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Segregation dynamics 
with reinforcement learning 
and agent based modeling
Egemen Sert1,2, Yaneer Bar‑Yam1 & Alfredo J. Morales  1,3*

Societies are complex. Properties of social systems can be explained by the interplay and weaving 
of individual actions. Rewards are key to understand people’s choices and decisions. For instance, 
individual preferences of where to live may lead to the emergence of social segregation. In this paper, 
we combine Reinforcement Learning (RL) with Agent Based Modeling (ABM) in order to address the 
self-organizing dynamics of social segregation and explore the space of possibilities that emerge 
from considering different types of rewards. Our model promotes the creation of interdependencies 
and interactions among multiple agents of two different kinds that segregate from each other. For 
this purpose, agents use Deep Q-Networks to make decisions inspired on the rules of the Schelling 
Segregation model and rewards for interactions. Despite the segregation reward, our experiments 
show that spatial integration can be achieved by establishing interdependencies among agents of 
different kinds. They also reveal that segregated areas are more probable to host older people than 
diverse areas, which attract younger ones. Through this work, we show that the combination of RL 
and ABM can create an artificial environment for policy makers to observe potential and existing 
behaviors associated to rules of interactions and rewards.

The recent availability of large datasets collected from various resources, such as digital transactions, location 
data and government census, is transforming the ways we study and understand social systems1. Researchers 
and policy makers are able to observe and model social interactions and dynamics in great detail, including 
the structure of friendship networks2, the behavior of cities3, politically polarized societies4, or the spread of 
information on social media5. These studies show the behaviors present in the data but do not explore the space 
of possibilities that human dynamics may evolve to. Robust policies should consider mechanisms to respond to 
every type of events6, including those that are very rare7. Therefore it is crucial to develop simulation environ-
ments such that potentially unobserved social dynamics can be assessed empirically.

Agent Based Modeling (ABM) is a generative approach to study natural phenomena based on the interac-
tion of individuals8 in social, physical and biological systems9. These models show how different types of indi-
vidual behavior give rise to emergent macroscopic regularities10,11 with forecasting capabilities12. Applications to 
social systems include the emergence of wealth distributions13, new political actors14, multipolarity in interstate 
systems15, and cultural differentiation16, among other applications9. ABM allows testing core sociological theories 
against simulations13 with emphasis on heterogeneous, autonomous actors with bounded, spatial information17. 
They provide a framework to understand complex behaviors like those of economic systems18,19, as well as 
individual20 and organizational21,22 decision making processes. These models have been applied for designing 
distributed systems such as traffic control23 and energy management24. In biological systems, ABM has shown a 
remarkable power to explain the spread of diseases25, interactions between human body systems26, the behavior 
of ecosystems27, and possible links between biological traits and social behaviors28.

The Schelling segregation model shows that individual preferences to live away from those that are different 
may sort social systems in the large scale and generate patterns of social segregation without the need of central-
ized enforcement10. Studies using data show that the model yields segregation over time, regardless of agents’ 
preferences to live in diverse neighborhoods29 or confinement in smaller scales30. While integrated societies 
may be unstable in the long run31, another study shows that mixed-race households are more likely to live in 
integrated neighborhoods than in homogeneous concentrations of either of their parental races or ethnicities32. 
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The model has inspired the study of other disciplines that involve the emergence of clusters such as physical 
systems33,34 and cultural groups35. While these studies provide deep insight on the underpinning processes of 
segregation and cases of integration, the inability to experiment with different types of rewards makes it difficult 
to explore the space of possible behaviors.

Reinforcement Learning (RL) is a simulation method where agents become intelligent and create new, optimal 
behaviors based on a previously defined structure of rewards and the state of their environment. This method is 
referred as Multi-Agent Reinforcement Learning (MARL) if multiple agents are employed. Recently, the com-
bination of RL with Deep Learning architectures achieve human level performance in complex tasks, including 
video gaming36, motion in harsh environments37, and effective communication networks without assumptions38. 
Moreover, it has been recently applied to study societal issues39 such as the emergence of cooperation40,41, the 
Prisoner’s Dilemma42 and payoff matrices in equilibrium43.

In this paper we extend the standard ABM of social segregation using MARL in order to explore the space of 
possible behaviors as we modify the structure of rewards and promote the interaction among agents of different 
kinds. The idea is to observe the behavior of agents that want to segregate from each other when interactions 
across populations are promoted. We achieve the segregation dynamics by adapting the rules from the Schell-
ing model10 in the context of RL. The creation of interdependencies among agents of different kinds is inspired 
by the dynamics of population models where agents need to interact with each other in order to extend their 
lifetime44. Our experiments show that spatial segregation diminishes as more interdependencies among agents of 
different kinds are added in the same fashion as if agents are tolerant to one another. Moreover, our results shed 
light on previously unknown behaviors regarding segregation and the age of individuals which we confirmed 
using Census data. These methods can be extended to study other type of social phenomena and inform policy 
makers on possible actions.

The organization of the paper is as follows: In “Methods” we explain the experimental setup including a 
description of the agents’ behaviors, the structure of rewards and the architecture of the computational frame-
work. “Results” illustrates the experiment outcomes. In “Discussion” we conclude and discuss our results. Future 
improvements and further methodological details are presented in the Supplement.

Methods
We design a model in which two types of agents are simultaneously promoted to both segregate from one 
another and interact with those of the opposite kind. These behaviors are promoted by providing agents with a 
set of rewards based on the outcome of their actions. Agents learn over time which actions they should take in 
order to maximize their rewards. The segregation reward is inspired in the Schelling segregation model where 
agents decide whether to move further from those that are different from them. Another reward promotes their 
approach and interaction. By varying the reward of interactions we are able to explore different ways that affect 
the process of segregation. We achieve the learning process using Deep Q-networks36. In this section we explain 
the state space over which agents are trained and deployed, as well as the set of rewards and rules that determine 
agents’ behavior.

The grid world.  Our experiments are based on two types of agents, A and B, who live in a 50 × 50 grid 
where they can move around and interact with other agents. Figure 1 (top panel) shows an schematic view of the 
grid world and the agents. Distinct colors (red and blue) indicate the agents’ type. The grid has periodic bound-
ary conditions, meaning that agents that go out one side come back in on the other. Agents observe an 11 × 11 
window of the grid centered around their current location. The green square in Fig. 1 (top panel) represents the 
observation window of the agent illustrated in green. Agents will evaluate the number of other agents per kind 
in their observation window in order to decide whether to move and in which direction.

The state of an agent is based on what it sees in its observation window. By taking an action, the agent changes 
its current state to a new one. Agents evaluate the current state of the observation window and decide which 
action yields the best rewards. There are five possible actions: to stay still or to move left, right, up or down. This 
is different from the original Schelling model where agents can move to any location of the grid. All agents take 
one action at each iteration. The sequence of agents who take actions is chosen randomly.

Agents live for a minimum number of 100 iterations. After an agent dies, a new agent is born in a random 
location. Agents can extend their lifespan by interacting with agents of the opposite kind. An interaction occurs 
when an agent moves to a location currently occupied by another agent of the opposite kind. When that hap-
pens, we chose a winner and a loser of the interaction. The winner is the one who moves towards the occupied 
cell and the loser is the one who was at that location. The winner receives a positive reward and extension of 
its lifespan, and the looser ceases to exist. While this interaction is hostile, it promotes the encounter between 
agents of different kind. A possible interpretation of the hostile interaction is the emigration of the losing agent 
out of the neighborhood. As opposed to other implementations of the Schelling model, we create an environ-
ment with a low density of agents. It is possible that by having too many agents, the number of possible states 
that agents can learn from decreases.

States.  States are defined as all the possibilities of an agent observation window. An agent’s observation 
window consists in a nxn patch of the environment where n = 2 ∗ r + 1 and r denotes the radius of the field of 
view. Each location can take the following values {1, 0,−1} , where 1 represents agents of similar kind, 0 denotes 
free locations and -1 represent foes. Observation windows are respectively centered around each agent, whose 
own location contains a value of 1. We can represent the state space as a string of n2 ternary digits. The agent’s 
own digit is known to be 1. Therefore, the number of possible strings is 3n2−1 . Consequently, in our problem, 
there are S(n) = 3n

2−1 states available for agents to act upon, where S(n) denotes the total number of states. The 
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algorithmic complexity grows exponentially with n in the order of O(3n2) . In our experiments r = 5 and n = 11 , 
yielding more than 1057 states. On top of this, if each agent can have M different age values, the state space is in 
the order of O(M 3n

2
) . Tabular methods (such as Q-Learning) cannot fit this state space into memory. Therefore, 

these approaches are not scalable as n grows. Function approximation based methods perform better in terms of 
scalability. Deep Q-networks have a neural network as a function approximator whose domain is the state space 
and range is the action space, which is more appropriate for this problem. More details about the state space are 
given in the Supplement (Sect. S3).

Architecture.  Deep Q-networks (DQN)36 evaluate actions based on maximizing rewards. Instead of mapping 
all possible states, we provide agents with a set of rewards that they can use to explore the space of possible states 
and actions. We create two independent neural networks–one for each type of agent (A and B). An illustration of 
one of the networks is shown in Fig. 1 (bottom panel). Agents of type A decide from one network and agents of 
type B decide from another network. The networks are trained as their respective agents take actions and provide 
them with information. We created two networks in order to have a competitive multi-agent reinforcement learn-
ing environment. Otherwise, the environment complexity will be limited by the complexity of a single network. 
By adding a new network we increase the complexity of the model with the new network and the interaction of 
both networks.

Mathematically, agents of type A are represented as −1 , B as +1 , and empty spaces as 0 on the grid. Each 
agent’s field of view is normalized by its type such that friends are represented as +1 and foes as −1 . Hence every 
agent’s spatial observation at time t is O(i)

spatial,t ∈ P11x11 | P ∈ {−1, 0, 1} . Moreover, every agent has the informa-

tion of its remaining normalized life time, represented as O(i)
age,t ∈ R . Full observation of the agent i at time t is 

oit ∈ O
(i)
t = O

(i)
spatial,t ∪ O

(i)
age,t . Let φA and φB denote the Q-Networks of type A and B agents. Then the networks’ 

goal is to satisfy Eqs. 1 and 2.

where NX denotes the number of agents of type X, γ denotes the discount factor, rt denotes the reward at time t 
and QφX (.) denotes the Q-Network of agents of type X.

Each network is initialized with the same parameters. In order to homogenize the networks’ inputs, we 
normalize the observation windows by the agents’ own kind, such that positive and negative values respectively 
represent equal and opposite kind for each agent. Actions are taken by following ǫ-Greedy exploration strategy. 
This strategy is used for improving the learning process of the state space, especially during the first stages. If 
we do not use it, the learning process may not converge, because some critical states may not be explored. It 
consists in taking a random action instead of the recommended one by the neural network with a probability ǫ 
that decays exponentially over time. In order to avoid over-fitting of parameters and approximate the rewards 
appropriately, we need to stabilize the learning process. We use the algorithm Adam optimizer45 to efficiently 
update the network parameters and minimize approximation errors at each iteration. Experience Replay46 is 
applied for mitigating time correlation among the inputs of the neural network. Otherwise, DQN may overfit 
the current state and its variants. Double Q-Learning47 is used such that very noisy learning signal would not 
diverge the learning process. If Double Q-Learning is not used, an outlier batch of samples might skew the 
parameters away from minima.

We run one episode per experiment. Each episode is comprised of 5,000 iterations. Each experiment is 
repeated 10 times for statistical analysis. Networks’ details are given in Fig. 1 (bottom) and training details are 
given in Table 1. As a reference, in terms of performance, one iteration takes roughly 0.38 seconds on a 3.1 GHz 
Intel Core i5 processor and 8 GB 2133MHz LPDDR3 memory.

Rewards.  The model rewards, R, are scalar values that we respectively provide to agents at each interac-
tion after evaluating their current state and action. This scalar results from the sum of a set of specific rewards: 
R = SR + IR + VR + DR + OR + TR , that we explain in this section. The rewards are as follow:

•	 Segregation reward (SR). This reward promotes agents’ segregation, in the form: SR = s − αd , where s is 
the number of agents of similar kind within the agent’s observation window, d is the number of agents of 
different kind within the observation window and α ∈ [0, 1] is a parameter we use to control the intolerance 
of agents to be next to those that are different from them. The segregation parameter α is analogous to the 
threshold used in the original Schelling model. In the Supplement (Sect. S2) we present the mathematical 
relationship of this reward with the intolerance threshold from the Schelling model.

•	 Interdependence reward (IR). This reward promotes interactions among agents of different kind. When an 
agent meets another agent of different kind, we choose a winner and a loser of the interaction. The winner 
is the one who moves to the cell occupied by the other agent. The winner receives a positive reward and an 
extension of its lifetime by one iteration. The loser ceases to exist. We use the IR as a parameter we can vary 
IR ∈ [0, 100] in order to promote interactions among agents of different kind.

(1)φ∗
A = argmax

φA
E

[

T
∑

t=0
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∑
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γ t r
(i)
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t
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Table 1.   Training parameters of the Deep Q-Networks used during the experiments.

Parameter Value

Number of episodes 1

Batch size 256

Number of iterations 5,000

Number of training steps 60,000

Experience memory length 1,000,000

Discount factor ( γ) 0.98

Learning rate 0.001

Momentum 0.999

Double network copy parameter ( τ) 0.05

Initial exploration rate 0.999

Final exploration rate 0

Exploration decay (per agent action) 100,000

Figure 1.   Schematic of the model simulation and network architecture. Top panel: Grid world of experiments. 
The grid size is 50 × 50 locations. Red and blue squares denote the two types of agents respectively. White cells 
represents empty regions. Each type of agent has its own Deep Q-Network. Every agent has a field of view of 11 
× 11 locations. Green border denotes the field of view of the agent illustrated in green. Agents can move across 
empty spaces. Bottom panel: Example of network structure. Two models are created for φA and φB respectively. 
Each network receives an input of 11 × 11 locations, runs it through five convolution steps and concatenates the 
resulting activations with the agent’s remaining age normalized by the maximum initial age. The feature vector is 
mapped over the action space using a fully connected layer. The action with the maximum Q-value is taken for 
the agent.
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Figure 2.   Agents collective behavior for multiple values of segregation reward α (rows) at multiple times 
(columns). Rows represent outcomes associated to different values of segregation reward ( α ). Columns show 
the state of the system at different points of the simulation. In Panel (a) colors indicate the concentration of both 
types of agents (blue and red). White indicates the average pattern. In Panel (b) color indicates the age of agents 
irrespective of their type. Scales in figure.
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•	 Vigilance reward (VR). This reward promotes agents to stay alive by providing VR = 0.1 reward for every 
time step they survive and VR = 0 when they die. We include this reward such that agents learn during the 
early stages that they need to stay alive in order to collect more rewards. Larger values of VR may override 
other rewards leading agents to just stay alive without exploring other behaviors.

•	 Death reward (DR). We punish agents who die or lose interactions against agents of the opposite kind. Agents 
receive DR = −1 reward when they die or DR = 0 when they stay alive. Agents must learn that dying is bad. 
Otherwise dying would not have an effect on the total rewards collected by agents and it would be more dif-
ficult for them to avoid risky situations and reach older ages.

•	 Occlusion reward (OR). This reward punishes movements towards occupied cells between agents of the 
same kind. If an agent tries to move towards an area occupied by an agent of its own kind, the agent receives 
OC = −1 reward. If the agent moves towards a free cell, it receives OC = 0 . In order for agents to understand 
that they cannot try to move to an occupied cell but to move towards free ones, we need to explicitly reward 
negatively those actions. Otherwise it could be the case that some agents try to move to occupy cells and 
waste an action that could have been used to explore the remaining space.

•	 Stillness reward (TR). This reward promotes the exploration of space by punishing staying still. Agents who 
choose to stay still receive TR = −1 reward. Agents who chose to move receive TR = 0 . If we do not punish 
staying still, some agents may chose to do so and the space would not be sufficiently explored. Staying still 
could be a local minimum in the function approximated by the neural network and agents could believe that 
it is the best action.

Results
Experiments are conducted by setting up different values of rewards and observing the emergent collective 
behavior associated with each experiment. During simulations, agents explore the space of possible behaviors and 
inform which behaviors are promoted under certain rewards and environmental rules. As a result, we create an 
artificial environment for testing hypotheses and obtaining information through simulations hard to anticipate 
given the complexity of the space of possibilities.

Modeling segregation.  We reward agents to segregate from those of different kind using a parameter α , 
which represents the intolerance to be next to those that are different (see “Methods”). The segregation param-
eter ranges between α = 0 in the case of maximum tolerance to the other population and α = 1 in the case 
of maximum intolerance. Figure 2 shows the emergent collective behavior for multiple values of α (rows) at 
multiple times of the simulation (columns). Rows represent outcomes associated to different values of the seg-
regation parameter ( α ). Columns show the state of the system at different points of the simulation. Experiments 
are initialized with equal initial conditions and random seed. The heat maps are obtained by averaging over 
the last 1,000 iterations. We share videos of segregation experiments at the following links: ( α = 0 ) https​://
youtu​.be/1qfbg​4NLp8​w, ( α = 0.25 ) https​://youtu​.be/8nqll​-jh9Ds​, ( α = 0.50 ) https​://youtu​.be/LXAKN​3GrzE​o, 
( α = 0.75 ) https​://youtu​.be/doNt7​UJBqb​g, ( α = 1.00 ) https​://youtu​.be/YP0FG​Uo4tH​4.

In Panel (a) we show the average type occupation per location. Red regions denote biased occupation of type 
A agents and blue regions denote biased occupation of type B agents. White areas indicate the average pattern. 
Lower values of α yield mostly white spaces, indicating a mixed population. As we increase α the segregation of 
agents begins. With high levels of α the segregation is pronounced and blue and red segregated clusters emerge. 
This happens even within the first 1,000 iteration where the model could still be still learning. However, similarly 
to the original Schelling segregation model, segregation still occurs for smaller values of α in the long run (see 
α = 0.5).

The white regions for lower values of α indicate mixing, while the white regions of higher values of alpha are 
characterized for being emptier. In Panel (b) we color locations by the age of agents irrespective of their type. 
The agent age increases as color shades from blue to red. In the bottom row ( α = 0 ) the mixing of types and ages 
is high with respect to α = 1 . As we increase the reward for segregation, clusters of specific types of agents arise 
and their age distribution is characterized for being heterogeneous. The white inter-cluster regions show a very 

Figure 3.   Segregation dynamics for multiple values of segregation reward ( α ). Colors correspond to the 
results for multiple values of segregation reward ( α ), ranging from yellow (low) to black (high). The curves are 
obtained by averaging 50 iterations over 10 experiment realizations. Shades denote the standard deviation across 
experiments.

https://youtu.be/1qfbg4NLp8w
https://youtu.be/1qfbg4NLp8w
https://youtu.be/8nqll-jh9Ds
https://youtu.be/LXAKN3GrzEo
https://youtu.be/doNt7UJBqbg
https://youtu.be/YP0FGUo4tH4
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Figure 4.   Agents collective behavior for multiple values of interdependence reward (IR) at multiple times 
(columns) for maximum segregation parameter ( α = 1 ). Rows represent outcomes associated to different values 
of interdependence reward (IR). Columns show the state of the system at different points of the simulation. In 
Panel (a) colors indicate the concentration of both types of agents (blue and red). White indicates the average 
pattern. In Panel (b) color indicates the age of agents irrespective of their type. Scales in figure.
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low average age. The segregated clusters host older agents inside and younger ones in the periphery (see α = 1 ). 
This shows that with higher rewards for segregation, the population has very little interaction across type or even 
clusters of their same kind. Most agents remain mostly near their cluster.

We measure segregation among agents using multiscale entropy. We slide windows of three different sizes (6 
× 6, 12 × 12 and 25 × 25) over the whole grid. For each window, we count the number agents per type, normalize 
their counts to probabilities and calculate the entropy of the distributions. At each iteration, we calculate the 
average entropy, 〈e〉 , across all windows and scales. The resulting segregation has the form 1− �e� . See Sect. S4 for 
more details on the multiscale entropy calculation. In Fig. 3 we present the dynamics of segregation for multiple 
values of α (color). High values of α yield segregated spaces very fast. Intermediate values of α get segregated 
but take longer to reach the same level of segregation. Lower values of α remain mixed for a much longer time. 
Unlike the classic Schelling model, RL agents are constantly rewarded for their actions. Therefore, instead of 
reaching an equilibrium where everyone is happy, they continue to move and learn from their environment. This 
reinforcing dynamics can lead to segregation for smaller values of α at a very slow pace.

Modeling interdependencies.  We provide rewards to create interactions and interdependencies among 
both populations. For this purpose, we combine the segregation dynamics with the interdependence reward 
(IR). The interdependence reward is given when agents of different kinds interact with one another (see “Meth-
ods” for more details). Interactions occur when an agent of the opposite kind attempts to move to an occupied 
location. The one who moves towards the occupied location gets a positive reward and life-extension. The one 
who was in the occupied location dies and gets a negative death reward.

Although hostile, this interaction may reward positively agents. Therefore, we use it to promote interactions 
and create interdependencies among both populations.

Interdependence rewards diminish spatial segregation among different types. In Fig. 4a we show the collective 
behavior of the population after setting the maximum segregation parameter ( α = 1 ) and varying the values of 
interdependence reward. We use heat maps proportional to the probability of agents location during simulations 
according to their type (in a similar fashion as in Fig. 2). Experiments are initialized with equal initial condi-
tions and random seed. The heat maps are obtained by averaging over the last 1,000 iterations and visualized 
over one trial of the experiments. Red and blue regions show biased occupation of agents A and B respectively. 
White areas indicate the average pattern. Without rewarding for interdependencies (IR = 0), the dynamics of 
segregation quickly result in patches of segregated groups (top row). As interdependence rewards increase, the 
probability of locations being occupied by agents of type A or B becomes uniform and plots become white (bot-
tom right panels). By creating interdependencies among them, agents increase their interactions and reduce the 
spatial segregation. Videos of interdependence experiments can be found at the following links: (IR: 0) https​://
youtu​.be/YP0FG​Uo4tH​4, (IR: 25) https​://youtu​.be/2dxP-aJdM4​A, (IR: 50) https​://youtu​.be/cO4Jh​75qYi​Q, (IR: 
75) https​://youtu​.be/EuWE1​ydhdH​o.

We explore multiple combinations of the segregation parameter α and the interdependence reward (IR). The 
resulting segregation of those simulations is visualized in Fig. 5. The x-axis represents the segregation parameter 
α and the y-axis represents the interdependence reward (IR). The figure shows a contour plot of the expected 
amount of segregation in the system during the last 1,000 iterations. We calculate segregation using entropy as 
in Fig. 3. Red regions indicate high segregation and blue regions show lower segregation. Segregation is high 
(red) when promoted (high α ) and interdependencies are not rewarded. As interdependencies increase, the 
agents mix and the spatial segregation is significantly reduced (blue), even for high values of α . Therefore, high 

Figure 5.   Segregation values for multiple values of segregation parameter ( α ) and interdependence reward (IR). 
Colors correspond to amount of segregation measured in the last 1,000 iterations of the simulation. Scale in 
figure.

https://youtu.be/YP0FGUo4tH4
https://youtu.be/YP0FGUo4tH4
https://youtu.be/2dxP-aJdM4A
https://youtu.be/cO4Jh75qYiQ
https://youtu.be/EuWE1ydhdHo
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levels of interdependencies seem to counter the rewards for segregation. The resulting mixing for high levels of 
interdependencies are comparable to very low levels of α.

Age dynamics.  Age is one of the parameters we input the DQN with in order to recommend actions. We 
analyze the effects of age in the both the emergent behaviors of agents, as well as biases in the actions they take.

We first studied the probability distributions of age groups conditional on the segregation of their observa-
tion windows during the last 1,000 iterations. For this purpose, we split the population in ten age groups and 
measure the relative number of agents of similar kind within their observation windows. We split this measure 
of segregation in 5 bins and count the number of agents at each age group and segregation bin. In order to 
avoid imbalanced samples, we first normalize by the number of agents per age group and later by the segrega-
tion bin. The results are presented in Fig. 6 for multiple values of IR (and setting α = 1 ). Red squares indicate a 
higher probability of finding a given age group at a given level of segregation, while blue squares indicate lower 
probabilities. The figure shows that older agents have significantly more segregated observation windows than 
younger agents who live in more diverse areas. This effect is naturally more pronounced for lower values of IR and 
less pronounced as we increase IR. However, the observation that older agents prefer to be segregated remains 

Figure 6.   Probability distribution of age groups conditional on segregation of observation windows. Each 
panel shows the probabilities of finding agents at each age group (columns) at different levels of segregation 
in their observation windows (rows) during the last 1,000 iterations. There is one panel per each value of 
interdependence reward (IR). The segregation parameter α = 1 for all panels. The plot shows the average of 10 
experiment replicas. Scale in figure.
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consistent. In the Supplement, we present analogous plots for multiple values of the segregation parameter α 
and population types (see Sect. S5).

We also study biases in the actions taken by agents according to their age group. We analyze the probability 
of age groups conditional on the actions taken during the last 1,000 iterations similarly to Fig. 6. The results 
are presented in Fig. 7 for multiple values or IR (and setting α = 1 ). Red squares indicate higher probabilities 
of agents taking different actions according to their age group and blue squares represent lower densities. The 
figure shows that older agents tend to stay more still than younger agents who seem to explore the space further. 
It also shows that certain movements are biased towards certain age groups and that stay probabilities become 
smoother as we increase IR. Similar plots as a function of α and population types are presented in the Supplement 
(see Sect. S6). The behavior shown in Fig. 7 is consistent across both types of agents (see Fig. S8).

People are older in segregated areas. The model shows that older agents are more segregated than younger 
ones. We believe that in our simulations older agents become more segregated because the expected rewards for 
other social interactions are lower than staying safe. This behavior has been verified with human behavior using 
Census data. We analyzed the relationship between age and segregation using Census data across the whole US 
(see Sect. S5). A segregation metric based on racial entropy correlated positively with median age by census tract 
(r = 0.4). Our simulation shed light on an observation that is not trivial about current societies.

Figure 7.   Probability distribution of age groups conditional on actions. Each panel shows the probabilities 
of finding agents at each age group (columns) for each of the possible actions (rows) during the last 1,000 
iterations. There is one panel per each value of interdependence reward (IR). The segregation parameter α = 1 
for all panels. The plot shows the average of 10 experiment replicas. Scale in figure.
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Discussion
We created an artificial environment for testing rules of interactions and rewards by observing the behaviors 
that emerge when applied to multi-agent populations. Rewards can generate surprising behaviors because of the 
complexity of social systems. As problems become complex, evolutionary computing is necessary to achieve sus-
tainable solutions. We combine agent based modeling (ABM) with artificial intelligence (RL) in order to explore 
the space of solutions associated to promoted rewards. RL provides ABM the information processing capabilities 
that enables the exploration of strategies that satisfy the conditions imposed by the interaction rules. In turn, 
ABM provide RL with access to models of collective behavior that achieve emergence and complexity. While 
ABMs provide access to the complexity of the problem space, RL facilitates the exploration of the solution space. 
Our methodology opens a new avenue for policy makers to design and test incentives in artificial environments.

Data availability
The source code of the model implementation is available at: https​://githu​b.com/egeme​nsert​/segre​gatio​n. See 
Sect. S7 for more detailed explanation.
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