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a b s t r a c t 

Nowadays, a significant number of infectious diseases such as human coronavirus disease (COVID-19) 

are threatening the world by spreading at an alarming rate. Some of the literatures pointed out that 

the pandemic is exhibiting seasonal patterns in its spread, incidence and nature of the distribution. In 

connection to the spread and distribution of the infection, scientific analysis that answers the questions 

whether the next summer can save people from COVID-19 is required. Many researchers have been ex- 

clusively asked whether high temperature during summer can slow down the spread of the COVID-19 

as it has with other seasonal flues. Since there are a lot of questions that are unanswered right now, 

and many mysteries aspects about the COVID-19 that is still unknown to us, in-depth study and analysis 

of associated weather features are required. Moreover, understanding the nature of COVID-19 and fore- 

casting the spread of COVID-19 request more investigation of the real effect of weather variables on the 

transmission of the COVID-19 among people. In this work, various regressor machine learning models 

are proposed to extract the relationship between different factors and the spreading rate of COVID-19. 

The machine learning algorithms employed in this work estimate the impact of weather variables such 

as temperature and humidity on the transmission of COVID-19 by extracting the relationship between 

the number of confirmed cases and the weather variables on certain regions. To validate the proposed 

method, we have collected the required datasets related to weather and census features and necessary 

prepossessing is carried out. From the experimental results, it is shown that the weather variables are 

more relevant in predicting the mortality rate when compared to the other census variables such as pop- 

ulation, age, and urbanization. Thus, from this result, we can conclude that temperature and humidity 

are important features for predicting COVID-19 mortality rate. Moreover, it is indicated that the higher 

the value of temperature the lower number of infection cases. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The Coronavirus disease (COVID-19), caused by SARS-CoV-2, ini-

ially came to attention in a series of patients with pneumonia

f unknown etiology in Wuhan city, China, and thereafter spread

o many other countries of the world through people travel from

hina [1] . Because of geographical proximity and significant travel

onnections, epidemiological modeling of the epicenter predicted

hat regions in Southeast Asia, and specifically Bangkok would fol-
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ow Wuhan, and China in the epidemic [2] . More recently, the

orld Health Organization has declared this as a pandemic and

robably it will remain for long and people have to adjust how to

ackle and avoid it until proved vaccine becomes available (WHO

020). For many, the biggest concern is not how large the problem

ut what will happen in the coming months and which areas and

opulations are mostly at risk [3] . 

The correlation between weather variables in the affected re-

ions and the spread of COVID-19 earned special attention in the

pgoing research publications. Recently, researchers found that a

otable association between the weather variables (temperature

nd humidity) and the regions that have major COVID-19 out-
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breaks. Moreover, these regions are located at the same temper-

ature zone in the northern hemisphere [4] . 

Even though the pandemic is becoming a global issue, the most

infected areas include outbreak epicentres such as parts of North-

eastern United States, China’s central province of Hubei, South Ko-

rea, Japan, Iran, Italy, Spain, Germany, and England, all of which

share an average temperature of 5 C to 11 C and 47% to 79% humid-

ity in January and February 2020. For Italy, regions with a temper-

ature higher than 15 degrees Celsius and 75% humidity have less

spread of COVID-19 cases. 

Therefore, we hypothesise that the spread of the virus will de-

crease in the area with higher temperature and humidity than ar-

eas with average records. From our experimentation, the thresh-

olds for temperature and humidity are fixed at 15 degrees Celcius

and humidity at 75% respectively. These thresholds for the temper-

ature and humidity parameters varied from one to another coun-

try. These numbers will be subtracted from the maximum values

of temperature and the overall humidity during the day. 

Moreover, understanding the nature of coronavirus and fore-

casting its spread requires more investigation and come up with

the real impact of weather variables (temperature and humid-

ity) on the transmission of the virus. To address this problem,

the largest datasets integrating COVID-19 infections and weather

have been collected. In this work, machine learning algorithms and

OLS model estimate the impact of weather on the transmission of

COVID-19 by extract the relationship between the number of con-

firmed cases in many regions and the temperature as well as hu-

midity. 

Compared to the previous work of the other researchers, this

study includes more features that can influence the spread of the

virus. The additional features that are included are associated with

weather and climatic conditions. 

Nuno [5] explored the spread of the COVID-19 in the Rio de

Janeiro state, Brazil, that has a large population. The researcher

has applied Susceptible-Infectious-Quarantined-Recovered (SIQR)

model based on the collected available data from March 5, 2020

to April 26, 2020. The parameters that are estimated by the

model are: ( I 0 = 24 , β = 0 . 32 , η = α = 0 . 018 , k 0 = 0 . 033 and γ =
0 . 02 ). The author has suggested, the relaxation of social isolation

policies and predicted the period to relax lockdown safely that

starts from June 11, 2020, onwards. 

Melin et al. [6] conducted a study to analyze the spatial evolu-

tion of coronavirus pandemic around the world using unsupervised

neural network namely self-organizing maps. The researchers con-

cluded that the clustering abilities of self-organizing maps enable

to group countries based on COVID-19 confirmed cases. 

The main contribution of our work includes: 

• Find the best predictive model for daily confirmed cases in

countries with the highest number of COVID-19 cases in the

world. 

• Predict the number of confirmed cases to have more readiness

in healthcare systems and make forecast using advanced ma-

chine learning algorithms. 

• To validate the propose model, we have includes more number

of weather and climatic condition features that can influence

the spread of the COVID-19 virus. 

This paper is organized as follows: Section 2 presents the re-

lated works. Section 3 introduces our new methodology and the

proposed approaches. Section 4 presents the experimental obser-

vations. Finally, the conclusions and possible future works are in-

troduced in Section 5 . 
. Related works 

Dangi et al. [7] proposed a short term weather forecasting

ased method on wavelet denoising and catboost algorithm to pre-

ict the upcoming COVID-19 outbreak in 35 major cities in In-

ia (March and April 2020) by correlating the temperature factor

f five major cities in the world. This study is based on popula-

ion density and the correlation of temperature with selected cities

here the COVID-19 outbreak has already become a pandemic. 

Sajadi et al. [4] proposed a simplified model that presents a

one at an increased risk of COVID-19 spread. Using weather mod-

lling, it predicts the regions that are most likely at higher risk of

ignificant community spread of COVID-19 in the upcoming weeks,

llowing for the concentration of public health efforts to contain

he spread of the infectious virus. 

Demongeot et al. [8] have illustrated that the virulence of coro-

avirus diseases due to viruses such as SARS-CoV and MERS-CoV

ecreases in humid and hot weather climatic condition. The pre-

umed temperature dependence of infectivity by the new coron-

virus namely COVID-19 has got a high interest in the domain of

edical area. Likewise, our work aims to identify crucial param-

ters such as potentially temperature-dependent parameters, like

he contagion coefficient increasing with cold, dry weather from

he COVID-19 spread dynamics. 

Marvi and Arfeen [9] have examine the relationship between

verage temperature and rate of spread of COVID-19 across various

egions around the globe. Their finding manifests a bounded rela-

ionship between factors under consideration, that is, the spread

ate of the virus has found to be slower in regions with extreme

emperatures. 

A study that uses statistical method was conducted by Xu et al.

10] that uses comprehensive datasets of the global spread of

OVID-19 pandemic until late April 2020, spanning for more than

700 locations worldwide. These researchers, construct and vali-

ate their proposed method to estimate the number of infected

ases in various locations. They have suggested that the output

f their study can be an input in controlling the spread of the

irus considering various features such as detection delay, popula-

ion density, and time-variant responses. It also uses some weather

ariable to predict the spread of the virus and then provide year-

ound, global projections. 

Several studies, both laboratory [11] , epidemiological analysis

12] , and mathematical modelling [13] , point to the role of ambient

emperature on the survival and transmission of viruses. A tremen-

ous number of researches support both ambient temperature and

umidity in the role of transmission and infection motivated this

tudy to examine the influence of environmental factors on COVID-

9. We sought to determine whether climate could be a factor in

he spread of this disease. 

In the last few months, in association with the outbreak of

oronavirus, a notably large number of research papers were

ublished in many journals. Here, we have summarized the re-

ently published papers along with their core contributions. Croki-

akis [5] explored the Susceptible-Infectious-Quarantined Recov-

red (SIQR) model to check out if public policies of social isola-

ion work in overcoming the pandemic. Contreras et al. [14] con-

ucted an empirical study using a general multi-group SEIRA

odel that enables to demonstrate the spread of COVID-19 among

he heterogeneous population. Mohammed et al. [15] studied non-

inear mathematical models to find approximate solutions by ap-

lying the fractional Adams Bashforth (AB) method. Chakraborty

nd Ghosh [16] proposed two-fold approaches namely generating

hort term forecasting and risk assessment for COVID-19. Mandal

t al. [17] proposed a mathematical model considering the quar-

ntine class and governmental intervention measures to address

he transmission of COVID19. Melin et al. [18] proposed an ensem-
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le neural network model with a fuzzy response for the COVID-19

ased on time series approach. 

Many research conducted works related to weather impact on

pread and distribution of COVID-19 appear to be ill-defined and

ot well grounded. There has been little discussion on the relation-

hip between the weather variables and the COVID-19 outbreak in

erms of which temperature threshold will slowdown the COVID-

9. Moreover, previous works have only been limited to use a pre-

ictive statistical model and experimental results are less accurate.

espite this interest, no one to the best of our knowledge has

tudied and provided evidence for the relationship between several

eather variables and the spread of COVID-19, finding a negative

ssociation between temperature and humidity and transmission 

. Methodology 

In the subsequent subsection, we are going to introduce the hy-

othesis of our model, data collection and description of software

nd hardware that are using. 

.1. Data collection 

According to the WHO, several environmental factors can in-

uence the spread of communicable diseases that can cause epi-

emics. The most important of these are water supply, sanitation

acilities, food, and climate. The underlying theory is the number

f cases and the spread of previous infectious viruses demonstrate

easonal patterns, affected by climate, and so Covid-19 should dis-

lay similarity in this aspect. Furthermore, temperature and hu-

idity changed throughout seasons, have an effect on the number

f virus incidents. 

The dataset is collected from official case reports of various

ountries, beginning with the data collected and compiled by Kag-

le and the Johns Hopkins Center for Systems Science [19] . The

OVID-19 data obtained from the beginning of the epidemic in the

ime between December 12, 2019 to April 22, 2020. We collect dif-

erent types of data on the spread of COVID-19 country-wise. For

nstance, in Italy (21 states), the United States (3144 counties and

 territories), and use country-level aggregates for the rest of the

orld. 

Moreover, weather data is collected from historical weather

atabase [20,21] . For each location for which that have infection

ata with features such as country, longitude, latitude, date, con-

rmed, deaths, recovered, and active cases. While for the weather

ata we collected minimum and maximum daily temperature, hu-

idity, precipitation, snowfall, moon illumination, sunlight hours,

ltraviolet index, cloud cover, wind speed and direction, and pres-

ure data. Besides, we used population density data from Demog-

aphy. Table 1 shows a sample of the collected data. Figs. 1 a and

 b present Worldwide confirmed and deaths cases over time. 

To analyze the weather and temperature data of the respective

ountries since the outbreak of the virus. We have composed a

ataset as follows: url{ https://www.kaggle.com/winterpierre91/

ovid19- global- weather- data } [19,20] and Load the cleaned data

rom url{ https://www.kaggle.com/imdevskp/corona- virus- report }

22,23] . The file contains the cumulative count of confirmed, death

nd recovered cases of COVID-19 from different countries from

2 nd January 2020 . The assumption here is, there a correlation

etween certain weather metrics and the speed of the number of

nfections/deaths. 

.2. Methods 

In this work, we developed machine learning models used to

nvestigate and understand the real effect of temperature and hu-

idity on the spread of COVID-19 [24,25] . The following machine

https://www.kaggle.com/winterpierre91/covid19-global-weather-data
https://www.kaggle.com/imdevskp/corona-virus-report


4 Z. Malki, E.-S. Atlam and A.E. Hassanien et al. / Chaos, Solitons and Fractals 138 (2020) 110137 

Fig. 1. Worldwide data over time. 
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learning models such as linear models (Linear Regression, Lasso

Regression, Ridge Regression [26] , Elastic Net, Least Angle Regres-

sion, Lasso Least Angle Regression, Orthogonal Matching Pursuit,

Bayesian Ridge, Automatic Relevance Determination, Passive Ag-

gressive Regressor, Random Sample Consensus, TheilSen Regres-

sor, Huber Regressor) are used. Moreover, ensemble learning-based

modes such as Random Forest, Extra Trees Regressor, AdaBoost Re-

gressor, Gradient Boosting Regressor [27] are also explored. Ex-

treme Gradient Boosting (XGBoost), Light Gradient Boosting Ma-

chine (LightGBM) [28] , and CatBoost Regressor [29] ), Kernel Ridge,

Support Vector Machine (SVM), K-Nearest Neighbors Regressor

(KNN) [30] , Multi-level Perceptron (MLP) [31] , and Decision Tree

[32] for prediction on the spread of coronavirus. 

These algorithms were selected as they are the most widely

used for predicting the spread of COVID-19 and other prediction

related analysis. Each of the models were trained with the fea-

tures such as Population Density, Fertility Rate, Median Age, Inten-

sive Care Unit (ICU) beds per 10 0 0 People, Infection Ratio, Urban

Percentage, Temperature, Humidity, Hours of Sunlight, and Wind

Speed. Fig. 2 shows the general steps for the proposed methods. 

4. Experimental results and interpretation 

To carry out the forecasting of the spread of COVID-19, the pre-

sented methods shall be trained on a huge volume of the dataset.

The amount of dataset plays a vital role in the training step and

affects the performance of the proposed algorithms. The whole

dataset that divided into two separate parts namely the training

and the testing sets. The training datasets are used during model

development and the test sets which are not previously seen by

the model are used for validation [24,31] . 

We have analyzed the correlation between weather variables

and the spread of COVID-19 in the case of Italy. We have used tem-

perature and humidity variables in this case as shown in Fig. 2 . The

dataset is collected from the Meteoblue website [33] . The num-

ber of confirmed COVID-19 cases (dependent variable) will be log-

transformed to make it follow a normal distribution as per the as-

sumption of statistical analysis since the original data is skewed

highly in selected states. To estimate the relationship, we have

used the standard regression model namely the naive Ordinary

Least Squares (OLS) model [34] . The reason why the Naive OLS es-

timation is utilized in this work is because of its simplicity and

ease of interpretation. Eqs. 1 and 2 present how the OLS estima-

tor works to predict the correlation between weather variables and
he spread of COVID-19. 

Model 1 (for Infected cases:) log (Number of cases on May 17) 

= α( Temperature - 15C ) + β( Humidity - 75% ) + error term (1)

Model 2 (for Growth rate:) log (Cases on May 17/ Cases on Mar 3) 

= α( Temperature - 15C ) + β( Humidity - 75% ) + error term (2)

The number of confirmed cases : Model 1 estimates the rela-

ionship based on the number of confirmed cases as of March 16 th ,

020 , and the temperature and humidity of the regions in Italy’s

ap. The hypothesis that is being considered in this case is that

igh temperature and humidity has corresponded to a decreased

umber of reported COVID-19 cases when it is interpreted based

n the log-transformation in the linear model. For every one-unit

ncrease in the independent variables (temperature and humidity),

he number of COVID-19 cases decreases by about 67%. It is exper-

mentally proved that the weather variables, temperature and hu-

idity have an inverse relationship to the number for confirmed

ases. For every one-unit increase in the independent variable, the

umber of COVID-19 cases decreases by about 16%. Fig. 3 shows

he relationship between the weather variables temperature and

umidity to the number of confirmed cases in all regions of Italy

s of March 16 th , 2020 . 

The naive OLS estimates the relationship based on the num-

er of confirmed cases in Italy as of May 17, 2020. For every one-

nit increase in the independent variable temperature, the num-

er of COVID-19 cases increases by about 143%. and for every one-

nit increase in the independent variable humidity, the number

f COVID-19 cases increases by about 8%. Interpretation of log-

ransformation in a linear model for humidity is shown in Fig. 4

hat presents the relationship between temperature and humidity

ased on the number of confirmed cases in all regions of Italy as

f May 17, 2020. 

The performance of the proposed model is evaluated using R −
quare metric and experimental results shows that the R-square of

he model is within the range of 86% and 88% with some variation

n the number of confirmed COVID-19 cases. A one-unit increase

n temperature in the Italian map of regions with above 15-degree

elcius and 80% humidity will lead to 143% increase in the num-

er of COVID-19 cases in comparison to regions that are below this

hreshold. Fig. 5 a shows the scatter plot between the number of

onfirmed cases and temperature in Italy on the date 17/05/2020.

 one-unit increase in humidity in the Italian region with above

5% humidity and 15 ◦ Celsius also lead to 8% increase in the num-

er of COVID-19 cases in comparison to regions that are below this



Z. Malki, E.-S. Atlam and A.E. Hassanien et al. / Chaos, Solitons and Fractals 138 (2020) 110137 5 

Fig. 2. The general steps for the proposed models. 

Fig. 3. Correlation between weather variables (temperature and humidity) and number of COVID-19 confirmed on March 16, 2020 for Italy. 
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hreshold. Fig. 5 b shows a scatter plot between the number of con-

rmed cases and humidity on the date 17/05/2020 for Italy. 

Growth rate : Model 2 estimates the relationship based on the

umber of growth rate as of May 17 th , 2020 , and the temperature

nd humidity of the regions in Italy’s map. Based on the second

odel 2 one-unit increase in temperature in Italy’s regions with

bove 15 ◦ Celsius and 75% humidity leads to 45% increase in the

umber of COVID-19 cases in comparison to regions that are below

his threshold. Moreover, a one-unit increase in humidity in Italy’s

egion with above 75% humidity and 16 ◦ Celsius lead to 5% in-

rease in the number of COVID-19 cases in comparison to regions

hat are below this threshold (see Fig. 6 ). 
t  
Table 2 presents the experimental results considering various

alues of the temperature and humidity features. The temperature

alues are set to five different values that are 15, 20, 25, 30 and 35.

imilarly, the humidity is set to three different values that are 70,

5 and 80 respectively. In the experimentation, each temperature

alue is validated on each humidity value. For instance, the value

f the temperature 15 was validated for its effect on the spread

f Covid-19 on each of the three humidity values. Moreover, other

emperature values were validated on each humidity values. From

he experimental results, it is indicated that the higher the value

f temperature, the lower number of infection cases. Similarly, the

ame effect is applied for growth rate, that is, as the tempera-

ure increases the value of growth rate of the infection decreases.
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Fig. 4. Correlation between weather variables (temperature and humidity) and number of COVID-19 confirmed on May 17, 2020 for Italy. 

Fig. 5. Scatter plot for the number of confirmed cases. 

Fig. 6. Scatter plot of the number of growth rate. 
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Table 2 

The experimental results of the different values for temperature and humidity. 

Model(1/2) Temp. Humidity Alpha Beta Temp. Effect Humidity Effect R 2 Adj R 2 

Infected cases 15 70 0.861434 0.087399 136.655189 9.133222 0.889706 0.878096 

Growth rate 15 70 0.347038 0.056481 41.487019 5.810663 0.939840 0.933507 

Infected cases 15 75 0.890908 0.078644 143.734231 8.181937 0.881435 0.868954 

Growth rate 15 75 0.374966 0.057369 45.494151 5.904673 0.934377 0.927469 

Infected cases 15 80 0.906039 0.066578 147.450062 6.884406 0.873540 0.860228 

Growth rate 15 80 0.401863 0.057235 49.460689 5.890449 0.927305 0.919653 

Infected cases 20 70 1.450845 0.120595 326.671899 12.816847 0.669052 0.634215 

Growth rate 20 70 0.630435 0.077356 87.842768 8.042613 0.802427 0.781630 

Infected cases 20 75 1.398349 0.069157 304.850990 7.160394 0.633080 0.594457 

Growth rate 20 75 0.655225 0.065638 92.557478 6.783971 0.750911 0.724691 

Infected cases 20 80 1.220575 0.003514 238.913541 0.352016 0.618146 0.577951 

Growth rate 20 80 0.637707 0.046733 89.213732 4.784182 0.703043 0.671785 

Infected cases 25 70 -1.191378 -0.223587 -69.619758 -20.035463 0.220440 0.138381 

Growth rate 25 70 -0.232620 -0.046521 -20.754566 -4.545522 0.062890 -0.035753 

Infected cases 25 75 -1.290774 -0.276363 -72.494214 -24.146228 0.420579 0.359588 

Growth rate 25 75 -0.307090 -0.075870 -26.441568 -7.306374 0.208000 0.124632 

Infected cases 25 80 -1.225998 -0.277625 -70.653529 -24.241925 0.579262 0.534974 

Growth rate 25 80 -0.310293 -0.084043 -26.676799 -8.060824 0.351543 0.283284 

Infected cases 30 70 -1.169891 -0.136057 -68.959909 -12.720687 0.847642 0.831605 

Growth rate 30 70 -0.402274 -0.032372 -33.120269 -3.185389 0.656796 0.620669 

Infected cases 30 75 -1.077191 -0.137452 -65.944914 -12.842340 0.867964 0.854066 

Growth rate 30 75 -0.377918 -0.037119 -31.471337 -3.643827 0.677836 0.643924 

Infected cases 30 80 -0.987054 -0.135130 -62.732701 -12.639745 0.885003 0.872898 

Growth rate 30 80 -0.349860 -0.039597 -29.521294 -3.882344 0.698319 0.666563 

Infected cases 35 70 -0.719808 -0.075775 -51.315407 -7.297566 0.936220 0.929507 

Growth rate 35 70 -0.258704 -0.011015 -22.794884 -1.095416 0.794235 0.772576 

Infected cases 35 75 -0.686391 -0.076581 -49.661064 -7.372178 0.940009 0.933694 

Growth rate 35 75 -0.252149 -0.013923 -22.287095 -1.382684 0.797535 0.776223 

Infected cases 35 80 -0.653181 -0.076517 -47.961237 -7.366293 0.943451 0.937499 

Growth rate 35 80 -0.243749 -0.016176 -21.631597 -1.604607 0.801278 0.780360 
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a  
ence, the relationship between temperature and R 2 have a pos-

tive correlation as the performance of the model increases when

he value of temperature increases. On the other hand, when the

alues of temperature and humidity increases, the number of in-

ected cases and the growth rate of the infection decreases. 

Based on the experimental results as shown in Table 2 , we have

roved that climatic conditions such as temperature and humidity

ontribute to the spread of the virus. Based on the results of the

odels, one can draw a conclusion that when the temperature is

ow and humidity is also low, infection rate increases. On the other

and, when both temperature and humidity are high, the infection

ate of COVID-19 decreases. However, it is very important to note

hat when a country has more hours of sunlight, more people may

o outside and interact with social groups so that there is a high

isk of virus transfer among people. The percentage of people liv-

ng in an urban area also has an impact as it signifies a higher den-

ity of people, making it easier to transmit the virus. Thus, other

ariables which are not considered in our work can be analyzed

arefully as they may have an effect on the spread of the virus. In

erms of population, for example, the more people there are in a

ountry, the more likely they are to get infected. Moreover, the age

actor also matters that older people may be more likely suscepti-

le to the infection. 

From our experimental results, we have observed that tempera-

ure and humidity features are not sufficient in providing accurate

esults as shown in Fig. 2 . To address this limitation, we created a

ore generalized machine learning model which considers more

umber of features instead of taking temperature and humidity

nly. This model helps to conduct proper analysis and understand

he real effect of weather variables on the spread of COVID-19. The

ist of commonly used machine learning models in the data-driven

nalysis are shown in Table 3 . These models help to understand

he actual relationship between the number of confirmed cases

nd the weather variables. We selected these models as they are

he most used in machine learning tasks such as prediction based
n learning from existing datasets. In this study, we have employed

he following features for the experiment such as population den-

ity, fertility rate, median age, ICU beds per 10 0 0 People, infection

atio, urban percentage, temperature, humidity, hours of sunlight,

nd wind speed as shown in Table 1 . 

The regression models are implemented by using each coun-

ry’s input variables which are a combination of weather fea-

ures (Humidity, Wind speed, Temperature, Sunny Hours), popu-

ation variables (Population, Density, Fertility, Age, Urban percent-

ge) and health center resources related variables (ICU) to predict

he number of infections and death rates. In this case, some fea-

ures play major roles when compared to the other features and

his is proved using random forest feature selector algorithm and

s given in ranked feature importance as shown in Fig. 7 . From

ig. 7 , it is presented that many variables are positively correlated

o the number of COVID-19 infections such as temperature, hours

f sunlight, humidity, wind speed, and population. Moreover, Fig. 8

hows the variables that are positively correlated to the number

f deaths such as temperature, hours of sunlight, wind speed, and

umidity. 

From the experimental result, when inspecting the death rate, it

ppears to be the weather features are more important than cen-

us features such as population, age, and urban percentage. The

tandard deviation of prediction error should be taken into ac-

ount, but from the results, it can be concluded that temperature

nd humidity are important features for predicting COVID-19 death

ate. Furthermore, with the current regression model, it does not

eem that ICU beds per 10 0 0 people are as important as expected.

Table 3 presents the experimental results for the regression

odels using the 10-fold cross-validation (CV) procedure to predict

he number of COVID-19 confirmed cases, where the performance

f these models is evaluated using various performance evaluation

etrics such as R2, MSE, RMSE, RMSLE, MAPE, and MAE. The high-

st performance was registered using the metrics MSE, and RMSE

re obtained by the KNN regressor (1.49381e+07, 3782.07). When
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Fig. 7. Feature importance for infected cases of Covid-19 cases (17/05/2020). 

Fig. 8. Features importance for Deaths of Covid-19 cases (17/05/2020). 



Z. Malki, E.-S. Atlam and A.E. Hassanien et al. / Chaos, Solitons and Fractals 138 (2020) 110137 9 

Table 3 

Experimental results of the state-of-the-art algorithms for prediction of confirmed cases on global COVID-19 

datasets. 

Model MAE MSE RMSE R2 RMSLE MAPE 

K Neighbors Regressor 369.837 1.49381e + 07 3782.07 0.0456 1.501 4.1186 

Extra Trees Regressor 365.563 1.51515e + 07 3811.82 0.0307 1.3096 3.3704 

Random Forest 368.821 1.52086e + 07 3823.22 0.0245 1.3027 3.3131 

Decision Tree 385.084 1.52274e + 07 3819.96 0.0162 1.4723 7.605 

Support Vector Machine 374.921 1.54591e + 07 3853.44 0.01 1.5798 4.0062 

Huber Regressor 380.769 1.56759e + 07 3882.29 -0.0054 1.8197 2.9956 

Ridge Regression 383.174 1.56992e + 07 3885.28 -0.007 1.7949 2.0534 

Least Angle Regression 383.169 1.56992e + 07 3885.28 -0.007 1.7949 2.0548 

Linear Regression 383.169 1.56992e + 07 3885.28 -0.007 1.7949 2.0548 

Bayesian Ridge 383.242 1.56999e + 07 3885.36 -0.0071 1.7958 2.0343 

AdaBoost Regressor 385.502 1.5716e + 07 3887.52 -0.0083 1.7628 1.4017 

Orthogonal Matching Pursuit 386.552 1.5721e + 07 3888.17 -0.0086 1.8743 1.6181 

Lasso Regression 391.905 1.57419e + 07 3890.79 -0.01 2.4943 0.8246 

Elastic Net 391.69 1.57415e + 07 3890.73 -0.01 2.4081 0.8149 

Lasso Least Angle Regression 391.905 1.57419e + 07 3890.79 -0.01 2.4943 0.8246 

CatBoost Regressor 482.418 9.60296e + 07 6272.84 -3.5039 1.3871 2.6725 

Light Gradient Boosting Machine 474.62 7.08946e + 07 6155.48 -7.7306 1.3274 2.6168 

Extreme Gradient Boosting 5618.07 1.96674e + 11 143,720 -13574.3 1.5256 2.5724 

Passive Aggressive Regressor 7795.09 3.02021e + 11 184,794 -20857.5 2.5097 95.2851 

Gradient Boosting Regressor 8468.15 3.52228e + 11 191,742 -35165.9 1.5391 4.9954 

Table 4 

Experimental results of the state-of-the-art algorithms for prediction of deaths cases on global COVID-19 

datasets. 

Model MAE MSE RMSE R2 RMSLE MAPE 

Decision Tree 15.8633 35927 184.686 0.0438 0.7716 0.8981 

K Neighbors Regressor 16.4205 37962.9 189.354 0.0027 0.8287 0.8133 

Extra Trees Regressor 16.4825 38652.8 190.594 -0.0055 0.8154 0.7975 

Support Vector Machine 16.4789 38674.6 190.67 -0.0066 0.8236 0.7979 

Random Forest 16.4963 38681.7 190.69 -0.0068 0.8244 0.804 

Extreme Gradient Boosting 16.5124 38,690 190.71 -0.007 0.8459 0.8403 

Passive Aggressive Regressor 16.6054 38687.4 190.704 -0.007 0.8717 0.8497 

CatBoost Regressor 16.5044 38689.1 190.708 -0.007 0.8352 0.8203 

Light Gradient Boosting Machine 16.5017 38688.5 190.706 -0.007 0.8312 0.8161 

Gradient Boosting Regressor 16.5124 38690.1 190.71 -0.007 0.846 0.8404 

Linear Regression 16.542 38696.7 190.726 -0.0072 0.8722 0.891 

AdaBoost Regressor 16.5551 38696.3 190.725 -0.0072 0.8697 0.889 

Least Angle Regression 16.542 38696.7 190.726 -0.0072 0.8722 0.891 

Orthogonal Matching Pursuit 16.5433 38698.1 190.73 -0.0072 0.8785 0.8994 

Ridge Regression 16.542 38696.7 190.726 -0.0072 0.8722 0.891 

Bayesian Ridge 16.5421 38696.7 190.726 -0.0072 0.8723 0.8914 

Lasso Regression 16.5757 38703.3 190.743 -0.0074 0.9122 0.9685 

Elastic Net 16.5737 38703.1 190.743 -0.0074 0.9104 0.9656 

Lasso Least Angle Regression 16.5757 38703.3 190.743 -0.0074 0.9122 0.9685 

Huber Regressor 16.5366 38705.3 190.748 -0.0074 0.9287 1 
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valuated using MAE, the Extra Trees algorithm scores 365.563 and

MSLE obtained by Random Forest is 1.3027. The models with the

east performance are found to be Gradient Boosting Regressor and

assive-Aggressive Regressor. 

Table 4 presents the experimental results for the comparison

f the state of art models for death cases. The highest perfor-

ance was registered by the Decision Tree algorithm when eval-

ated using MAE, MSE, RMSE, and RMSLE metrics. Moreover, the

xtra Trees Regressor algorithm scores better result when evalu-

ted using MAPE. The least performing algorithms, in this case, are

uber Regressor and Lasso Least Angle Regression. 

From the experimental results, in the case of death rate, it is

xperimentally proved that the weather variables are more impor-

ant when compared to other factors such as census feature in-

luding population, age, and urban percentage. Thus, from the ex-

erimental result, we can conclude that temperature and humidity

re important features for predicting COVID-19 death rates, and it

oes not seem that the ICU beds per 10 0 0 people are an important

eature as shown in Fig. 8 . 

This study includes awareness and understanding of factors that

an decrease or increase the spread rate of the disease which helps
eople to prepare and plan better for daily activities, based on

eather and meteorological forecast. Hence, it is a wise option

o continue lockdown and social distancing until the vaccine cre-

ted or temperature rises to help to reduce the number of infected

ases. 

. Conclusion 

In this work, we are motivated to study the impact of a climatic

ondition such as weather variables, census features such densely

opulated area and the capacity of health centres in accommodat-

ng the number of infected cases due to COVID-19. We have de-

eloped predictive models for the spread of COVID-19 on different

eatures taken from climatic conditions such as (temperature and

umidity), census and health centre resources features. We have

sed several machine learning models whereby each of these mod-

ls are trained on the specified climate, census and health centre

eatures. To validate the proposed method, we have used publicly

vailable datasets from Kaggle and the dataset was executed on

arious machine learning algorithms. The performance of the re-

ressor models is measured using standard performance metrics.
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From the experimental results, it is shown that the weather vari-

ables are more relevant in predicting the mortality rate when com-

pared to the other variables such as population, age, and urban-

ization. The contribution of this study is to prove the factors that

can influence the spread of the virus. It is possible to note here

that this study can be used as an input to create general awareness

and understanding about factors influences the spread of the pan-

demic which helps governments to plan and act to overcome the

disaster that can follow due to COVID-19. Moreover, it is advisable

to continue lockdown and social distancing until the vaccine cre-

ated or temperature rises to help to reduce the number of infected

cases. 

In our future work, we will look at how to improve the perfor-

mance of the selected models by considering additional weather

features such as wind speed and rainfall. We are also planning to

update this study with more analyses and cases continuously by

fine-tuning the prediction and visualization methodology. More-

over, multiple ensemble neural network models can be considered

for analyzing the relationship between COVID-19 and weather vari-

ables. The spatial autocorrelation in the data for the other coun-

tries requires more analysis. For instance, how the tropical coun-

tries are dealing with the COVID-19, whether temperature and hu-

midity can help in the fight against coronavirus and decreasing the

number of cases. 
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