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INTRODUCTION

The number of approved antibody-drug conjugates (ADCs) has grown in recent years with 

five ADCs approved by the Food and Drug Administration (FDA) and several more in late 

stage clinical trials. However, developing effective ADC candidates for cancer therapy with 

a sufficient therapeutic index has been difficult, and several clinical failures of ADCs could 

have been avoided by minor improvements in the therapeutic window (1). This is due to the 

highly complex ADC pharmacokinetics and pharmacodynamics in the tumor environment, 

especially for solid tumors. To date, ado-trastuzumab emtansine (T-DM1), commercially 

known as Kadcyla, is the only FDA-approved ADC for solid tumors.

ADCs are composed of three main parts - a targeting antibody (Ab), a cytotoxic payload, 

and a linker connecting the two. These agents must be optimized to specifically deliver the 

payload to cancer cells while minimizing healthy tissue uptake as they traverse multiple drug 

delivery barriers. After intravenous administration, ADCs flow through the blood to the 

tumor, extravasate from blood vessel, diffuse through the interstitial tumor tissue, bind 

antigens, are internalized by cancer cells, and, upon linker cleavage or digestion, release the 

cytotoxic payload that diffuses across membranes to their site of action (often DNA or 

microtubules) inside the cells. Tumors may vary in blood vessel density, receptor expression, 

and receptor internalization, all affecting ADC delivery.

ADC distribution in solid tumors is typically heterogeneous, which can impact efficacy (2). 

Because of the large size of ADCs, uptake into the tumor is limited by extravasation from 

the blood to the tumor tissue (i.e., they are permeability-limited) (3), resulting in reduced 

amounts of drug in the tissue. Once in the tissue, tumor penetration is slow as a result of 

elevated interstitial pressure, making them reliant on diffusion through the interstitial space. 

ADCs rapidly bind to antigens surrounding tumor blood vessels and are typically 

internalized before they can dissociate and diffuse deeper into the tissue. For example, at 
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clinical doses of 3.6 mg/kg, T-DM1 localizes perivascularly, as seen in multiple mouse 

models (4), due to its large size and high affinity to HER2 receptors.

We and others have demonstrated that some ADC regimens can improve ADC distribution, 

efficacy, and tolerability. As previously established in our lab, the co-administration of T-

DM1 with its unconjugated antibody, trastuzumab, improves drug penetration and efficacy 

(5). Other work from Hinrichs et al. and Jumbe et al. show that fractionating a single dose 

into 3 weekly doses can lead to similar efficacy, but better tolerability (6, 7).

Despite these findings, the design principles underlying the best choice of regimen and drug 

combinations are not well-understood. For example, it is not clear if/when a ‘carrier dose’ 

will increase drug penetration and improve efficacy. The impact of HER2 expression level 

and payload potency on the increase or reduction in efficacy from a carrier dose are also not 

well defined. Finally, the interplay of dose fractionation with carrier doses on overall 

efficacy is currently unknown.

Testing all combinations of receptor expression, payload potencies, carrier doses, dose 

fractionation regimes, etc. in vivo would be a daunting and expensive process. For this 

reason, computational models that guide experiments and predict best drug regimens are 

becoming more widely used. Computational models to capture the pharmacokinetics of 

ADCs are already established in the field (8) (9) (10) (11), but to our knowledge, there is not 

a pharmacokinetic/pharmacodynamic (PKPD) model of ADC distribution that captures the 

heterogeneous distribution of ADCs on individual cells to connect experimental single cell 

PK data to overall efficacy.

Here we took a systems pharmacology approach to study and predict the best ADC 

regimens. We developed a hybrid agent-based model (ABM) to capture ADC and/or 

antibody delivery and predict individual cell killing and tumor growth kinetics. This 

multiscale model enables detailed depictions of heterogeneous ADC delivery, cancer cell 

death, and tumor growth. Partial and ordinary differential equation models of ADC 

extravasation from multiple vessels, diffusion, binding, and processing are overlaid on a grid 

of individual cancer cells (agents). These cells undergo growth (cell division) and respond to 

the drug by cell death as a probability function of their intracellular payload concentration. 

Tumor growth rate is a function of the total number of cancer cells at a given time. The 

model was validated by comparison to experimental measurements in a HER2 positive NCI-

N87 mouse xenograft model (5).With this model, the role of the carrier dose was analyzed, 

and predictions for the best regimen for different types of tumors overexpressing HER2 are 

presented.

MATERIALS AND METHODS

We built a computational model to predict the efficacy of particular ADC regimens, 

accounting for ADC distribution in a heterogeneous tumor microenvironment. Our model is 

a hybrid ABM comprised of cancer cells and blood vessels that compose the tumor 

microenvironment and behave based on predefined rules and changes in their local 

microenvironment. The multi-scale model has portions that describe the tumor environment 
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and PKPD: plasma dynamics, drug dynamics for T-DM1 and trastuzumab, and individual 

cancer cell dynamics (e.g., cell division, death) (Figure 1).

Simulation Environment

We simulate a subsection of a tumor and assume that i) the dynamics are representative of 

the entire tumor and ii) the tumor volume is proportional to the number of cells in the 

simulation. The model was simplified to a 2D representation because ADC concentration 

along the blood vessel is approximately constant (permeability limited) (3). The 

representative subsection of the tumor includes a zero net-flux boundary condition on its 

border. At low doses, few drug molecules reach the boundaries of the subsection, so the 

effects of the boundary conditions are minimal. At higher doses, a zero net-flux boundary 

condition is convenient to represent the equal diffusion of drug into and out of the subsection 

from adjacent regions of the tumor. Because antibodies are permeability limited, this 

changes the location of the cells that are targeted but has a negligible impact on the total 

tumor uptake or fraction of cells targeted by the ADC. Each simulation starts with 

approximately 2500 cells, which is used to represent an initial tumor size of 250mm3. 

Cancer cells and blood vessels each have different states, i.e., alive or dead for cells and 

functional and non-functional for vessels, and they occupy a position on the simulation grid. 

Their state changes during the simulation depending on their microenvironment. For 

example, a sufficient number of released payloads can kill a cancer cell or sufficient time 

allows the cells to proliferate. Blood vessel density and placement within tumors is highly 

variable (both between tumors and within the same tumor). The range in vessel density in 

the simulations was determined by image analysis of xenograft tumors from mice using the 

MATLAB algorithm described in (5). A range from 18 to 36 blood vessels per simulation 

best matched histology data and doses showing tumor saturation. To capture the 

heterogeneity in vessel distribution, each simulation has blood vessels randomly placed in 

the tumor space at its initialization, creating a different microenvironment for each cancer 

cell in the simulation. This variability can change the drug spatial distribution across cancer 

cells and consequently impact efficacy.

Trastuzumab and T-DM1 Plasma Dynamics

The concentrations of trastuzumab and T-DM1 in the blood are a function of dosing, total 

antibody clearance rate, and payload deconjugation rate (rate at which the cytotoxin 

detaches from the antibody). A simplified ordinary differential equation (ODE) model from 

(12) to describe DM1 deconjugation was implemented here:

d TDM1
dt = − CLTT

V1
+ CL2

V1
+ CLDEC

V1
TDM1 + CL2

V2
TDM1p2 (1)

d TDM1p2
dt = CL2

V1
TDM1 − CL2

V2
[TDM1p2] (2)
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d Tras
dt = − CLTT

V1
+ CL2

V1
Tras + CL2

V2
[Trasp2] + CLDEC

V1
[TDM1] (3)

d Trasp2
dt = CL2

V1
Tras − CL2

V2
Trasp2 (4)

where [TDM1] is the T-DM1 concentration in the central or plasma compartment (nM), 

[TDM1p2] is the T-DM1 concentration in the compartment 2 (peripheral tissue) (nM), [Tras] 

is the unconjugated antibody concentration in the central compartment (nM), [TDM1p2] is 

the unconjugated antibody concentration in the peripheral compartment (nM), CLTT is the 

total antibody clearance (L/s), CL2 is the antibody clearance for the peripheral compartment 

(L/s), CLDEC is the deconjugation rate (L/s), V1 is the volume of the central compartment 

(L), and V2 is the volume of the peripheral compartment (L) as seen on Figure 1A at clinical 

doses. CLTT and CL2 were calibrated to experimental data (13) as seen in Supplemental data 

S1, and CLDEC was set to be the same as CLTT, making T-DM1 clearance twice as fast as 

trastuzumab clearance (12).

Trastuzumab and T-DM1 Extravasation and Diffusion

Trastuzumab and T-DM1 extravasate from the blood vessels into the tumor, and this is 

described by a Robin boundary condition at the vessel boundary:

−Deff
d TDM1

dx = P TDM1 plasma − TDM1
ε (5)

−Deff
d Tras

dx = P Tras plasma − Tras
ε (6)

where x is distance from the blood vessel (μm), P is permeability (μm/s), ε is fraction of free 

interstitial tissue, and Deff is the effective diffusivity (μm2/s), which describes the diffusion 

within the tissue (14, 15). Because ADCs are large molecules that cannot traverse cell 

membranes, the use of ε here accounts for the accessible interstitial volume that ADCs 

diffuse through. This parameter also adjusts for the relative higher concentration of these 

molecules in the interstitium compared to an average tumor volume concentration (16).

Diffusion of trastuzumab and T-DM1 on the 2D grid occurs according to Fick’s law:

∂C
∂t = D ∂2C

∂x2 + ∂2C
∂y2 (7)

where C is trastuzumab or T-DM1 concentration in (nM), t is time (s), D is the effective 

diffusivity (μm2/s), x and y are the Cartesian coordinates. A zero net-flux boundary 

condition at the edges of the tissue was used since this is a subsection of a large tumor where 

edge effects are minimal (17).
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Trastuzumab and T-DM1 Binding, Internalization, and Degradation

Within the tumor, ADCs bind target molecules, are internalized, and after degradation in the 

lysosomes, payloads are released to kill the cancer cells through apoptosis as seen in Figure 

1B. These drug dynamics are described by the following reactions:

TDM1 + HER2
kon/koff B

ke Be
kdeg

Cytotoxin
k1055

kon/koff
BTras

ke

Tras+HER2
kon/koff BTras

ke

HER2
ke HER2e

kdeg

This results in the following equations:

d TDM1
dt = − kon

TDM1
ε HER2 + koff B (8)

d HER2
dt = − kon

TDM1
ε HER2 + koff B − kon

Tras
ε HER2 + koff

BTras + Rs − ke HER2
(9)

d B
dt = kon

TDM1
ε HER2 − koff B − ke B (10)

d Be
dt = ke B − kdeg Be (11)

d DM1
dt = kdeg Be DAR − kloss DM1 (12)

d Tras
dt = − kon

Tras
ε HER2 + koff BTras (13)

d BTras
dt = kon

Tras
ε HER2 − koff BTras − ke BTras (14)

All variables are listed on Table I and model parameters on Table II. Both free and bound 

HER2 receptors are assumed to be internalized with the same rate constant. We also assume 

that the total number of receptors on the cell surface remains constant due to new receptor 

synthesis and unbound receptor recycling. Thus, Rs= kin [HER2]o. Because the binding and 

dissociation reactions between the trastuzumab backbone and HER2 receptors are fast in 

comparison to internalization, we assumed a pseudo-steady state for binding in each 

compartment to reduce computational time.
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Cell Division and Death

Tumor volume is proportional to the number of cancer cells in the simulation. Cancer cells 

proliferate depending on the tumor doubling time (td) assigned at the beginning of the 

simulation, and td is assumed to account for natural cell death. All cells in the same 

simulation are given the same doubling time but a different (random) birthtime to avoid 

synchronization. At cell division, two identical cells are created, and their bound drug and 

internalized drug are evenly divided between them. One of the daughter cells is placed in the 

original grid compartment, and the other daughter cells is placed on a neighboring grid 

compartment. If there is no space in the neighboring compartment, cells shuffle to make 

space for the new cell (see algorithm in supplemental methods 2).

Cancer cells die only depending on the payload concentration inside the cells, and they are 

then removed from the simulation grid. The probability for cell killing (Pkill) during each 

agent time step (i.e., the integral of the cell killing rate over the time step) is given by the 

Michaelis-Menten equation:

Pkill = Pmax DM1
Km + DM1 (15)

where Pmax is the maximum probability for cell killing, [DM1] is the concentration of 

cytotoxin inside the cells in nM, and Km is the Michalis-Menten constant. Pmax and Km were 

calibrated to experimental data (5). The overall probability for cell killing becomes the 

integration of all the probabilities for cell killing over the simulation time. While Eqn. 15 

always has a probability of death > 0 for a non-zero payload concentration, in practice, low 

concentrations of drug typically exhibit a threshold effect below which no discernable 

difference between treated and untreated cells is seen. Therefore, we estimated the minimum 

concentration for cell killing (a cell killing threshold) to be 120 nM based on experimental 

data (5) (supplemental methods 3). If the payload concentration inside the cell is below this 

threshold, the probability for cell killing is set to zero. Trastuzumab was assumed to have no 

effect on cell killing, although very high doses of trastuzumab might have an impact on 

efficacy in an NCI-N87 xenograft model system. Dead cells were estimated to stay on the 

grid for 2.5 days (supplemental methods 2) before they are removed from the grid. 

Neighboring cells shuffle from the outer border to fill the empty grid space caused by the 

removal of the dead cell (supplemental methods 2).

In Vitro Simulations

To model in vitro toxicity experiments, we assumed that all cells are exposed to the same 

external concentration of trastuzumab and T-DM1 present in the media. For this reason, ε is 

set equal to 1 in Eqns. 8, 9, 10, 13, and 14, as ADC diffusion is not hindered by the tumor 

tissue. For the toxicity assays, cells in each simulation are exposed to a constant T-DM1 

concentration, and cell viability was calculated at 6 days. For the coincubation of 

trastuzumab and T-DM1, cells were exposed to a total concentration of 10nM and various 

ratios of the concentrations of trastuzumab to T-DM1. For all in vitro simulations, cell 

doubling time was varied from 1 to 2.5 days.
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Computational environment and Numerical Methods

The model was constructed in C++ with Boost (distributed under the Boost software license 

– available at www.boost.org). The graphical user interface (GUI) was built using the Qt 

framework (open-source, distributed under GPL – available at qt.digia.com). Efficient 

linking and solution of our hybrid multiscale ABM followed the principles described in (25). 

We used a molecular time step of 2 seconds, a diffusion time step of 4 seconds, and an agent 

time step of 10 minutes. The diffusion equation was solved using the alternating-direction 

explicit (ADE) method and ODEs were solved using the 4th order Runge-Kutta method.

Fluorescence Histology

Methods for fluorescence histology have been published previously by our lab (5). Briefly, 

for mouse tumor xenografts, 5×106 NCI- N87 cells, purchased from ATCC, were injected in 

the rear flanks of 4–8 week-old female nude (Foxn1nu/nu) mice from Jackson Laboratories. 

Kadcyla was conjugated with AlexaFluor 680 NHS Ester (AF680, Thermo Fisher Scientific, 

A37567) with antibody to dye ratio of 0.3 or less and given intravenously. The mice were 

then sacrificed 24 hours after injection and histology slices were labeled ex-vivo with anti-

mouse CD31 conjugated with AlexaFluor 555 (Thermo FisherScientific, A37571) and 

mouse antihuman IgG Fc antibody conjugated with AlexaFluor 488 (Thermo Fisher 

Scientific, A20000). All animal studies were conducted according to University of Michigan 

Institutional Animal Care and Use Committee.

RESULTS

Simulating Heterogeneous Distribution of Antibodies in Tumor Slices

Our model captures the heterogeneous distribution of ADCs and antibodies seen in NCI-N87 

tumor xenografts (2). Here, vessel density varies between simulations following a normal 

distribution with an average blood vessel density of 28 functional vessels per simulation. At 

clinical doses (3.6 mg/kg), T-DM1 localizes perivascularly, but coadministration with 

trastuzumab competes for the perivascular binding sites, allowing more T-DM1 to penetrate 

farther in the tissue. Therefore, a constant dose of T-DM1 is ‘diluted’ in the tumor tissue to 

reach more cells as seen in images of mouse tumors (Figure 2A). With the same image 

contrast for the same drug regimens, our model also captures this dilution and spreading of 

ADCs in the simulation with T-DM1 reaching all cells at regimens of 8:1 ratio, Figure 2B.

Likewise, our model captures the total antibody uptake as seen in mouse tumor slices stained 

with antihuman-Fc labeling that targets all antibody backbones (T-DM1 and trastuzumab), 

methods found in previous work (5). Here, although the concentration of T-DM1 is diluted 

through the tumor tissue, higher antibody concentrations are achieved with coadministration 

of trastuzumab along with T-DM1 to improve tumor penetration. As seen on Figure 2C and 

2D, our model also captures this total antibody uptake by the tumor reaching receptor 

saturation at the 8:1 ratio.

Calibrating Tumor Growth Kinetics and In Vivo Cell Killing

After demonstrating that the ABM can capture the heterogeneous distribution of antibodies 

and ADCs around vessels, we moved to capture the pharmacodynamics within the tumor. To 
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understand how the drug microenvironment impacts efficacy, our model was calibrated to in 
vivo data (5) on cell proliferation and cell killing due to drug action to capture the tumor 

growth dynamics. The tumor growth rate for the simulations was calibrated by fitting the 

average tumor cell doubling time and range to capture tumor volume growth curves from 

experimental control (untreated) mice as seen in Figure 3A and 3B. The calibrated tumor 

volumes have a doubling time range from 5 to 17 days. In this model, the doubling time for 

each tumor is defined at the initialization based on a normal distribution in which tumors 

with higher vessel density have a higher probability to grow faster (i.e., a smaller doubling 

time, supplemental data Figure S2). This was implemented to account for the blood vessels 

as the source for nutrients and oxygen that enables cell proliferation (26). The proliferation 

rate constitutes the net cell division above the level needed to replace intrinsic cell death 

within the tumor.

The probability of cancer cell killing due to drug action was also calibrated to the in vivo 
experimental data for T-DM1 treatment at the clinical 3.6 mg/kg dosing. Using the 

Michaelis-Menten equation for the killing probability, the average efficacy in 10 

experimental mouse tumors was matched to the average efficacy of 100 simulations. Pmax 

and Km are highly correlated and are mostly in the linear range of Eqn. 15 for these 

simulations, so we set Km to 800nM based on the likely range of payload concentration 

inside of the cell and calibrated Pmax to 0.014. Using these two parameters, cell killing 

results matched the range and average as seen of Figure 3C and 3D.

Simulation Accurately Predicts the Effect of Coadministration of Trastuzumab with T-DM1 
on Tumor Growth

Previously, our lab demonstrated that coadministration of trastuzumab and T-DM1 improved 

efficacy. Using the model that was calibrated to data from a single dose of T-DM1, we next 

simulated regimens for 1:1, 3:1, and 8:1 ratio and compared the results to the experimental 

curves for model validation (Figure 4A-C). The mean tumor volumes and SD of the 

simulations (n=100) agree closely with the experimental data (n=10). Figure 4D-F shows the 

simulation range achieved with the 100 simulations (blue shading) and the experimental 

tumor curves (black lines). These results demonstrate the ability of our model to capture the 

variability in tumor growth and impact of carrier doses on efficacy.

Reaching Maximum Number of Cells with Lower but Lethal Concentrations of Payload 
Results in the Greatest Tumor Efficacy

We next simulated drug regimens with different ratios of trastuzumab to a fixed clinical dose 

(3.6 mg/kg) of T-DM1 to identify which dose regimen gives the best treatment outcome. 

Figure 5A shows the efficacy of regimens with trastuzumab to T-DM1 ratios ranging from 

0:1 to 24:1 and over the course of 21, 30, 40, and 50 days. Increasing the ratio results in 

greater competition of the unconjugated antibody to ADC. At a regimen of 8:1, the tumor 

approaches saturation by the antibody, and the maximum tumor uptake of T-DM1 reaches all 

of the cells within the tumor. At higher than saturating (super-saturating) doses, the 

unconjugated antibody competes with T-DM1, decreasing the uptake of payload into 

individual cells, while not reaching any more regions of the tumor. Both total tumor uptake 

of ADC and individual cell uptake decrease beyond this point. When graphing the fraction 
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of cells receiving a given intracellular payload concentration for increasing carrier doses at 

48 hrs, both the number of cells with very high levels of payload and those with no payload 

are reduced (Figure 5E) while more cells receive a moderate dose of payload (i.e., reducing 

the heterogeneity of drug distribution). Importantly, even at the 8:1 carrier dose, ~60% of the 

targeted cells have greater than the 120 nM intracellular concentration needed for cell death. 

However, as the carrier dose increases, the concentration of the payload decreases below 120 

nM, resulting in reduced efficacy. In summary, despite competition of T-DM1 uptake by the 

large antibody dose, the model predicts a better prognosis when more cells are reached at a 

lower (but still lethal) number of T-DM1 payloads per cell than when fewer cells receive 

high doses (‘overkill’).

The Potency of the Payload Affects the Influence of a Carrier Dose

The simulations indicated that a carrier dose improves efficacy when the increased number 

of cells reached by T-DM1 outweighs the reduced killing due to fewer payloads per cell. 

Implicit in this statement is that adding a carrier dose beyond the level needed for tumor 

saturation will lower efficacy since no new cells are reached. In the system studied here (T-

DM1 with NCI-N87 xenografts), the payload is very potent relative to the number of 

payloads delivered per cell, and the doses are below tumor saturation. However, for 

moderately potent payloads, there are examples where concentrating the payload on fewer 

cells results in greater efficacy (2) such as seen with sacituzumab govitecan (27). If the 

concentration of the payload delivered by pure ADC is just enough to kill these cells (i.e., 

there is no ‘overkill’), decreasing the concentration of the payload per cell with a carrier 

dose would lead to lower treatment efficacy because no cells would receive a toxic dose even 

though the new regimen is reaching more cells. To determine when a carrier dose might 

decrease efficacy even prior to tumor saturation, we used the simulations to examine the role 

of the minimum concentration needed for cell death (Cmin).

The presence of a minimum threshold payload concentration for cell death has a significant 

impact on efficacy, particularly when the dose range is high enough to saturate the first cell 

layer but lower than required for tumor saturation. In this range, such as simulated in this 

work, the dose has a major impact on tissue penetration. We simulated tumor efficacy with a 

Cmin of 500 nM, 10 nM, and no minimum threshold in toxicity needed for cell death (Figure 

S3). The latter scenario assumes a pure Michaelis-Menten relationship where any drug 

concentration, no matter how small, has some impact on cell viability. If this were the case, 

the carrier dose is virtually always beneficial prior to saturation of the tumor. This can be 

explained in terms of the number of cells reached and probability of cell death. If efficacy is 

the product of the number of cells targeted by the ADC multiplied by the fractional cell 

killing, the number of cells reached increases linearly with the total antibody dose. The 

fractional cell killing for payload concentrations well below the Km results in close to, but 

always slightly less than, a linear decrease. Therefore, a carrier dose would always improve 

the overall product under these assumptions. However, most drugs exhibit some threshold 

below which there is no detectable response, so it was important to explicitly define a 

minimum concentration needed for cell death regardless of the pharmacodynamic model 

used (including the Michaelis Menten model in this work). If a carrier dose reduces the 

payload uptake below this amount, a dramatic loss in efficacy is seen.
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To simulate cells that are more resistant to the payload (i.e. the potency is decreased), Cmin 

was set to a 500 nM intracellular concentration needed to induce some cell death. In this 

case, even a 1:1 carrier dose starts to decrease overall efficacy (Figure S3). This highlights 

how diluting the ADC to achieve better drug penetration depends on the potency of the 

payload to reach a minimum threshold while reaching the largest number of cells.

The Impact of the Carrier Dose is Dependent on the Average Tumor Expression of HER2

ADC distribution within a tumor also depends on the number of receptors per cell (10) (5) 

(21). As seen in previous work, a higher number of receptors decreases drug penetration into 

the tumor, and for those tumors, higher doses of coadministrated trastuzumab are needed to 

improve efficacy compared to tumors with lower receptor density. For this reason, the 

optimal drug regimen is dependent on the average number of receptors per cell in the tumor.

Tumors with different HER2 receptor expression levels were simulated with various drug 

regimens, and the results are shown in Figure 1A. Regimens with doses of trastuzumab and 

T-DM1 at 0:1, 1:1, 3:1, 8:1, and 12:1 were simulated for tumors with average of 0.1, 0.2, 1, 

and 2 million receptors per cell. The Thiele modulus, a dimensionless number that predicts 

the antibody saturation level in tumors (19) is listed in each box. For levels below ~0.2 the 

tumor is saturated (28). For tumors with lower HER2 expression, e.g. an average of 0.1 

million receptors per cell, the best efficacy occurs at lower total antibody concentrations. 

However, at very low receptor expression levels, such as < 50,000 HER2 per cell, no 

response was observed as the minimum accumulation of payloads inside the cell to lead to 

efficacy is not reached (Figure S4). For tumors with higher expression density (e.g., 2M 

receptors per cell), the best treatment with coadministration occurs at higher doses of total 

antibody. However, at lower receptor expression, increasing the total antibody 

coadministered can actually decrease efficacy (Figure 6B).

Single Dosing with Coadministration is Better than Coadministration with Fractionated 
Dosing

Previous work has demonstrated that fractionated doses can lead to similar efficacy, but 

better tolerability compared to single dosing. We simulated fractionated dosing treatment 

with 3 weekly doses of 1.2 mg/kg of T-DM1 and compared it with a single dosing (3.6 mg/

kg). The maximum concentration (Cmax) of single dose antibody in the plasma (3.6 mg/kg) 

is much higher than the Cmax of fractionated dosing as shown in Figure 7A. However, the 

area under the curve (AUC) for these two regimens is the same. With the same total 

administered dose at the end of 3 weeks, the efficacy of fractionated dosing is reduced but 

not significantly different than a single dose as shown on Figure 7C. This is in agreement 

with reports by Hinrich et al. and Jumbe et al. showing lower efficacy when fractionating an 

ADC dose (6, 7), but not significant differences in the case of Hinrich et al.

We also simulated single dosing and fractionated dosing for different carrier dose regimens 

of 1:1, 3:1, and 8:1 as shown in Figure 7B-F. Here, for example, an 8:1 fractionated dose is 

equal to 3 weekly doses of 1.2 mg/kg T-DM1 coadministered with 9.6 mg/kg of 

trastuzumab. Our results predict that at higher carrier doses (e.g. 8:1), dose fractionation 

results in much lower efficacy than for single dosing regimens with the same carrier dose. 
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Although more cells are reached by the higher total antibody dose, e.g. 8:1 regimen, the 

lower T-DM1 concentration in each dose plus the dilution that occurs by adding a carrier 

decreases payload concentration per cell below the minimum needed for efficacy.

One benefit of dose fractionation is greater tolerability. In the clinic it has been shown that 

the maximum tolerable dosing for T-DM1 is 3.6 mg/kg every 3 weeks or 2.4 mg/kg every 

week (29). We therefore simulated weekly doses of 2.4 mg/kg T-DM1 with different carrier 

levels, which led to better predicted efficacy. With regimens of 2.4 mg/kg every week for 3 

weeks, the total T-DM1 concentration is increased. Therefore, fractionated dosing with a 

carrier dose can be beneficial if this allows an increase in the total ADC dose reaching more 

cells with a lethal concentration of payload.

Model Calibration in Vivo Matches Drug Efficacy in Vitro

The pharmacodynamic model, calibrated to the in vivo data, also captures the toxicity of in 
vitro experiments (Figure S5). Originally, the pharmacodynamic model parameters were fit 

to in vivo data (Fig. 3) because it was not clear if the sensitivity of the cells in the tumor 

microenvironment would be different than in cell culture. Using the same parameters for in 
vivo calibration to simulate toxicity curves in vitro (either single-agent or coincubation of 

trastuzumab and T-DM1), the curves were similar to previously published results in our lab. 

Therefore, in this system, there did not appear to be a major shift in potency in vitro versus 

in vivo.

DISCUSSION

The complexity of ADC development, encompassing the antibody design, target selection, 

linker development, payload potency, dosing regimen, along with delivery barriers, tumor 

heterogeneity, patient variability, and potential for drug combinations, requires tools beyond 

cellular and animal efficacy-based screening to efficiently identify compounds and drug 

regimens for clinical success. Agent-based modeling is a powerful tool to capture both the 

multiscale and heterogeneous distribution of ADCs within tumors and also single cell 

responses and overall tumor efficacy (Fig. 1). A significant advantage of the current ABM 

model compared to previous ADC models is the ability to look at individual cellular 

responses for simulating pharmacodynamics, unlike our previous Krogh cylinder model 

which mainly captures pharmacokinetics. Here, we simulate the tumor environment in the 

context of many irregularly placed blood vessels, with some functional while others are not, 

capturing the irregularity seen in experimental data (Fig. 2).

Another advantage of the ABM is the ability to capture the cellular level pharmacodynamic 

behavior of ADCs. Recent advances in pharmacodynamic modeling of ADCs have started 

incorporating tissue gradients (10) or cellular heterogeneity (e.g., antigen positive and 

negative cells (8) (30)). In the current model, by simulating individual cells within tissue-

scale drug gradients, we capture both these effects across thousands of cells. An ABM 

enables direct comparisons between single cell PK/PD data gathered in the lab and the 

computational model.
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Treating a solid tumor as a homogeneous unit could overlook important effects of drug 

treatment regimens such as adding a carrier dose. Here, our model captures the correct drug 

distribution and efficacy of different regimens as compared with in vivo data from our lab 

(Fig. 2, 3, and 4), demonstrating that our model is a powerful tool to capture ADC and 

antibodies administration in the tumor environment.

The simulations also provide a series of predictions (Fig. 5, 1, and 7) that can aid in the 

development of drugs and design of new experiments. Although achieving greater tissue 

penetration (up to tumor saturation) has been shown to improve efficacy for tumors with 

high antigen expression treated with T-DM1, increasing the total antibody dose too much 

can also diminish cellular cytotoxin uptake and therefore lower efficacy (Fig. 5A-D). These 

results are dependent on the delivery (antigen expression, internalization rate, tumor 

vascularization, etc.) and payload efficacy (linker cleavage, payload potency, etc.) 

necessitating a quantitative analysis for each individual ADC case rather than extrapolating 

the model results to all systems.

In addition to the payload potency, another important consideration in adding a carrier dose 

to the regimen is the average tumor target expression. For tumors with lower antigen 

expression, adding a carrier dose results in no improvement, and potentially lowers the 

efficacy. This is seen for regimens in tumors with lower antigen expression such as ≤ 

100,000 receptors per cell. In these tumors, single-agent ADC dosing at 3.6 mg/kg already 

saturates the tumor, delivering the maximum cytotoxin potency to the tumor cells (Fig. 1). 

Adding a carrier dose to those tumors can only reduce the concentration of payload per cell. 

However, for even lower antigen expression such as 50,000 receptors per cell, even with 

ADC alone, there is not enough payload per cell to cause a tumor response (Fig S4). For this 

reason, administering a carrier dose must be considered in the context of the target’s average 

tumor expression and payload potency.

A major consideration in the development of ADCs is the drug to antibody ratio (DAR). T-

DM1 has an average DAR of 3.5, but adding a carrier dose reduces the average DAR in 

circulation (e.g., DAR 3.5 at 3.6 mg/kg compared to DAR 1.75 at 7.2 mg/kg dose – or 1:1 

regimen). Lowering the DAR allows higher antibody doses because toxicity is typically 

driven by the payload dose. In the absence of DAR-dependent effects (such as DAR-

dependent clearance and DAR-dependent deconjugation (31)), lowering the average DAR by 

adding unconjugated (DAR 0) antibody is equivalent to lower the DAR of the ADC alone. 

However, DAR-dependent effects could lead to higher ADC exposure (AUC) for a lower 

DAR on the ADC compared to adding a carrier dose. The lower ADC DAR could improve 

efficacy by increasing tumor exposure from a higher AUC, but it also has the potential to 

change the toxicity profile (e.g., less deconjugation resulting in higher exposure to tissues 

such as the eye). Conversely, increasing the DAR of an ADC is expected to increase the 

toxicity (at a constant antibody dose), lowering the maximum tolerated dose (MTD). The 

lower antibody dose can result in challenges such as target-mediated drug disposition and 

increased intratumor heterogeneity, which can reduce efficacy. Interestingly, some site-

specific conjugation strategies result in lower DAR (32), and lower potency payloads (e.g., 

topoisomerase inhibitors) also allow higher antibody doses to be administered, which can 

result in improved tissue distribution at the MTD.
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Reaching the maximum number of cells with the minimum payload needed for efficacy is 

also a subject of attention in fractionated dosing. With single-agent ADC dosing, 

fractionating the dose only results in slightly lower efficacy, likely because single dosing 

was probably overkilling perivascular cells. However, fractionated doses with 

coadministration of the carrier dose significantly decreased efficacy compared to a single 

bolus dose with a carrier at the same ratio (e.g., 8:1, Fig. 7). The lower T-DM1 concentration 

per dose and dilution of the payload from the carrier dose pushes too many cells below a 

lethal number of payloads per cell. However, fractionated dosing can increase tolerability, 

which leads to the possibility of increasing ADC dosing and tumor drug exposure. The 

coadministration of ADC with carrier and fractionated dosing can provide not only better 

tumor penetration but also greater AUC and total payload tumor uptake. Therefore, our 

results show that fractionated dosing can be beneficial if it improves tolerability enough to 

increase the dose and overcome the decreased tissue penetration caused by a lower Cmax, 

consistent with previous publications on fractionating dosing (Fig S6) (7). This is the 

approach taken with the clinical dosing for enfortumab vedotin, currently in phase III 

clinical trials with a 1.25 mg/kg weekly dose (33).

The current model has several limitations. Although this model is helpful in capturing the 

tumor growth efficacy of ADCs, it currently does not capture the development of resistance 

that could occur when cancer cells are exposed to diluted drug concentrations (34). All the 

cells in this model are sensitive to the drug, and results here have indicated that the best 

regimens are found with increased drug distribution even at lower payloads per cell. The 

trade-off in increased efficacy versus increased risk of resistance is complicated by other 

factors such as tissue-level secondary drug effects (e.g., collapse of vessels in heavily treated 

areas) and additional mechanisms of action (e.g., immune cell interactions) described below. 

For this reason, regimens that select resistant cells and stimulate cell mutation should be 

studied in the future with this model.

We calibrated our model to in vivo toxicity, and our probabilities could have overestimated 

cell killing due to secondary effects from the drug treatment. Cancer cells in vivo can die 

through direct and indirect mechanisms. For example, as cancer cells around a blood vessel 

die, blood vessels can also collapse, limiting the oxygen and nutrient delivery to other cells 

nearby. This may alter cell death or proliferation rates locally and could be considered in 

future work. Further work might also consider other sources of heterogeneity, such as 

heterogeneous antigen receptor expression, and the simultaneous actions of the immune 

system toward killing tumor cells. Despite these caveats, our model results reasonably match 

the toxicity from in vitro experimental data (after accounting for a faster doubling time and 

lack of transport limitations, which are important considerations for in vitro/in vivo 
correlations (30)). In addition, our model results agree with IC50 values found in previously 

publications (35).

Finally, our current model does not take into consideration the immune system in combating 

cancer, including multiple mechanisms of action through the antibody Fc domain (36). In 

fact, ADCs have been shown to be more effective in immunocompetent animal models (37). 

Fortunately, our computational model has the potential to study and incorporate the 

probabilistic behavior of the immune system in response to these therapies, as already 
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established in our lab for the study of an infectious disease (38, 39). Once appropriately 

calibrated to a particular ADC, the model also has the potential to be used to set preclinical 

benchmarks for targets with expression levels quantified by immunohistochemistry or even 

personalizing treatment with individualized dosing(40). Therefore, this ABM has the 

capability of addressing the complexities in ADC therapy including the impact of carrier 

doses and dosing regiments on the heterogeneous tissue delivery and single-cell responses 

demonstrated here.

CONCLUSION

We developed a hybrid ABM to capture heterogenous drug delivery of ADCs and individual 

cellular responses and to predict tumor growth curves and overall efficacy. The ABM 

enables detailed depictions of heterogeneous vascularization and ADC delivery, cancer cell 

death, tumor growth, and treatment efficacy following different drug regimens. The model 

results demonstrate that a carrier dose of unconjugated antibody can improve efficacy if the 

number of cells reached by the ADC outweighs the reduction in targeted cell killing, which 

depends on expression, payload potency, and dosing. This will result in the largest number 

of cells receiving a lethal dose. Likewise, fractionated dosing can improve efficacy if 

increased tolerability allows higher ADC dosing to overcome the loss in tissue penetration 

from a lower Cmax. By incorporating multiple competing effects within the tumor 

microenvironment, the simulations can aid in the development of new drugs and targeted 

therapies.
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Fig. 1. 
Model schematic. a Plasma dynamics describe the intact ADC concentration in the blood as 

a result of local and systemic clearance, including deconjugation. b ADCs in the blood 

extravasate from the blood vessel, diffuse through the interstitial tissue, bind to HER2 

antigens, and are internalized. After ADC degradation in lysosomes, cytotoxins are released 

to kill the cell. c Individual cells and blood vessels are placed on a 2D lattice, forming the 

tumor environment
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Fig. 2. 
Comparison between experimental and simulated drug distributions in tumor tissue. a Tumor 

sections from mice bearing NCI-N87 xenograft tumors dosed with 3.6 mg/kg of 

AlexaFluor680 labeled T-DM1 and different ratios of trastuzumab:T-DM1 were imaged after 

24 hours using the same settings and then set to the same window level for different carrier 

dose (trastuzumab) concentrations. T-DM1 intensity decreases as it is “diluted” with 

trastuzumab at higher ratios and spreads out to reach more cells. b Simulation results 

showing bound T-DM1. c The same tumor sections were stained with anti-Fc labeled 

antibody and window-leveled the same to show total drug penetration in tumor. d Simulation 

results show total antibody (T-DM1 + trastuzumab) penetration into the tumor. For all figure 

portions, scale bar = 200 μm
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Fig. 3. 
Model calibration of tumor growth rate and cell killing using average and variability of NCI-

N87 xenograft tumors from Cilliers et al. (5). a The average experimental data and SD are 

plotted with the average and SD of simulated tumor sizes from 100 computational runs for 

the control group. b The range of growth rates for the simulations (shaded area) is shown 

together with individual tumor curves in the absence of drug treatment. c The average 

experimental data and SD are plotted with the average and SD of calibrated tumor sizes for a 

single dose. To calibrate cell killing in vivo, the growth curves for tumors treated with 3.6 

mg/kg of T-DM1 were used to calibrate the probability of individual cell death as a function 

of intracellular payload concentration (Eq. 15). d The range of growth rates for the 

simulation (shaded area) is shown together with individual experiment curves for a treatment 

with a single dose
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Fig. 4. 
Coadministration of T-DM1 with trastuzumab. Using the calibrated tumor growth and cell 

killing probabilities determined in Fig. 3, the model was used to predict the tumor growth 

curves for mice treated with 3.6 mg/kg T-DM1 with trastuzumab to T-DM1 ratios of 1:1, 

3:1, and 8:1. These independently generated simulations were then compared with the 

experimental data from Cilliers et al. (5). a–c Mean and SD of the experimental and 

simulation data. d–f Simulation ranges (shaded area) and the experimental tumor volume 

curves (black lines)
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Fig. 5. 
Influence of carrier dose on tumor efficacy. a-d The simulated efficacy of coadministration 

of trastuzumab with T-DM1 at 21, 30, 40, and 50 days, respectively, is shown for 3.6 mg/kg 

T-DM1 and trastuzumab to T-DM1 ratios from 0:1 to 24:1. Efficacy drops at higher 

concentrations of trastuzumab due to tumor saturation and/or reducing the number of 

payloads per cell below the threshold needed for cell death. N = 100 simulations for each 

bar. e Density plot for cells in the simulation (live or dead) receiving particular intracellular 

payload concentrations was calculated at 48 hours. Here, the area under the curve of the 

density function represents the probability of getting an intracellular payload concentration 

value between a range of payload concentration values. The number of cells that receive no 

drug decreases (arrow on the left) with an increasing carrier dose increase evidencing an 

improvement in distribution. However, the payload concentration per cell decreases with an 

increasing carrier dose (arrow on the right)
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Fig.6. 
Interplay of dose and receptor density. A Bound concentration of T-DM1with 

coadministration with trastuzumab (ratios trastuzumab to T-DM1 from 0:1 to 12:1) for 

tumors with different receptor densities. The Thiele modulus (calculated using total antibody 

dose) shows saturation when the value is less than ~ 0.2. b Average tumor volume at 30 days 

for different treatment regimens and tumors with different average receptor densities. The 

optimal carrier dose is dependent on receptor expression with higher trastuzumab doses 

needed for higher receptor expression. With the potency of this ADC, no efficacy is seen 

below 50,000 HER2/cell (Fig S4)
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Fig. 7. 
Simulations of fractionated dosing with and without a carrier dose for NCI-N87 tumor 

xenografts. a Plasma concentration of T-DM1 for a single 3.6 mg/kg dose or 3 fractionated 

doses at 1.2 and 2.4 mg/kg. b Single T-DM1 versus total antibody concentration clearance 

for single and fractionated dosing at 3:1. c–f Simulated tumor volumes for the 

coadministration of trastuzumab to T-DM1 at 0:1, 1:1, 3:1, and 8:1 ratios are shown, 

respectively. Each plot compares a single bolus dose of 3.6 mg/kg to 3 weekly fractionated 

doses at 1.2 and 2.4 mg/kg T- DM1. In general, fractionation lowers efficacy due to reduced 

tissue penetration. This is exacerbated with high carrier doses (e.g., 8:1) because the lower 

payload delivery is significantly diluted below a threshold needed for cell death. This can be 

compensated, however, by increased tolerability if a reduction in toxicity allows larger ADC 

doses to be administered (e.g., 2.4 mg/kg weekly versus 3.6 mg/kg every 3 weeks)
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Table I:

Drug Dynamics Variables

Variables Unit Description

TDM1 nM Free T-DM1

HER2 nM Free HER2

HER2e nM HER2 in endosome

B nM T-DM1 bound to HER2

Be nM T-DM1 bound to HER2 in endosome

DM1 nM DM1

Tras nM Trastuzumab
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Table II:

Model Parameters

Parameter Value Unit Description Reference

CLTT 1.74 × 10−9 L/s Total antibody clearance Estimated (13)

CL2 2.31 × 10−8 L/s Antibody clearance for compartment 2 Estimated (13)

CLDEC 1.74 × 10−9 L/s Deconjugation rate Estimated (12)

V1 1.2 × 10−3 L Volume central compartment Estimated (13)

V2 1.5 × 10−3 L Volume peripheral compartment Estimated (13)

kon 7.1 × 105 M−1s−1 T-DM1 binding rate constant (18)

Kd 0.5 nM T-DM1 dissociation constant (18)

koff 3.5 × 10−4 s−1 T-DM1 dissociation rate constant (18)

ke 3.3 × 10−5 s−1 Internalization rate constant (19)

kdeg 8 × 10−6 s−1 T-DM1 lysosomal degradation rate constant (20)

kloss 3.94 × 10−5 s−1 Cytotoxin loss rate constant Estimated (21)

DAR 3.5 - DM1 to antibody ratio (22)

Rs 2.75 × 10−11 M/s Target synthesis (14)

HER2o
* 5 × 104-2 × 106 receptors/cell Total targets per cell Varied

ε 0.24 - Intracellular void fraction (23)

D 1 × 10−11 m2/s Diffusivity (14)

P 3 × 10−9 m /s Vascular permeability (24)

Pmax 0.014 - Maximum probability for cell killing Calibrated

Km 800 nM Michaelis-Menten constant Calibrated

td (in vivo) 5–17 days In vivo doubling time Calibrated

td (in vitro) 1–2.5 days In vitro doubling time Estimated

*
1 million receptors per cell corresponds to 833nM receptors where each cell occupies about 2× 10−12 L.
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