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Machine learning of serum metabolic patterns
encodes early-stage lung adenocarcinoma
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Early cancer detection greatly increases the chances for successful treatment, but available

diagnostics for some tumours, including lung adenocarcinoma (LA), are limited. An ideal

early-stage diagnosis of LA for large-scale clinical use must address quick detection, low

invasiveness, and high performance. Here, we conduct machine learning of serum metabolic

patterns to detect early-stage LA. We extract direct metabolic patterns by the optimized

ferric particle-assisted laser desorption/ionization mass spectrometry within 1 s using only

50 nL of serum. We define a metabolic range of 100–400 Da with 143m/z features. We

diagnose early-stage LA with sensitivity~70–90% and specificity~90–93% through the sparse

regression machine learning of patterns. We identify a biomarker panel of seven metabolites

and relevant pathways to distinguish early-stage LA from controls (p < 0.05). Our approach

advances the design of metabolic analysis for early cancer detection and holds promise as an

efficient test for low-cost rollout to clinics.
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Early diagnosis improves the survival rates of many types of
cancer. For lung adenocarcinoma (LA), which accounts for
almost half of all lung cancers and has a mortality rate up to

80%, early diagnosis can increase the 5-year survival rate to 52%
and reduce the costs of management of the disease1. However,
conventional diagnostics using proteomic/genomic biomarkers or
in vivo imaging are limited considering the detection throughput,
diagnosis accuracy, analysis speed, and sampling invasiveness,
particularly for early-stage LA2,3.

Serum analysis holds promise for early diagnosis of LA4 and is
superior to traditional biopsy and computed tomography (CT)
methods5, because serum analysis is non-invasive and low-cost
for point-of-care testing (POCT)6,7 and has the desirable adapt-
ability for universal applications. Most current serum analysis for
the diagnosis of LA relies on selected genomic8,9 or proteomic10

biomarkers with limited sensitivity and specificity.
Metabolic serum analysis is more distal over genomic and

proteomic approaches for precision diagnostics11–13, but it has
rarely been reported or studied for complex diseases such as
LA, due to the lack of efficient metabolite detection tools and
systematically designed patient sub-groups. Changes in meta-
bolism are associated with diverse diseases including LA6,14.
Specifically, malignant transformations are associated with
altered metabolic pathways for biosynthetic and bioenergetic
processes, which depict an adjustment in blood metabolomics.
Serum metabolite-guided approach has been applied to detect
blood metabolic fingerprints and to identify biomarkers in
various diseases, including pancreatic adenocarcinoma15, acute
myeloid leukaemia16, and hepatic steatosis17, etc. These chan-
ges can be used for diagnostic purposes, hence the intense
interest in extracting and deciphering serum metabolic infor-
mation. Therefore, it is urgent to construct an advanced ana-
lytical tool for the metabolic screening of early-stage diseases,
including LA.

Spectrometry methods, including nuclear magnetic resonance
(NMR)18 and mass spectrometry (MS), particularly laser deso-
rption/ionization (LDI) MS, enable high-throughput extraction
and measurement of metabolomic information, while tandem MS
allows accurate identification of metabolites19. However, the
metabolite abundance and sample complexity affect MS analysis,
and rigorous pre-treatment procedures are required for enrich-
ment and separation of metabolites from complex bio-mixtures.

Substrates decide the efficacy of LDI MS. The tailoring of
material interfaces optimizes designed interactions between
molecules and substrate materials for analytical use20,21. For LDI
MS, there have been global efforts, including ours, to engineer
substrate materials22–24. An ideal substrate material for LDI MS-
based metabolic analysis should have the following properties: (1)
nanoscale surface roughness with stability for the selective LDI of
metabolites25; (2) favourable surface charge for ion formation and
conductivity for electron transfer26; and (3) easy preparation with
low costs for mass production aimed at large-scale clinic use. The
current materials being used, including noble metals27,28, sili-
con26, carbon29, metal oxides23, and their hybrids, only have
some of these properties, so novel material-based platforms
combining all of the above merits are a pressing need for the
practical use of LDI MS in clinics.

A further challenge is the processing of MS big data in serum
samples to obtain the necessary accuracy. Machine learning of
imaging and omic information has enjoyed huge success for
diagnostic use in clinics30. Compared with in vivo imaging and
biopsy methods31,32 that require expensive and invasive equip-
ment, in vitro omics diagnostic methods are advantageous,
although they require big data. As one of the major tools for omic
information collection, MS techniques33,34 (such as MasSpec Pen
for cancer tissues) have afforded big data for processing and

interpretation by machine learning. Notably, the selection and
optimization of algorithms are required to apply machine learn-
ing in disease diagnostics.

Due to the biological significance of small metabolites (mole-
cular weight (MW) <1000 Da) as end products of pathways and
limitation performance of LDI MS in complex bio-mixtures,
tackling the major problems in sample treatment, substrate
materials, and data analysis for MS will lead to insights into
metabolic pathways and identify effective diagnostic metabolic
biomarkers. Here, we optimize the LDI MS approach to analyse a
large range of metabolites (including biologically relevant meta-
bolites) as metabolic patterns from serum samples without pre-
treatment by improving the substrate used. Further encoded by
machine-learning algorithm, the serum metabolic patterns
achieve high specificity and sensitivity diagnosis of early-stage LA
and enable large-scale and low-cost rollout for use in clinics. Our
approach contributes to the design of advanced metabolic ana-
lysis protocols for use in the development of precision medicine,
and will lead to the development of personalized diagnostic tools
for diverse diseases including but not limited to LA in the near
future.

Results
Optimization of substrate material for selective LDI MS. To
enable efficient extraction of serum metabolic patterns by LDI MS,
we first prepared ferric particles using a modified low-cost solvo-
thermal method, yielding ~0.5 g of product from a single experi-
ment (Fig. 1 and Supplementary Fig. 1a). Ferric particles consisted
of nanocrystals (~5 nm diameter) as shown by transmission
electron microscopy (TEM) (Fig. 1a). High-resolution TEM (HR-
TEM) (Supplementary Fig. 1b) demonstrated the polycrystalline
structure of the ferric particles (Supplementary Fig. 1b) in addition
to the diffraction pattern of the particles by selected area electron
diffraction (SAED, inset of Fig. 1a). By scanning electron micro-
scopy (SEM), we observed a raspberry-like morphology of the
ferric particles, which were of uniform size (~300 nm diameter,
polydispersity index (PDI) of 0.155) and had a rough surface
(Fig. 1b and inset), which agreed with the TEM and dynamic light
scattering (DLS) results (Supplementary Fig. 1c). These particles
exhibited a large surface area of 154m2 g−1 (Supplementary
Fig. 1d) validating the existence of crevices on the rough surface to
selectively accommodate metabolites other than proteins, and
could undergo simple and fast (~45 s) separation with a magnet
due to the superparamagnetic property (Supplementary Fig. 1e).
We investigated the laser absorption properties of particles and
showed strong absorption in the ultraviolet–visible region of
270–1100 nm (Supplementary Fig. 1f). We concluded that these
ferric particles with designer structure might be ideal as a matrix
for LDI MS.

Optimizing the surface charge of substrate particles is critical
for the LDI MS process of extracting serum metabolic patterns to
allow ion formation and conductivity for electron transfer
(Fig. 1c). We controlled the surface charge of the ferric particles
during synthesis (Supplementary Fig. 2a), demonstrating that
negatively charged particles with a zeta potential of –11.5 ± 2.65
mV produced by 0.4 g trisodium citrate afforded the optimized
serum metabolite profile in LDI MS (Supplementary Fig. 2b) due
to the enhanced formation of a positive metal ion layer on the
surface to produce cation-adducted species. From 0 to 0.4 g of
trisodium citrate, the metabolite signals with a signal-to-noise
ratio (S/N) > 3 increased in number. Further increasing the
amount of trisodium citrate resulted in no improvement in the
number of metabolite signals. In addition, the ferric particles we
produced had a specific band gap of <3 eV, with specific
ultraviolet absorption that could be easily excited (from ground
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state E0 to excitation state E1) by a 355 nm laser for facile electron
transfer during ionization (Fig. 1c).

We also compared LDI MS results using the conventional
organic matrix (α-cyano-4-hydroxycinnamic acid, CHCA) and
inorganic matrices (silica and carbon nanoparticles) together with
blank controls using no matrices, showing either strong
interference in low mass range or limited sensitivity/selectivity
in the analysis of bio-samples to demonstrate the superiority of
our approach (Supplementary Fig. 3). Specifically, as control
experiments, we observed no signals by LDI MS without any
matrix due to low LDI efficiency (Supplementary Fig. 3a). We
obtained overwhelming background noises with few peaks from
small metabolites using the organic matrix (CHCA) and carbon
particles (Supplementary Fig. 3b, c) and could only recognize
glucose signal using silica nanoparticles (Supplementary Fig. 3d),
all of which demonstrated the advantages of ferric particles over
current matrices. Notably, the rough surface of the particles
offered abundant cavities for the selective and sensitive LDI of
small metabolites in the presence of salts and proteins
(Supplementary Fig. 4a–c), while the stable crystalline structure
prevented unwanted fragmentation under laser irradiation. The
features of the ferric particles that we designed promised the
efficient extraction of metabolic patterns from complex fluids (e.g.
serum) based on selective LDI that would enable subsequent data
analysis (Fig. 1d).

There are four major aspects as rationales to select ferric
particles as the substrate for our described method, including
photo-thermal properties, preparation process, structural stability,
and experimental cost. For photo-thermal properties, ferric
particles show strong laser absorption (absorption coefficients at

355 nm as ~3.6 × 105 cm−1) and low thermal conductivity (heat
capacity as 653 J (kg K)−1). Thus, ferric particles can be heated to
a high temperature by the laser irradiation, towards the efficient
molecular desorption35,36. For preparation process, the solvo-
thermal method required is facile to synthesize the ferric particles
and the yield of ~0.5 g of product can be used to detect ~106

samples for large-scale clinical use. For comparison, the prepara-
tion of various types of silicon substrates requires complicated
devices and procedures, such as micro-electro-mechanical system
(MEMS)37. For structural stability, ferric particles with stable
polycrystalline structure prevented unwanted fragmentation under
laser irradiation, compared to carbon nanomaterials (Supplemen-
tary Fig. 3c) that produced unavoidable carbon cluster peaks in the
low MW region at high laser fluence38,39. For experimental cost,
the ferric particles (~£0.05 g−1) are much cheaper, compared with
noble metals (~£36.36 g−1 for gold), silicon (~£3.59 g−1), and
carbon (~£0.30–43.72 g−1).

Extraction of serum metabolic patterns. Having optimized the
substrate, we tested the ability of ferric particle-assisted LDI MS,
to extract serum metabolic patterns from patients. A total of
481 serum samples from 200 patients with early-stage LA, 200
healthy controls, 36 patients with other lung cancer, and 45 with
benign lung diseases were included. The blood was drawn at
initial diagnosis, without surgery or anaesthesia. The blood col-
lection for each subject enroled in this project was following the
same protocol. We also included power analysis (a universal
method to derive the optimal sample size by estimating statistical
power in a hypothesis test) on a dataset from a pilot study of
12 samples (6/6, LA/control) to compute the minimum sample
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Fig. 1 Substrate material characteristics and schematics of extraction and machine-learning workflow. a Transmission electron microscopy (TEM)
image of ferric particles (n≥ 3 randomly selected) and selected area electron diffraction (SAED) pattern (inset) showing polycrystalline structure. Scale
bar= 100 nm. b Scanning electron microscopy (SEM) images (n≥ 3 randomly selected) of ferric particles showing nanoscale surface roughness and large-
scale uniformity (inset). Scale bars= 100 nm in b and 1 μm in the inset of b. c Schematic workflow for the extraction of serum metabolic patterns by ferric
particle-assisted laser desorption/ionization mass spectrometry (LDI MS). Fifty nanolitres of native serum was consumed for direct analysis without pre-
treatment procedures. Only Na+-adducted and K+-adducted metabolites can be selectively detected with the coexistence of high concentration of
peptides and proteins. d Schematic outline for the sparse regression machine learning of serum metabolic patterns (X). The sparse regression method was
used to build calculation models with sparsely constrained �β towards the diagnosis of early-stage LA ( y!). Each square and its colour in X corresponded to
one m/z feature and its signal intensity in serum metabolic patterns.
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number required for the meaningful machine learning (Supple-
mentary Fig. 5). Based on the power analysis result, the minimum
number of samples was 200 (100/100, LA/control) with predicted
power ~0.8 at a false discovery rate (FDR) of 0.1, which can be a
sufficient confidence level to conclude the statistical meaningful
results according to previous refs. 40,41. All patients were diag-
nosed by pathologists and the tumours were staged according to
the international standards for tumour, node, and metastasis
(TNM) staging of lung cancer1. No significant age difference was

observed among groups (F= 0.088, p= 0.767, by one-way ana-
lysis of variance (ANOVA); Fig. 2a and Supplementary Table 1).

We yielded direct mass spectra from all 481 serum samples by
ferric particle-assisted LDI MS without enrichment or separation.
We firstly extracted 810 peaks from the raw MS data, by
searching the localized highest intensity. We further identified
161m/z features out of 810 peaks for the serum of both early-
stage LA patients and healthy controls (Supplementary Fig. 6)
based on the Otsu algorithm42,43, by estimating the threshold and
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Fig. 2 Extraction of serum metabolic patterns. a Demographics of 481 clinical samples. The ages of different cohorts were matched with no significant
difference (p > 0.05). b Typical mass spectra (serum metabolic patterns) showing with m/z ranging from 100 to 400 obtained by optimized ferric particle-
assisted LDI MS of serum samples from an early-stage LA patient and a healthy control. c Heat map of 50 independent metabolic patterns for one early-
stage LA serum sample based on 161m/z features from the Otsu algorithm. d The p value distribution of m/z features from normalization tests of three
healthy control serum samples in parallel (50 patterns for each sample). The error bars were calculated as s.d. of three samples. Data were shown as the
mean ± s.d. (n= 3). The m/z features with p > 0.05 and p < 0.05 represent normal and non-normal distributions, respectively (two-sided Lilliefors
(Kolmogorov–Smirnov) test with no adjustment made for multiple comparisons). e Probability of a normal distribution of m/z features at 135.18 (blue) and
151.18 (orange) for 50 patterns of one serum sample from healthy control, both with p > 0.5 (n= 50 independent experiments, two-sided Lilliefors
(Kolmogorov–Smirnov) test with no adjustment made for multiple comparisons). Dotted lines are the reference lines for normal distribution. Source data
are provided as a Source Data file.
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deciding the background noise on the maximum interclass
variance and excluding random background peaks from 810
peaks according to the threshold. In particular, 89% (143m/z
features) out of 161m/z features were located in the low mass
range (100–400m/z; Fig. 2b). These 161m/z features were
considered as the final MS output (metabolic pattern) for the
disease classifier.

We collected 50 independent metabolic patterns for one early-
stage LA serum sample and plotted the heat map, showing that
the metabolite signals were distributed vertically and uniformly in
the given m/z range (Fig. 2c). Notably, 110 ± 3m/z features were
normally distributed (p > 0.05, Fig. 2d) at 5% significance level for
three control serum samples (each with 50 independent patterns),
validating the reproducibility of the metabolic pattern extraction.
For instance, we showed that 50 patterns of one serum sample
had a normal distribution, with peaks at m/z values of 135.18 and
151.18, both with p > 0.5 and close to two reference lines for
normal distribution (Fig. 2e). We used the cosine correlation
algorithm to investigate the spectra similarity within one group,
which had been widely applied in previous literatures44.
Typically, one spectrum was randomly selected from each group
and fixed as the reference spectrum for spectra similarity analysis.
As a result, we showed the frequency distribution of the similarity
scores for each group (both LA and controls) in Supplementary
Fig. 7. Notably, the frequency of spectral similarity scores >0.9
reached 94% and 80%, for LA and controls, respectively. The
above results indicated the reliability and potency of the serum
metabolic patterns obtained with ferric particle-assisted LDI MS
for diagnostic applications.

Notably, prior efforts need lengthy pre-treatment procedures
(~hours) and large volumes of serum (50 μL at least), to address
sample complexity and metabolite abundance, respectively19. For
comparison, our approach offers enhanced analytical speed
(~seconds) and reduced sample consumption (500 nL) by ~2–3
orders of magnitude. Importantly, we found that quantitation of
glucose, histamine, and mannitol using our approach afforded
consistency with the standard liquid chromatography electro-
spray ionization (LC ESI) MS method, with the coefficient of
determination (R) of 0.88–0.99 (Supplementary Fig. 8 and
Supplementary Table 2). Our success relied on the selective LDI
of small metabolites by ferric particles to produce signals in the
low-mass range (m/z < 400), particularly in the presence of serum
proteins and salts (Supplementary Fig. 4a, b). Further considering
the high reproducibility (Fig. 2d, e) of the MS data, sensitivity
(Supplementary Fig. 4c and Supplementary Table 3) of pattern
extraction, and large-scale synthesis of material (Supplementary
Fig. 1a) for the high-throughput screening of 161m/z features
(Fig. 2c) in serum, we next approached the major obstacles to
metabolic analysis for massive clinic use.

Diagnosis of early-stage LA by machine learning. To optimize
the hyperparameters for the optimal classifier and evaluate the
diagnostic performance of our ferric particle-assisted LDI MS
approach, we performed machine learning of serum metabolic
patterns (X) for the diagnosis (~y) of early-stage LA (Fig. 3a).
There were two major components to our evaluation—the inner-
loop for hyperparameter optimizing stage and outer-cross vali-
dation for classifier building stage—based on the sparse regres-
sion method to build calculation models with sparsely
constrained ~β, involving only a subset of the variables/predictors
(Fig. 1d, see Online methods for details). We tuned hyperpara-
meters through a nested cross-validation approach (five-fold both
for the inner-loop and outer-cross validation, repeated 20 rounds,
100 models in total) to optimize the model parameters (λ1 and
λ2). The training subjects were internally and randomly split into

five folds for the inner-loop, to identify optimized hyperpara-
meters on training samples in the nested cross-validation. And
the case:control ratio (1:1) for the inner-loop maintained the
same in each internal split, based on the five-fold cross-validation.
Specifically, the discriminant performance of the classifier built
from the nested cross-validation reached an average sensitivity of
90% and an average specificity of 93% (averaged from 100 models
in total), based on the optimized model with wavelength λ1=
0.035 and λ2= 0.024 in Fig. 3b. Importantly, we recruited a new
cohort (Supplementary Table 4) from Shanghai Chest Hospital,
with an independent set of 58 samples (23/35, early-stage LA/
healthy controls) as the double-blind test. Notably, the double-
blind test cohort was independent from the training and test
subjects in classifier building stage and blinding to the as-built
classifier. The situations for blood drawn were the same for all
sample sets. We obtained the area under the curve (AUC) of
0.915 (red line, Fig. 3b), with diagnostic sensitivity of 88.57% and
specificity of 91.30%, consistent with the previous results in the
spectra and algorithm development.

By adjusting the number of training subjects from 20 to 280,
we obtained an increasing AUC with enhanced performance
(Fig. 3c). We identified a minimum number of samples to
potentially apply meaningful machine learning, by varying
training sample number from 20 to 280 (Fig. 3c), while the
testing set size was also varied from 20 to 280 for the
nonoverlapping sample splitting in training number optimiza-
tion. The minimum number of training samples was 200 (100/
100, LA/control), with AUC > 0.9 for machine learning. We
identified the optimized number of training subjects as 240 (120/
120, LA/control), showing limited improvement with further
increases in the number of training subjects. Notably, the models
were robust without overfitting, due to the nonoverlapping
sample splitting in training number optimization and the
consistent performance with double-blind test. For the non-
overlapping sample splitting, the whole samples were split into
nonoverlapping training and test set by cross-validation, which is
universally employed to avoid information leakage during each
training step and prevent overfitting45,46. For the double-blind
test, we demonstrated the discriminant performance (AUC of
0.915) by double-blind test in diagnosis was consistent with the
results (AUC of 0.921) by cross-validation in classifier building.
Notably, the double-blind test cohort was independently enrolled,
decreasing the risk of model overfitting and refusing overly
optimistic results. The consistency between double-blind test and
cross-validation further guaranteed a robust model without
overfitting, according to previous reports46,47. Recently reported
proteomic and genomic approaches (with AUC of ~0.6–0.9)
require time-consuming (~hours) reactions (e.g. immunoassay
and polymerase chain reaction) that are not ideal for routine
clinical use4,48. For comparison, our metabolic approach provided
desirable analytical performance (speed of ~seconds) and
diagnostic performance (AUC of ~0.9) for early-stage LA
detection in serum, demonstrating that computer-aided diagnosis
based on serum metabolic patterns detects early-stage LA.

Construction of the metabolic biomarker panel. We further set
out to find metabolic biomarkers (also as potential therapeutic
targets) in patterns to characterize relevant pathways. We iden-
tified a biomarker panel of seven metabolites (<400 Da) based on
accurate mass measurement (for both Na+- and K+-adducted
signals) and tandem MS (Fig. 4a, Supplementary Figs. 9–15,
Supplementary Table 5), accounting for an AUC of 0.894 (Sup-
plementary Fig. 16a). The panel consisted of: uracil (Ura), his-
tamine (His), cysteine (Cys), 3-hydroxypicolinic acid (HPA), uric
acid (UA), indoleacrylic acid (IA), and fatty acid (FA) (18:2).
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Notably, a strong Pearson correlation between Na+-adducted and
K+-adducted signals (>0.5) for the seven metabolites validated
the presence and role of these metabolites as biomarkers (Fig. 4b,
Supplementary Fig. 17). Specifically, we computed the odds ratios
of the metabolic biomarkers in a logistic regression model
(referred to the basic model) and adjusted for age and sex,
according to previous reports49. As a result, age and sex were not
significant covariates for any metabolic biomarker and thus the
seven metabolites retained significant odds ratios (≠ 1) when
adjusted for age and sex (Supplementary Table 6). The localized
mass spectra and scatter plots for serum metabolic patterns
showed significant differences (p < 0.05, Supplementary Figs. 18
and 19) between early-stage LA and healthy controls for each
biomarker.

There are two aspects regarding the breadth of metabolites,
including both chemical (molecular structure) and physical
(molecular size) properties. For molecular structure, metabolites
containing polar functional groups (like hydroxyl group) can be
cationized on the surface of ferric particles, through the
dipole–dipole interaction50,51. Therefore, our approach exploits
an ability to produce cation (Na+, K+)-adducted metabolite
species for polar compounds (e.g. amino acids, polyamines,
carbohydrates, organic acids, nucleosides, etc.). For molecular
size, only small metabolites (MW< 1000 Da) can be selectively
accommodated and trapped by the nano-crevices (~nm) of ferric

particles, due to the size-exclusive effect as demonstrated in
literatures22,52. Therefore, the surrounding alkali metal ions in the
nano-crevices may facilitate efficient LDI of small metabolites
typically with MW< 1000 Da. Notably, we did not observe H
+-adducts by using ferric particle-assisted LDI MS, which was
validated by the standard molecule detection (Supplementary
Fig. 20) and consistent with previous reports35,53. Importantly, to
further investigate the ion adduction process and characterize the
competing adduction effect regarding H+/Na+/K+, we per-
formed quantum simulation with density functional theory
(DFT) calculation to the exposed surface [1,1,1] of ferric particles
(Supplementary Fig. 21). The binding affinity of H+ is −13.6 eV
(Fig. 4c) on the surface of ferric particles, much higher than those
of Na+ (−4.7 eV, Fig. 4d) and K+ (−4.0 eV, Fig. 4e), hindering
the cation transfer to analytes and coupled cationization.

Notably, we found that uracil (increases of 3.36-fold) and UA
(increases of 2.95-fold) were the most highly altered species with
over expression, while HPA was the most highly altered specie
with down expression (Fig. 4f). Principle component analysis
(PCA) of these seven metabolites (Supplementary Fig. 16b)
displayed enhanced clustering, compared with that of all 161m/z
features (Supplementary Fig. 16c) between early-stage LA and
healthy controls. Single one of these biomarkers cannot be very
useful in discriminating disease from control samples. Only poor
AUC (<0.7) can be acquired by univariate receiver operating
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characteristic (ROC) curve analysis for single one of these
biomarkers (Supplementary Table 5). Importantly, the combina-
tion of seven biomarkers together accounted for an enhanced
AUC of 0.894 by multivariate ROC curve analysis, in differ-
entiating early-stage LA from healthy controls (Supplementary
Fig. 16a), compared to the poor diagnostic performance by single
one of these biomarkers (AUC < 0.7). Therefore, we concluded
that the panel of seven biomarkers was useful in discriminating
disease from control samples. The success can be attributed to
that multivariate analysis by combined biomarkers is superior to
univariate analysis by one single biomarker, which had been well
established and recognized in literatures4,54. The construction of

the biomarker panel facilitated the simple analysis and large-scale
use of our approach in clinics.

We also performed further data analysis to demonstrate the
metabolic differences and similarities, among early-stage LA and
other lung cancers/benign diseases (Supplementary Table 1). For
metabolic differences, we identified another two new panels of
metabolites based on the metabolic patterns, to differentiate
early-stage LA from other lung cancers/benign diseases. Notably,
the two panels showed superior diagnostic performance, due to
the metabolic differences related to disease phenotypes (Supple-
mentary Fig. 22, Supplementary Tables 7 and 8). For metabolic
similarities, we identified the overlapping metabolites that were
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differentially expressed, among early-stage LA and other lung
cancers/benign diseases. Specifically, in the differentiation of
early-stage LA and other lung cancers from healthy controls, we
observed that Ura and IA were the overlapping metabolites. In
parallel, in the differentiation of early-stage LA and other lung
diseases from healthy controls, we observed that IA was the
overlapping metabolite. Due to the pathological process of lung
diseases and altered metabolic pathways, the metabolic simila-
rities reflected the systematic response to diseases.

In-silico interrogation of potentially altered metabolic path-
ways (Fig. 4g, Supplementary Table 9) were analysed by the
pathway topology analysis in MetaboAnalyst (http://www.
metaboanalyst.ca/), displaying the major metabolic contributions
from nucleotides (Ura and UA), FA, organic acids (Cys, HPA,
and IA), and active amine (His). Specifically, the differential
expression of Ura and UA (the nucleotide metabolism inter-
mediate metabolites) reflected metabolic adaptation to the
increased transcriptional activity and differential regulation of
purine and pyrimidine metabolism due to cancer cell
proliferation11,18. The abnormal expression of FA fit with the
current theory that FA degradation is reduced in tumour
cells12,34, which was the pathway with the most significant
impact (0.656). Among the organic acids correlated with protein
and energy metabolism disorders, the changes in Cys, HPA, and
IA suggested differential regulation of cysteine and methionine
metabolisms, and sulfur metabolism caused by the greatly
increased biosynthesis of proteins and abnormal activation of
degradation enzymes during tumour growth12,55. Finally, active
amine (His) is involved in allergy and inflammation, which are
involved in the cancer initiation process56,57. Moreover, we found
six metabolic pathways were shared both in early-stage LA and
other lung cancers, including (1) beta-alanine metabolism, (2)
pyrimidine metabolism, (3) pantothenate and CoA biosynthesis,
(4) glycine, serine, and threonine metabolism, (5) taurine and
hypotaurine metabolism, and (6) histidine metabolism (Supple-
mentary Fig. 23a). Similarly, we found (1) histidine metabolism
and (2) pyrimidine metabolism were shared both in early-stage
LA and benign lung diseases (Supplementary Fig. 23b).
Together, we concluded that the commonly altered metabolisms
were observed in lung diseases, also as demonstrated in
literatures58,59.

Pathway topology analysis has been widely applied in
biomedical research and depends on the metabolite importance
and metabolite number. For metabolite importance, the impor-
tance of one compound is estimated by its centrality measure
(node or edge), in a given metabolic network according to
literatures40,60. Compared to metabolites as edges that have little
impact on pathway topology analysis, metabolites as nodes (n= 1
or n= 2 metabolites) have a significant impact on pathway
topology analysis. For metabolite number, low metabolite number
(n= 1 or n= 2 metabolites) can be used, since the total number
of metabolites varies in different metabolic networks according to
literatures61,62. Importantly, given the criterion that pathway
impact is >0 and −log(p) > 1, the altered pathways analysis can be
driven by n= 1 or n= 2 metabolites. Typically, in FA
metabolism, there are 15 metabolites in total. Among the 15
metabolites, FA (18:2) functions as a node, showing the highest
importance of 0.66 and −log(p) of 3.30 (Supplementary Fig. 24).
In pyrimidine metabolism, uracil displays importance of 0.07 and
−log(p) of 1.96 as a node, higher than 89.74% of metabolites in
the pathway. Similarly, UA displays importance of 0.009 and
−log(p) of 1.57 as a node in purine metabolism. The criterion can
be due to the high metabolite importance and/or low metabolite
number in the specific pathways (e.g. FA and pyrimidine
metabolism), which is universally applied in previous
literatures63,64.

Discussion
As a limitation of this work, the mass spectrometer system is
required to detect the serum metabolic pattern, which can be
subject to instrumentation in reducing its size for real case POCT.
Also, we acknowledge that a certain number of pre-defined
samples would be needed, as with any technology that relies on
machine learning and statistical modelling of data sets, to obtain
the optimized classifiers for diagnosis. Finally, the performance
and outreach of this work can be strengthened, using a combi-
nation of multi-modal data from individuals in clinical study.

In summary, we extracted serum metabolic patterns using a
ferric particle-assisted LDI MS approach and deciphered these
patterns with a sparse regression model of machine learning for
the differential diagnosis of early-stage LA. This work contributes
to the design of advanced metabolic analysis protocols that will
facilitate precision medicine and lead to the development of
personalized diagnostic tools based on seven biomarkers for
diverse diseases in the near future. Our approach may have an
impact on metabolic analysis, similar to that of polymerase chain
reaction on genetic analysis.

Methods
Chemicals and reagents. Ferric chloride (purity > 97%), trisodium citrate (purity
> 99%), ethylene glycol, sodium acetate (purity > 99%), tetraethyl orthosilicate
(TEOS, purity >96%), absolute ethanol (EtOH), trifluoroacetic acid (TFA, purity
>99%), and ammonium hydroxide (purity > 10–35%) were purchased from Sino-
pharm Chemical Reagent Beijing Co. Ltd. (Beijing, China). Resorcinol (purity >
99%) was purchased from J&K China Chemical Ltd. (Shanghai, China). Albumin
from bovine serum (BSA, purity >98%), CHCA (purity >99%), acetonitrile (ACN,
purity >99%), standards including cysteine (purity > 99%), UA (purity > 99%), D-
glucose (purity > 99.5%), sucrose (purity > 99%), D-mannitol (purity > 99%), L-
leucine (purity > 98%), L-cellobiose (purity > 99.5%), L-lysine (purity > 98%), valine
(purity > 99%), DL-phenylalanine (purity > 99%), and arginine (purity > 99%) were
purchased from Sigma, USA. Formaldehyde solution (CH2O, purity >36.0%) and
standards including histamine (purity > 99%), uracil (purity > 99%), HPA (purity >
99%), IA (purity > 99%), and FA (18:2) (purity > 99%) were purchased from
Shanghai Aladdin Reagent Co. Ltd. (Shanghai, China). All aqueous solutions were
prepared using deionized water (18.2 MΩ cm, Milli-Q, Millipore, GmbH).

Synthesis of substrate materials. The ferric particles were prepared using a
modified solvo-thermal method, that can be used for large-scale manufacturing at
low cost. Briefly, ferric chloride was first dissolved in ethylene glycol solution.
Trisodium citrate (weights from 0 to 0.8 g) was then added to tune the surface
charge of the products. Then, 1.8 g of sodium acetate was added, and the mixture
was sonicated at room temperature for 30 min. The reaction mixture was trans-
ferred to a Teflon-lined stainless-steel autoclave (capacity 50 mL) and held at 200 °
C for 10 h for the formation of ferric particles. The final product was washed with
ethanol and deionized water and dried at 60 °C before use.

To prepare substrate materials as controls, silica, and carbon particles were
synthesized. For silica particles, a classic Stöber method was used to synthesize the
monodispersed silica nanospheres22,65. Typically, 2 mL of ammonium hydroxide
was added into the mixture of 53 mL of ethanol and 2.33 mL of deionized water
under vigorous stirring for 10 min. Then 3 mL of TEOS was added into the above-
mixed solution and stirred for 6 h to obtain the final silica nanoparticles. The
resulting products were washed with 50 mL of ethanol and deionized water and
centrifuged at 10,000×g for 10 min and dried at 60 °C before use. For carbon
particles, polymer particles were formed with resorcinol/formaldehyde in a mixture
of EtOH and aqueous ammonia, followed by carbonization. Typically, 0.2 mL of
ammonium hydroxide was added to a mixture of 20 mL deionized water and 8 mL
EtOH under magnetic stirring at room temperature for 1 h. Then, 0.1 g resorcinol
and 0.14 g formaldehyde were introduced and stirred at room temperature for 24 h.
The above solution was transferred to a Teflon-lined stainless-steel autoclave and
heated for 24 h at 100 °C for the final product. The polymer particles were
carbonized at 550 °C in nitrogen atmosphere.

Characterization methods. TEM images, HR-TEM images, and SAED patterns
were collected by depositing 10 μL of material suspension onto a copper grid using
a JEM-2100F instrument (JEOL, Japan). SEM images were recorded on an S-4800
(Hitachi, Japan), where a drop of material suspension was placed on aluminium
foil. The optical absorption spectrum of the materials was obtained on a
UV1900 spectrophotometer (AuCy, China) at room temperature. The magnetic
hysteresis loop was measured by a vibrating sample magnetometer (Quantum
Design, USA) at 300 K. Nitrogen adsorption isotherm was obtained on an ASAP
2020M (Micromeritics, USA), and the sample was degassed in vacuum before
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testing. Zeta potential and DLS size measurements were performed on a Nano-
ZS90 instrument (Malvern, Worcestershire, UK) in water at 25 °C.

For DFT calculation, the ferric particles were simulated with an anionic cluster
model (exposed surface as [1,1,1]) reported in literature. The geometry
optimization was carried out in ORCA 4.1.1 package66,67. The BP86 density
functional with def2TZVP basis set was employed.

MS data acquisition. For LDI MS using ferric, silica, and carbon particles, the
particles were dispersed in water at a concentration of 1 mgmL−1. CHCA was
dissolved in 0.1% TFA buffer (water/ACN, 50/50, v/v) at a concentration of 4 mg
mL−1. Then, 500 nL of matrix slurry was mixed with 50–500 nL of analyte solution
(either standards listed in chemicals and reagents part or serum samples) on the
plate and dried for LDI MS analysis. The protein mixtures were prepared using
established methods. Mass spectra were collected in the reflection mode employing
delayed extraction on a 5800 Proteomics Analyzer (Applied Biosystems, Fra-
mingham, MA, USA) with a Nd:YAG laser wavelength of 355 nm, a repetition rate
of 200 Hz and an acceleration voltage of 20 kV. The delay time for this experiment
was optimized to 250 ns. The MS data can be visualized in DataExplorer (Version
4.5). Only MS signals with a signal-to-noise ratio over 3 were used for the iden-
tification of molecules, and mass calibration was conducted using standard
molecules for the accurate mass measurement (±0.05 Da) of both Na+-adducted
and K+-adducted signals. Tandem MS (MS/MS) was performed for selected m/z
features in both standards and serum, with collision-induced dissociation (CID) off
and a full-width-half-maximum (FHWM) of 500. No smoothing procedures were
applied, and all spectra were directly used for analysis.

For LC ESI MS method, 28 mixed samples were prepared containing different
content of glucose, histamine, and mannitol (see details in Supplementary Table 2).
The isotopes of glucose and mannitol were introduced as the internal standard for
quantification use both in LDI MS and in LC ESI MS. The isotopes were dissolved
in water with concentrations of 200 ng μL−1 and mixed with analyte solutions. For
LDI MS analysis, after dropping 500 nL of mixture solution on the plate, 500 nL of
matrix solution was deposited onto it and waited for drying. For LC ESI MS
detection, 50 μL of mixed samples were derivatized by benzoyl chloride utilizing a
standard procedure reported before68. Chromatography was performed on an
Agilent Technologies Acquity UPLC system. Mass spectrometric detection was
carried out using an Agilent Technologies Xevo G2-XS QTOFMS mass
spectrometer equipped with an ESI source.

Preparation of clinical samples. A total of 481 subjects were consecutively
recruited from 2014 to 2019 in Shanghai Chest Hospital, including 200 patients
suffering early-stage LA and 200 healthy controls undergoing routine health care
maintenance, 36 patients with squamous carcinoma (including squamous cell
carcinoma and small cell carcinoma), and 45 patients with benign lung diseases
(including pneumonia, hamartoma, pulmonary tuberculosis, granuloma, and
others). All patients were diagnosed by a panel of pathologists together and the
tumours staged according to the international standards for TNM staging of lung
cancer. The pathologists were blind to any information about the acquisition from
MS analysis. Patients were excluded from the study if they had evidence of auto-
immune syndromes or drugs. The blood was drawn at initial diagnosis without
surgery or anaesthesia. All blood samples were drawn by venepuncture and clotted
at room temperature within 40 min16. Serum samples were obtained by centrifu-
ging at 5100×g and 4 °C for 10 min. After centrifugation, the precipitate was dis-
carded and the supernatant serum was stored at −80 °C immediately (within 15
min). The elapsed time was within 1 h between blood draw, centrifugation, and
ultimate storage at −80 °C69.

To validate the classification of early-stage LA and healthy controls, we
recruited an independent double-blind test cohort from Shanghai Chest Hospital,
with serum samples from 58 subjects (23/35, early-stage LA/healthy controls). The
situations for blood drawn were the same for all subjects.

All the investigation protocols in this study were approved by the institutional
ethics committees of the Shanghai Chest Hospital and School of Biomedical
Engineering, SJTU (KS1736). All subjects provided written informed consent to
participate in the study and approved the use of their biological samples for
analysis, according to the Helsinki Declaration.

Machine learning and computer-aided diagnosis. Considering the large size of
MS data, the sparse learning and regression model was employed for the diagnosis
of subjects. Models generated can be simpler to interpret duet to the “sparse”
models (involving only a subset of the features). Given a set of training subjects, we
defined the matrix X= {⋯, xi,⋯}, where each row recorded the serum metabolic
patterns (mass spectra) of the corresponding subject. The disease labels (i.e., ‘1’ for
early-stage LA, ‘0’ for healthy control) of the training subjects were known already
and were vectorized into the column vector y!¼ � � � ; yi!; � � �� �0 accordingly. The
l1-norm (and the squared l2-norm) regularized logistic regression model could thus
be acquired by solving the following:
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β
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where λ1 was the l1-norm regularization parameter enforcing the sparsity con-
straint, and λ2 was the regularization parameter for the squared l2-norm. The
model chose a limited number of m/z features by adjusting l1-norm to attenuate the
coefficients of the less significant features to 0, and fit the disease labels of the
training subjects according to the selected m/z features. A mathematical weight for
each statistically informative feature was calculated depending on the importance
of the mass spectral feature in differentiating early-stage LA versus healthy control.
The regression model was applicable to infer the disease label of a new test subject
and provided a prediction score for each pattern of a test sample. Specifically, we
detected xtest and computed y!test ¼ x0test �~βþ c. The outcome was thresholded and
converted to a diagnosis.

For a typical machine-learning-based diagnosis, five mass spectra obtained for
each sample were used to build molecular databases. Pre-processing of the raw
mass spectra data, including baseline correction, peak detection, extraction,
alignment, normalization, and standardization, was carried out by MATLAB
(R2016a, The MathWorks, Natick, MA) prior to pattern recognition analysis. The
total number of metabolite signals for each mass spectrum was detected, and then,
m/z features were selected based on the Otsu algorithm and utilized in the
subsequent analysis.

To build the classifier model and evaluate the performance, a five-fold cross-
validation approach was performed to estimate the performance of the predictor
for both the inner-loop and outer cross-validation (20 rounds for each fold, thus
100 models for outer cross-validation in total). The performance of the classifiers
was measured based on the receiver operation curve (ROC) by the area under curve
(AUC), calculating the proportions of concordant pairs among all pairs of
observations, with 1 indicating perfect prediction accuracy.

To validate the discriminant performance of the built classifier on an external
double-bind test cohort for differentiating early-stage LA from healthy controls,
58 samples (23/35: LA/healthy controls) were enrolled. The disease labels of the
double-bind test cohort were unknown and predicted by the classifier. Further
comparing the predicted disease labels with the true disease status, we computed
the sensitivity, specificity, and AUC. A step-by-step protocol describing the
preparation of ferric particles, MS data acquisition, clinical sample preparation, and
computer-aided diagnosis can be found at Nature Protocol Exchange70.

Potential biomarker identification. To identify the metabolic panel that con-
tributed the most to diagnosis, two major aspects were considered for the 100
tuned models. First, we ranked the m/z features according to the model selected
frequency and chose the top m/z features with repeat occurrence over 90% in 100
models. In parallel, we selected m/z features with a p-value < 0.05 according to two-
sided Student’s t-test. Verification of the metabolites that were both frequently
occurring and displayed a significant difference between early-stage LA and healthy
control was conducted manually by m/z feature selection using the human meta-
bolome database (HMDB, http://www.hmdb.ca/) and subsequent validation by
tandem MS and accurate mass measurement (for both Na+-adducted and K
+-adducted signals). Pearson correlations were computed between the Na
+-adducted and K+-adducted signals of metabolites. The differential metabolomic
profiles reflecting their respective biochemical pathways were analysed by Meta-
boAnalyst (http://www.metaboanalyst.ca/).

Statistical analysis. Multivariate statistics were performed using the SIMCA
software package (version 14.0, Umetrics, Umeå, Sweden). Before analysis, all mass
spectra were scaled to Pareto (par) by dividing variables using the square root of
the standard deviation when centring was completed. All covariates were tested,
including age and sex. Logistic regression model was fit to evaluate the association
of metabolic biomarkers with the presence of early-stage LA. Odds ratios with 95%
confidence interval (CI) were calculated for metabolic biomarkers (including his-
tamine, uracil, cysteine, HPA, UA, IA, and FA (18:2)). Before the analysis, all
metabolites were centred and standardized to have a mean of 0 and a standard
deviation of 1. Age and sex were added as covariates to the basic logistic regression
model to calculate the adjusted odds ratios. An unsupervised principal component
analysis (PCA) model was constructed from a number of principal components
(PCs, orthogonal transformation of m/z features into linearly uncorrelated vari-
ables). All the statistical models above were manually optimized. The transfor-
mation was defined that the first PC accounted for the largest variance (as much of
the variability in the dataset as possible). From the results of PCA analysis, we can
obtain a PCA score plot, by visualizing the first two PCs in a two-dimensional
space. To quantify the reproducibility of clinical serum samples, the p value for the
normal distribution test (Lilliefors (Kolmogorov–Smirnov) test) was acquired
through the lillietest function in MATLAB, with the null hypothesis at the default
5% significance level.

Power analysis was performed by uploading 12 samples (6/6: LA patients/
healthy controls) as the pilot metabolomic data into MetaboAnalyst at a FDR of
0.1. As the result, the predicted power for estimating the effect sample size was set
as 0.840,41. To investigate the spectra similarity within one group, we computed the
similarity scores for each group (both early-stage LA and healthy controls).
Typically, one experimental spectrum obtained from a serum sample for different
cohorts was randomly selected and fixed as the reference spectrum. The other
experimental spectra within the same cohort were compared with the reference
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spectrum, and spectral similarity scores were calculated. The similarity score
between two mass spectra (i and j) was calculated by cosine correlation method
following a reported algorithm44 defined as

cos ¼ yi
!� yj!
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where y was the normalized intensity of a peak appearing in both spectrum i and
spectrum j (an identical peak), l was the number of identical peaks in the two
spectra, Y was the normalized intensity of a peak appearing in a spectrum and n
was the number of peaks in a spectrum.

Other statistical analyses in this work were performed by using SPSS software
(version 19.0, SPSS Inc., USA) to calculate the p value for statistical demonstration,
including two-sided Student’s t-test and one-way ANOVA. All significance level
was set as 5%. Specifically, the means comparison in one-way ANOVA was based
on Bonferroni corrections.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The verification of the metabolites in this study was achieved by comparing the m/z
features with human metabolome database (HMDB, http://www.hmdb.ca/). The data
that support the findings of this study are available from the corresponding author upon
reasonable request. Source data are provided with this paper.

Code availability
The custom computer codes utilized during the current study are available from the
corresponding author upon reasonable request, due to the competing financial
interests. Source data are provided with this paper.
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