Skip to main content
. 2020 Jul 17;138:110137. doi: 10.1016/j.chaos.2020.110137

Table 3.

Experimental results of the state-of-the-art algorithms for prediction of confirmed cases on global COVID-19 datasets.

Model MAE MSE RMSE R2 RMSLE MAPE
K Neighbors Regressor 369.837 1.49381e+07 3782.07 0.0456 1.501 4.1186
Extra Trees Regressor 365.563 1.51515e+07 3811.82 0.0307 1.3096 3.3704
Random Forest 368.821 1.52086e+07 3823.22 0.0245 1.3027 3.3131
Decision Tree 385.084 1.52274e+07 3819.96 0.0162 1.4723 7.605
Support Vector Machine 374.921 1.54591e+07 3853.44 0.01 1.5798 4.0062
Huber Regressor 380.769 1.56759e+07 3882.29 -0.0054 1.8197 2.9956
Ridge Regression 383.174 1.56992e+07 3885.28 -0.007 1.7949 2.0534
Least Angle Regression 383.169 1.56992e+07 3885.28 -0.007 1.7949 2.0548
Linear Regression 383.169 1.56992e+07 3885.28 -0.007 1.7949 2.0548
Bayesian Ridge 383.242 1.56999e+07 3885.36 -0.0071 1.7958 2.0343
AdaBoost Regressor 385.502 1.5716e+07 3887.52 -0.0083 1.7628 1.4017
Orthogonal Matching Pursuit 386.552 1.5721e+07 3888.17 -0.0086 1.8743 1.6181
Lasso Regression 391.905 1.57419e+07 3890.79 -0.01 2.4943 0.8246
Elastic Net 391.69 1.57415e+07 3890.73 -0.01 2.4081 0.8149
Lasso Least Angle Regression 391.905 1.57419e+07 3890.79 -0.01 2.4943 0.8246
CatBoost Regressor 482.418 9.60296e+07 6272.84 -3.5039 1.3871 2.6725
Light Gradient Boosting Machine 474.62 7.08946e+07 6155.48 -7.7306 1.3274 2.6168
Extreme Gradient Boosting 5618.07 1.96674e+11 143,720 -13574.3 1.5256 2.5724
Passive Aggressive Regressor 7795.09 3.02021e+11 184,794 -20857.5 2.5097 95.2851
Gradient Boosting Regressor 8468.15 3.52228e+11 191,742 -35165.9 1.5391 4.9954