbAless, n = 21) (Figure 5) (Supplementary Table S5). The majority of 

significant regions were unique for each of these comparisons, as only 7 regions were 

overlapped between the two. The two comparison groups of cancer pattern and GS are not 

correlated, meaning that in Wilcoxon comparisons there were no significant differences of 

the distribution of cancer pattern samples in the HbAGS high vs. HbAGS low subgroups and no 

significant difference of GS in the HbAmore vs. HbAless groups.

In a comparison of all benign tissue (HbABC), differentiation between GS groups and 

closest cancer pattern presented fewer significant regions than when only the above-

mentioned benign tissues closest to cancer (HbA) were considered. For the comparison of 

the GS group using all benign tissue when distance to the closest cancer was not considered 

(HbABCGS low vs. HbABCGS high), four regions that were discriminatory in the analysis of 

exclusively HbAGS low vs. HbAGS high were no longer significant (4.14–4.13, 4.07–4.05, 

2.64–2.62, 2.02–2.00 ppm). Only one region appeared significant that was not significant 

previously (3.95–3.93 ppm) (p = 0.047, Supplementary Table S6). The same reduction of 

significant regions occurred when all benign samples, regardless of distance to cancer, were 
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grouped together for analysis of adjacent cancer patterns (HbABCmore vs. HbABCless). 

Specifically, two regions that were important in the analysis of exclusively HbA were no 

longer significant (1.73–1.71, 0.92–0.89 ppm), and only one region appeared significant that 

was not significant previously (3.67–3.66 ppm) (p = 0.044, Supplementary Table S7). 

Furthermore, predictive ability for both GS and cancer pattern comparisons improved when 

using only the HbA samples. For differentiating high and low GS with HbA and with 

HbABC samples, the area under the curve (AUC) = 0.83 (95% CI: 0.761–0.908) and AUC = 

0.765 (95% CI: 0.690–0.850), respectively (Figure 6a). For distinguishing cancer patterns, 

only using HbA samples achieved AUC = 0.918 (95% CI: 0.857–0.978) and HbABC 

samples had AUC = 0.87 (95% CI: 0.800–0.941) (Figure 6b).

3.4 All histologically benign samples: Characterization of the field effect—A 

univariate analysis of benign samples of all organs revealed that with decreasing distance 

from cancer (HbA compared to HbBC), six regions were found to increase significantly in 

spectral intensity (first column in Figure 7 and Supplementary Table S8), most importantly 

valine and phosphocholine. The 2.02–2.00 and 0.92–0.89 ppm regions, which were 

significant in Figure 7, were also significant in the above-mentioned comparisons of GS and 

cancer pattern, but only when distance from cancer was considered for benign samples. This 

discrepancy further suggests the existence of distance-dependent metabolomic fields. 

Subsequent comparisons of HbBC and various subgroups of HbA suggested that the 

metabolic differences between the two groups are present for benign samples from low GS 

prostates (HbAGS low, third column) and for benign samples adjacent to more extensive 

cancers (HbAmore, fourth column). However, distance-dependent metabolic differences are 

diminished between HbAGS high and HbBC samples (second column) and are nonexistent 

between HbAless and HbBC samples (none to report).

3.5 Within a single prostate: HbA vs HbB vs HbC groups—Since 7 out of 10 

samples of the merged group HbBC originated from a single prostate, an analysis was 

carried out for HbA (n = 8) vs. HbB (n = 4) vs. HbC (n = 3) because the small sample size is 

not confounded by between-patient effects. A PCA score plot revealed a clear trend of group 

separation (Figure 8a). A leave-one-out cross-validated PLS-DA model showed excellent 

separation between the three subgroups and explained a large percentage of variability with 

good predictability (R2Y = 0.63 and Q2Y = 0.18, Figure 8b). Three of the four regions that 

were found to be significant in univariate analysis (Supplementary Table S9) were confirmed 

by multivariate analysis (4.07–4.05, 3.99–3.97, and 3.90–3.89 ppm). In all three regions, 

spectral intensity and distance to cancer were inversely correlated (Figure 8d), a trend that 

was also seen in analysis of all samples (Figure 7).

4. Discussion

A large body of literature data demonstrated the strength of MRS-based metabolomics in 

disease assessment due to the close association of metabolomics and disease phenotypes. By 

considering the ensemble of all measurable low-molecular weight metabolites in a biological 

system, many ex vivo metabolomics studies have indicated the greater sensitivity of global 

metabolite profiles, with or without univariate metabolite analysis, in representing disease 

status compared to single metabolites8,29,93–95. While ex vivo metabolomics evaluations can 
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assist current clinical diagnosis and staging by providing biological information that cannot 

be obtained by histological evaluation41, through the existence of cancer field effects, 

translating ex vivo findings to in vivo methods is the ultimate aim. A current challenge to 

this translation is that in vivo MRS studies typically focus on a select few, high-intensity 

metabolites96, primarily due to resolution constraints. Nevertheless, results from the 

examination of whole, cancerous prostates on a 7T MR scanner indicated the potential of 

metabolomics for in vivo MRS, where metabolomic profiles measured from the removed 

prostates located cancer lesions with overall 93% accuracy97. Promising results from a 

comparison between in vivo MRS and ex vivo HRMAS MRS measurement of prostates and 

prostate tissue, respectively, further suggested that ex vivo metabolomics can be translated to 

clinical evaluations. In this study, the metabolic ratio of (choline + citrate + spermine)/citrate 

in prostate cancer showed strong positive correlations between the ex vivo and in vivo 
measurements98.

In contrast to in vivo measurements, ex vivo HRMAS MRS confers an advantage for 

metabolomic measurement by allowing intact tissue measurement. This aspect of the method 

enables histopathological assessment and thereby calibration according to pathological 

features of each individual tissue sample, as well as examination of other -omics levels for 

an inclusive systems biology approach.

As a demonstration of the potential of HRMAS MRS metabolomics, our measurements of 

histologically benign samples collected from cancerous prostates can correlate with both the 

Gleason score of the whole prostates and the pattern of the closest cancer lesion. These 

results, achieved with histo-benign tissue that was <5 mm from cancer (HbA), support the 

concept of tissue metabolomics in characterizing disease beyond the ability of routine 

histopathology31,33,41,50,70,85,86. Particularly, our results indicated the existence of a 

measurable scale of metabolomic fields. This finding was indicated by the reduction of the 

number of significant metabolic regions and decreased prediction accuracy (Figure 6) in 

distinguishing GS of the prostate and cancer patterns when all histo-benign samples are 

considered as a single group when compared with distinguishing with just the cancer-close 

HbA group.

Our findings regarding specific metabolites agree with those reported elsewhere. Elevated 

phosphocholine and glycerophosphocholine were identified in esophageal cancer70 and the 

enzyme which forms phosphocholine was found overexpressed in several cancers99. 

Previous studies characterizing prostate cancer field effects found myo-inositol41 and ratios 

of myo-inositol/scyllo-inositol and (glycerophosphocholine + phosphocholine)/creatine50 to 

be altered. At organ level, our analysis confirmed altered levels of the metabolites 

phosphocholine and creatine, as well as myo-inositol and glycophosphocholine. Previously, 

some of these metabolites were shown to be independent of possibly confounding factors, 

such as prostate tissue composition of glands and stroma for choline levels or patients age 

for myo-inositol100,101 . Previously altered levels of these metabolites were assigned to 

processes in cancer, such as altered levels of choline compounds were assigned to 

membraneogenesis for cancer cell proliferation, creatine was assigned to cancer energy 

metabolism102 and my-inositol was suggested to be an osmo-regulator101 and binding factor 

for polyamines103. Of special interest are polyamines, as the prostate gland has the highest 
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levels of polyamines and they were repeatedly shown to metabolomically differentiate 

cancer from healthy prostate tissue and different grades of gleason score39,52. Interestingly, 

we found polyamine levels to vary in histologically benign tissue adjacent to cancer 

depending on the GS of the cancer itself.

Figure 7 further presents the influence of cancer lesion extent on the measured metabolomic 

profiles of benign tissue. Although the group of benign samples close to cancer (HbA) could 

be distinguished from the group of benign samples far from cancer (HbBC), HbBC samples 

were not distinguishable from benign samples adjacent to a cancer lesion that is less 

extensive (HbAless). HbBC samples were, however, significantly different from those 

adjacent to more extensive cancer (HbAmore). Possibly a threshold quantity of cancer cells is 

needed to make a metabolomic field arise, and less extensive lesions may not exert enough 

influence to cause HbAless to be different from samples further away (HbBC). Alternatively, 

certain conditions may change the scale of metabolomic fields. This latter consideration may 

be illustrated by the fact that benign samples far from cancer were barely distinguishable 

from benign samples close to cancer for a prostate with a high Gleason score, but were very 

distinct from benign, cancer-proximate samples of a prostate with a low Gleason score. We 

hypothesize that the effect of a high GS cancerous lesion may be so great that its 

metabolomic field extends beyond the distance of 5 mm, as there is no longer a change of 

metabolic intensity for most metabolites at that point as defined for this study. These 

findings regarding metabolomic field effects suggest caution when using benign tissue 

samples as controls in biomarker studies as is often done, especially in prostate cancer 

research104, due to the difficulty of obtaining truly cancer-free organs105. We urge that 

distance from and pattern of the nearest cancer lesion should be considered. The fact that 

histologically benign samples can provide information regarding cancer status affirms that 

metabolomic fields can help overcome diagnostic challenges of prostate cancer by 

potentially enlarging the target biopsy zone to help reduce false negatives105.

This above explanation assumes that cancer causes the metabolomic field, but Slaughter et 

al. originally proposed that an altered molecular field may be the precursor of cancer71. 

Under this hypothesis, different metabolomic fields may result in the more or less aggressive 

Gleason scores or varied patterns of cancer that we observed were distinguishable with 

benign tissue. There is likely bi-directional interplay between lesions and fields.

Future explorations will help elucidate the relationship between metabolomic lesions and 

fields, as would genetic-metabolomic correlations. One limitation of this study is that only 

metabolomic evaluations were investigated. A second limitation was the multifocality of 

prostate cancer – the existence of multiple lesions throughout the prostate - which meant that 

the total number of samples at far distances from cancer was small. Of the ten prostates 

examined, only three had samples in both categorization groups of ‘5–10mm’ and ‘>10mm’ 

from cancer, and seven had only samples <5mm from cancer. Unequal sample size also 

prevented a satisfactory multivariate model from being constructed and evaluated to 

rigorously evaluate the difference between HbA and HbBC groups, so two comparisons 

were performed:. A comparison of HbA versus HbBC (all benign samples from all organs) 

and a comparison of HbA versus HbB versus HbC (benign samples from one organ). As a 

result, different significant metabolites were identified for each, which can be explained by 
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the aggregation of the HbB and HbC groups in the first comparison106. Mismatched group 

size was especially problematic for the already small group of benign samples 5–10mm 

from cancer because seven of the ten specimens were from the same patient. Thus, it is also 

possible that comparisons of all benign tissue close to cancer (HbA) versus benign tissue 

further from cancer (HbBC) reflect interpersonal differences rather than generalizable 

effects. Nevertheless, within one prostate in Figure 8, where inter-patient differences are 

nonexistent, metabolomic profiles measured from all three benign tissue groups indeed 

indicated the possibility of quantifying the metabolomic field scale with the current method.

Ultimately, since sample classification in this report is a semi-quantitative estimate, a more 

extensive characterization system must be invoked, where cancer lesions and MRS-scanned 

sample location can be quantitatively pinpointed in three-dimensional space. 

Histopathological three-dimensional reconstruction of prostate cancer architecture, as 

undertaken by Tolkach and colleagues107, may enable this localization and allow 

characterization of metabolomic fields at intervals even smaller than 5 mm.

5. Conclusions

Our review of the current state of HRMAS MRS-based investigations of cancer indicated 

that multivariate methods of metabolomics, with or without information provided by 

univariate analyses, are superior to univariate methods alone. Building upon the concept of 

metabolomic field effects, we report a semi-quantitative, three-dimensional method of 

mapping cancer lesions and scanned samples which enabled the distance-dependent 

existence of metabolomic fields and particularities regarding pathological features of the 

closest cancer to be identified in prostates. This study with its proof-of-principle distinction 

of cancer versus benign tissue and characterization of new aspects of cancer fields in 

histologically benign tissue opens the path to myriad applications of the phenomenon of 

metabolomic field effects, ranging from decreasing false negatives during prostate biopsy to 

defining tumor margins in a variety of organ systems.
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Cre creatine

GPCho Glycerophosphocholine

GS Gleason score

HbA histologically benign tissue adjacent to cancer

Hb Barrett histologically benign tissue adjacent to Barrett’s esophagus 

disease

HC healthy control

MCCV Monte-Carlo cross validation

m-Ino myo-inositol

OPLS-DA orthogonal partial least squares-discriminant analysis

PCA principal component analysis

PCho phosphocholine

PLS-DA partial least squares-discriminant analysis

ROC receiver operating characteristic

s-Ino scyllo-inositol

SVM support vector machines
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Review Criteria

PubMed was searched for articles about metabolomics of human cancer tissue, using the 

following criteria: [(cancer) AND (hrmas OR high resolution magic angle spinning)) 
AND (metabo* OR pca OR pls da OR pls-da OR discriminant analysis OR linear 
discriminant analysis OR canonical analysis OR unsupervised OR hierarchical cluster 
analysis OR self-organizing maps OR supervised]. The search was performed on October 

20, 2017, and the resulting 132 papers were reviewed for inclusion. Additional relevant 

papers discovered in the references of included studies were screened for inclusion. 

Reviews, studies with animals or cells, and in vivo-only studies were excluded, which 

resulted in 39 papers to be included in the review.
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Figure 1. Study Design.
(1) The removed prostate was cut into 16 sections, and a sample was taken from each 

section, exemplarily only one sample is shown here. (2a) HRMAS 1H MRS. (2b-c) 

Histopathological examination of both the (2b) MRS-scanned sample and (2c) routine 

pathology of the remainder of the sections. (3) Three-dimensional categorization system, 

where the shown sample is assigned to group A according to its histopathology and distance 

to cancer.
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Figure 2. Representative spectra for the comparison groups.
Representative spectra for cancer (Ca, top) and histologically benign samples at different 

distances from cancer (increasing distance; HbA, HbB, HbC). All samples are from the 

same prostate, which was also used for the analysis on organ level. Metabolites were 

assigned based on literature values (Supplementary Table S1), and visually distinct peaks are 

labeled here. Exemplary regions that appeared significant in multivariate analysis are boxed 

(Ca vs HbABC, cancer versus benign; HbA vs HbB vs HbC, differences between 

histologically benign tissue at different distances).

Dinges et al. Page 22

NMR Biomed. Author manuscript; available in PMC 2020 July 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. PCA and PLS-DA distinguish cancer vs. benign samples.
All MRS-scanned samples, benign (n = 134) vs cancer (n = 26). (a) PCA score plot with 

PC1 (40.4% of variance), PC2 (8.3%), and PC3 (6%). (b) 10-fold cross-validated PLS-DA 

score plot (R2Y = 0.33 and Q2Ycum = 0.18). Component 1 explains 35.1% of variance, 

Component 2 explains 11.1%, and Component 3 explains 5.6%. (c) PLS-DA VIP scores of 

Component 1 that are >1 and corresponding fold changes for regions are presented. All red 

squares in the right column indicate that each spectral region had higher intensity in cancer 

compared with benign samples. All spectral regions listed had VIP > 1 and were also 

significant in univariate analysis. Metabolites associated with each spectral region can be 

found in Supplementary Table S1.
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Figure 4. PCA and PLS-DA distinguish GS among cancer samples.
Cancer samples, with CaGS high defined as ≥4+3 (n = 12) vs. CaGS low as ≤3+4 (n = 14). (a) 

PCA score plot with PC1 (40% of variance), PC2 (12.1%), and PC3 (9.9%). (b) 10-fold 

cross-validated PLS-DA score plot (R2Y = 0.84 and Q2Ycum = 0.48) with Component 1 

(33% of variance), Component 2 (17.1%), and Component 3 (6.3%). (c) PLS-DA VIP scores 

of Component 1 that are >1 and corresponding fold changes for regions are presented. A red 

square indicates that sample group has a higher spectral intensity for a given region. Bold 
spectral regions indicate which regions both had VIP > 1 and were significant in univariate 

analysis.
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Figure 5. Univariate comparisons within the HbA group.
Wilcoxon rank sum comparisons between HbAmore (n = 99) vs. HbAless (n = 21) and 

HbAGS high (n = 60) vs. HbAGS low (n = 60) indicated several spectral regions which could 

differentiate between the subgroups with Benajmini-Hochberg adjustment. The red square in 

the upper left indicates that HbAmore had significantly higher (p<0.001) intensity in the 

4.45–4.44 ppm region than did HbAless. The blue square of 4.43–4.41 ppm indicates that 

HbAGS high has lower intensity than AGS low. Abbreviation: n.s., not significant.
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Figure 6. Improved prediction accuracy when considering distance to closest cancer.
To generate receiver operating characteristic (ROC) curves, all spectral regions significant in 

the respective univariate analyses were subject to logistic regression. ROC curves were 

generated from the resulting fitted values. (a) HbA (red) and HbABC (blue) samples were 

used to predict GShigh vs. GSlow with HbA AUC = = 0.83 (95% CI: 0.761–0.908) and 

HbABC AUC = 0.765 (95% CI: 0.690–0.850), respectively. (b) HbA (red) and HbABC 

(blue) samples were used to predict ‘more’ vs. ‘less’ with HbA AUC = 0.918 (95% CI: 

0.857–0.978) and HbABC AUC = 0.870 (95% CI: 0.800–0.94), respectively. For both 

comparisons, prediction accuracy was increased when the samples close to cancer were 

separated from samples far from cancer.
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Figure 7. Univariate comparisons between HbA and HbA subgroups vs. HbBC.
Mann-Whitney-Wilcoxon comparisons between HbA (n = 124) vs. HbBC (n = 10), 

HbAGS high (n = 60) vs. HbBC, HbAGS low (n = 60) vs. HbBC, and HbAmore (n = 99) vs. 

HbBC indicated several spectral regions which could differentiate between the subgroups 

with Benjamini-Hochberg adjustment. The orange square in the top row indicates that 

HbAGS low had significantly higher (p<0.02) intensity in the 4.43–4.41 ppm region than did 

HbB. There were no regions significantly different between HbAless vs. HbBC.
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Figure 8. Within-organ analysis for a single prostate case.
(a) PCA score plot with PC1, PC2, and PC3, explaining 39.9%, 24.1%, and 10% of the 

variance, respectively. (b) 10-fold cross-validated PLS-DA score plot (R2Y = 0.63 and Q2Y 

= 0.18) with Component 1 (30.3% of variance), Component 2 (28.5%), and Component 3 

(11.1%). (c) PLS-DA VIP scores of Component 1 that are >1 and corresponding fold 

changes for regions are presented. The three colored columns correspond to HbA, HbB, and 

HbC groups. Colors indicate relative intensity for each group. For example, the first row that 

is red, yellow and green from left to right indicates that spectral intensity is highest for HbA 

samples, of middle intensity for HbB samples, and lowest for HbC samples, for the 2.81–

2.79 ppm region. Bold spectral regions indicate which regions had VIP > 1 and were 

significant in univariate analysis. (d) Four regions which were significant in univariate 

Wilcoxon rank sum analysis of HbA, HbB, and HbC are shown. Red brackets indicate which 

pairwise comparisons were significant with Benjamini-Hochberg false discovery rate 

adjustment. Inter-quartile range is illustrated by the dashed lines. 4.07–4.05 ppm, 3.99–3.97 
ppm, 3.90–3.89 ppm, 0.95–0.93 ppm. Standard deviation, mean and confidence interval 

can be found in Supplementary Table S9.
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Table 1.
Selected HRMAS MRS metabolomics studies within the past 10 years.

Reviewed reports both published within the last 10 years and with total sample sizes ≥ 100 are summarized. 

Control sample size of 0 indicates a study only compared tumor or disease sub-types. Abbreviations: AUC, 

area under the curve; BBNs, Bayesian belief networks; OPLS-DA, orthogonal partial least squares-

discriminant analysis; PLS-DA, partial least squares-discriminant analysis; PNNs, probabilistic neural 

networks; ROC, receiver operating characteristic.

Sample size

Authors Year Organ Primary findings

n 
(tumor 

or 
disease)

n 
(control) Ref

Vandergrift et 
al. 2018 prostate

– Metabolic profiles of histologically benign prostate tissue from 
cancerous prostates:
 ○ Show elevated myo-inositol, an endogenous tumor 
suppressor and potential mechanistic therapy target, in patients 
with highly-aggressive cancer
 ○ Identify a patient sub-group with less aggressive prostate 
cancer to avoid overtreatment if analyzed at biopsy
 ○ Subdivide the clinicopathologically indivisible PGG2 group 
into two distinct Kaplan-Meier recurrence groups, thereby 
identifying patients more at-risk for recurrence

27 338 41

Battini et al. 2017 pancreas

– Validated OPLS-DA distinguished pancreatic parenchyma (PP) 
and pancreatic adenocarcinoma (PA) (R2Y=0.82, Q2=0.69)
 ○ Increased myo-inositol and glycerol in PP
 ○ Increased glucose, ascorbate, ethanolamine, lactate, and 
taurine in PA
○Increased ethanolamine was correlated with worse survival in 
Kaplan-Meier analysis

106 17 35

Haukaas et al. 2016 breast

– Hierarchical cluster analysis (validated with PLS-DA (p<0.001)) 
of breast cancer tumors revealed three significantly different 
metabolic clusters
 ○ Mc1 had highest glycerophosphocholine and phosphocholine
 ○ Mc2 had highest glucose
 ○ Mc3 had highest lactate and alanine
– Genetic and protein subtypes were also divided along cluster 
groupings

228 0 18

Hansen et al. 2016 prostate

– Validated PLS-DA analysis differentiated prostate samples with 
high likelihood of having the poor prognosis-related TMPRSS-
ERG fusion gene (TMPRSS-ERGhigh) from those with low 
likelihood (TMPRSS-ERGlow) (p<0.001)
 ○ Increased choline-containing metabolites in TMPRSS-
ERGhigh

 ○ Decreased citrate and polyamines in TMPRSS-ERGhigh

– Metabolic alterations are more pronounced in TMPRSS-
ERGhigh samples possible risk-stratification identifier

95 34 36

Tian et al. 2016 colorectal

– Validated OPLS-DA distinguished colorectal cancer (CRC) 
samples from adjacent non-involved tissue (R2X=0.37, Q2=0.64) 
and low-grade and high-grade tumors (R2X=0.36, Q2=0.44)
 ○ Increased lactate, choline, phosphorylcholine, 
glycerophosphocholine, phosphoethanolamine, scyllo-inositol, 
glutathione, taurine, uracil, and cytosine in CRC
 ○ ROC model with these metabolites showed AUC = 0.965 for 
predicting CRC vs. non-tumor
 ○ ROC model for predicting low-grade vs. high-grade showed 
AUC = 0.904
–Stage I CRC samples were the most differentiated from their 
matched adjacent non-involved tissue samples

50 50 30

Jimenez et al. 2013 colorectal
– Validated OPLS-DA distinguished colorectal cancer (CRC) 
samples from adjacent mucosa (R2X=0.72, Q2=0.45)

83 87 31
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Sample size

Authors Year Organ Primary findings

n 
(tumor 

or 
disease)

n 
(control) Ref

 ○ Increased taurine, isoglutamine, choline, lactate, 
phenylalanine, tyrosine in CRC
 ○ Decreased lipids and triglycerides in CRC
– Evidence of metabolic field effects
 ○ Tumor-adjacent mucosa (10 cm from tumor margin) has 
unique metabolic field changes that distinguish tumors by T- and 
N-stage more accurately than tumor tissue itself.

Bathen et al. 2013 breast

– Doubled cross-validated PLS-DA discriminated breast tumor 
tissue from adjacent benign with sensitivity and specificity of 91% 
and 93%, respectively
 ○ Increased choline-containing metabolites for tumor
–These findings could allow on-line analysis of resection margins 
during breast cancer surgery

263 65 22

Giskeodagard 
et al. 2013 prostate

– PLS-DA
 ○ Separated cancer tissue from normal with sensitivity 86.9% 
and specificity 85.2%
 ○ Achieved correct classifications of 85.8%,77.4%, and 65.8% 
for GS≥7, GS = 6, and normal tissue
– Decreased spermine and citrate in low grade prostate cancer 
tissue
–Increased levels of the clinically-applied measure (total choline
+creatine+polyamines)/citrate ratio in cancer

111 47 24

Miccoli et al. 2012 thyroid

– OPLS-DA distinguished thyroid tumor from normal (Q2=0.37)
 ○ Increased lactate and taurine in tumor
 ○ Decreased choline, phosphocholine, myo-inositol, scyllo-
inositol in tumor
–ROC curve showed prediction accuracy of 77%

68 32 45

Torregrossa et 
al. 2012 thyroid

– Permutation-validated OPLS-DA distinguished thyroid tumor 
from benign tissue (R2Y=0.82, Q2=0.37)
 ○ Increased phenylalanine, taurine, and lactate in tumor
 ○ Decreased choline, and choline derivatives (myo- and scyllo-
inositol) in tumor
 ○ ROC curve showed 77% prediction accuracy
– Biopsied thyroid lesions often receive an indeterminate 
diagnosis and require surgical excision for histopathological 
examination, but metabolomic classification of biopsies may assist 
in pre-surgical classification

72 28 46

Giskeodagard 
et al. 2010 breast

– PLS-DA, BBNs, and PNNs, Bayesian belief networks were used 
to analyze the important prognostic factors of lymph node and 
receptor status in breast cancer tissue
 ○ PLS-DA best predicted estrogen and progesterone receptor 
status in cancer tissue (44/50 and 39/50 correct classification, 
respectively)
 ○ BBN correctly classified 34/50 samples

160 0 27
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Table 2.
Ex-vivo HRMAS MRS studies on metabolomic cancer fields in humans.

Findings related to field effects are reported. Abbreviations: Cho, choline; Cre, creatine; GPCho, 

Glycerophosphocholine; HbA, histologically benign tissue adjacent to cancer; Hb Barrett, histologically 

benign tissue adjacent to Barrett’s esophagus disease; HC, healthy control; BPH, benign prostate hyperplasia; 

m-Ino, myo-inositol; PCho, phosphocholine; s-Ino, scyllo-inositol. (+), increase, (−), decrease for the first-

mentioned group compared to latter if available.

Authors Organ

Individuals (n)

Distance 
of 

Hbcancer 
to 

cancer 
(cm)

Primary 
findings Key metabolites Ref

Samples (n)

Cancer

Histologically 
benign at 

distance to 
cancer 

(Hbcancer)

Healthy 
control 
(HC)

Others

Stenman et 
al. Prostate

40 cancer patients n.a. Hbcancer 

subgroups:
• 
Discrimination 
of GS 3+3 and 
GS 3+4 (m-
Ino/s-Ino 
p=0.002; 
Cho/Cre 
p<0.001) 
outperfomed 
the 
discrimination 
based on the 
cancer 
samples
• Distance to 
the nearest 
tumor was 
correlated 
with the m-
Ino/s-Ino (p= 
0.03) and 
(GPCho + 
PCho)/Cre 
(p<0.001) 
ratios

• Myo-inositol m-Ino (GS, 
distance)
• Scyllo-inositol s-Ino 
(GS, distance)
• Creatine Cre (GS, 
distance)
• Choline Cho (GS)
• 
Glycerophosphorylcholine 
GPCho (distance)
• Phosphorylcholine PCho 
(distance)

50
41 108 - -

Reed et al. Esophagus

46 cancer patients 7 Barrett esophagus patients 68 
HC

≥ 5 Hbcancer vs HC
• excellent 
discrimination 
(AUC=1; 
p≤0.007)
Hbcancer vs 
Histol. Benign 
adjacent to 
Barrett
• weak 
discrimination 
(AUC=0.7, 
p=0.03)

Hbcancer vs HC
• 3-hydroxybenzoic acid 
(+)
• Succinate (+)
• Sactate (+)
• Acetate (+)
• formate (+)
• Adenosyltriphosphate 
(+)
• 
Glycerophosphorylcholine 
(+)
Hbcancer vs Histol. Benign 
adjacent to Barrett
• 3-hydroxybenzoic acid 
(+)

85

57 59 68

HbBarrett 

7
Barrett 

7

Yacoub et 
al. Esophagus

35 cancer patients
52 HC

5–20 Hba vs HC
• 5% of the 
profile 
exhibited a 
significant 
progressive 
change in 

Phosphocholine (PC) (+)
• Glutamate (Glu) (+)
• Myo-inositol (+)
• Adenosine-containing 
compounds (+)
• Uridine-containing 
compounds (+)

70

32 38 53 -
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Authors Organ

Individuals (n)

Distance 
of 

Hbcancer 
to 

cancer 
(cm)

Primary 
findings Key metabolites Ref

Samples (n)

Cancer

Histologically 
benign at 

distance to 
cancer 

(Hbcancer)

Healthy 
control 
(HC)

Others

signal 
intensity from 
histologically 
benign tissue 
in cancer 
patients and 
controls
• Detection of 
cancer in 
histologically 
benign 
samples (aHb 
vs Hb PC/Glu 
ratio AUC = 
0.84; P < 
0.001)

• Inosine (+)

Jimeńez et 
al.

Colon,
Rectum

26 cancer patients 5–10 Hbcancer 

subgroups
• Distinction 
of T- and N-
stages (T4 vs. 
T1−3 AUC = 
0.80 and N0 
vs N1–2 AUC 
= 0.92) in aHb 
with higher 
predictive 
capability than 
tumor tissue 
itself (AUC = 
0.75 and AUC 
= 0.88)
• Accurate 
prediction of 
5-year survival 
(AUC = 0.88)

T-stages
• Valine (+), alanine (+), 
phenylalanine (+), 
tyrosine (+), glucose (-), 
formate (-)
N-stages
• Leucine (+), 
phenylalanine (+)
5-year survival
• Isobutyrate (+)
• Acetate (+)
• Choline (+)

31
22 23 - -

Vandergrift 
et al. Prostate

158 cancer patients 13 BPH patients 14 HC n.a. Hbcancer 

subgroups
• Prostate 
Cancer Grade 
Group (PGG) 
PGG1&2 
versus 
PGG3&4 
could be 
seperated by 7 
significantly 
different 
regions
• The 
pathological T 
stages pT = 
IIab from pT = 
IIc were 
seperable in 
the training (p 
< 0.0013) and 
testing (p < 
0.0004) 
cohorts, 
respectively
• Cancer 
recurrence 
could be 

PGG
• E.g. myo-Inositol (+), 
glycerophosphocholine 
(+), phosphocholine (+), 
and valine (+)
T-stages
• Lipids
Biochemical recurrence
• Choline, 
phosphocholine, 
glutamate, myo-inositol

41
Training 

20
Testing 

7

Training 179
Testing 159 14 BPH 15
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Authors Organ

Individuals (n)

Distance 
of 

Hbcancer 
to 

cancer 
(cm)

Primary 
findings Key metabolites Ref

Samples (n)

Cancer

Histologically 
benign at 

distance to 
cancer 

(Hbcancer)

Healthy 
control 
(HC)

Others

predicted by 
differentiating 
patients with 
and without 
biochemical 
recurrence in a 
canonical 
analysis on 
principal 
components in 
the testing 
cohort 
(accuracy 
83%)
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Table 3:

Clinical information summarized for whole prostates and MRS-scanned prostate samples.

Organs
MRS samples

Cancer Benign

samples (n) median (range) total 10 26 134

per organ - 1.5 (0–9) 14.5 (7–16)

Weight (g) median (range) 50.5 (33.8–70) - -

Vol (cm3) median (range) 92 (33.75–141.75) - -

Tissue composition (%) median (range) cancer 27.5 (10–90) 19.67 (2–100) -

benign glands - 7.83 (0–31.25) 9.5 (0–56.27)

stroma - 66.37 (0–83.75) 90.50 (43.75–100)

Gleason Score (GS)
low

3+3 1 10 -

3+4 4 4 -

high

4+3 1 - -

4+4 1 3 -

4+5 2 - -

5+5 1 9 -

Pathological stage (pTNM) tumor stage pT2a 1 - -

pT2c 5 - -

pT3a 3 - -

pT3b 1 - -

lymph node stage N1 2 - -

N0 6 - -

NX 2 - -

Perineural Invasion 9 - -
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Table 4:

Tissue sample classification system.

Groups Subgroups

n Distance to closest cancer
Gleason Score Cancer pattern (scatter, size)

≤ 3+4 ≥ 4+3 less more

Cancer Ca 26 - 14 12 -

Histologically Benign HbABC 134

HbA≤ 5mm 124 60 60 21 99

HbB≥ 5mm, ≤ 10mm 6
HbBC 10 7 3 0 10

HbC≥ 10mm 4
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