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Abstract

DNA mismatch repair (MMR) increases replication fidelity and genome stability by correcting 

DNA polymerase errors that remain after replication. Defects in MMR result in the accumulation 

of mutations and lead to human tumor development. Germline mutations in MMR cause the 

hereditary cancer syndrome, Lynch syndrome. After replication, DNA is reorganized into its 

chromatin structure and wrapped around histone octamers. DNA MMR is thought to be less 

efficient in recognizing and repairing mispairs packaged in chromatin, in which case MMR must 

either compete for access to naked DNA before histone deposition or actively move nucleosomes 

to access the mispair. This article reviews studies into the mechanistic and physical interactions 

between MMR and various chromatin-associated factors, including the histone deposition complex 

CAF1. Recent Xenopus and Saccharomyces cerevisiae studies describe a physical interaction 

between Msh2 and chromatin-remodeling ATPase Fun30/SMARCAD1, with potential 

mechanistic roles for SMARCAD1 in moving histones for both mispair access and excision tract 

elongation. The RSC complex, another histone remodeling complex, also potentially influences 

excision tract length. Deletion mutations of RSC2 point to mechanistic interactions with the MMR 

pathways. Together, these studies paint a picture of complex interactions between MMR and the 

chromatin environment that will require numerous additional genetic, biochemical, and cell 

biology experiments to fully understand. Understanding how these pathways interconnect is 

essential in fully understanding eukaryotic MMR and has numerous implications in human tumor 

formation and treatment.
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1. DNA Mismatch Repair and Cancer

DNA mismatch repair (MMR) is a postreplicative repair pathway responsible for removing 

base-base mispairs and small insertions or deletions not corrected by the proofreading 
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abilities of the replicative DNA polymerases (1, 2). The MMR process in eukaryotic 

organisms includes recognition of the mispair, followed by DNA endonuclease nicking of 

the daughter strand, excision of the daughter strand past the mispaired base pair and gap-

filling by a DNA polymerase (Figure 1) (3, 4). In model organisms and mammalian cell 

culture studies, mutations in genes disrupting any of these steps leads to an increase in 

mutation accumulation. Defects in MMR are now known to underlie the development and 

progression of human tumors, presumably due to the high level of accumulating mutations 

in MMR deficient cells (5–8).

Lynch syndrome is a hereditary cancer predisposition syndrome that increases the risks of 

colon, endometrial, ovarian, stomach, and other cancers (9–12). An autosomal dominant 

pattern of gastric and colon cancer development was originally described in the early 1900s 

in a large extended family. Later, the discovery of additional families by Henry Lynch and 

others eventually led to the identification of what was then termed hereditary nonpolyposis 

colon cancer (hnpcc) and later renamed Lynch syndrome (13). In 1993 it was realized that 

colon cancers from Lynch syndrome families harbored altered lengths in sequences that 

contained simple repetitive “microsatellite” sequences (13). Microsatellite instability (MSI) 

is a hallmark of MMR defects (14). Later the same year, Richard Kolodner cloned human 

Msh2 and linked Msh2 to Lynch Syndrome (5), followed by Bert Vogelstein’s group finding 

additional Msh2 mutations in Lynch Syndrome families (15). Other MMR genes, notably 

Mlh1, Pms2, and Msh6 have since been shown to be mutated in Lynch Syndrome families 

(16, 17).

Microsatellite instability and somatic alterations in MMR genes are frequently seen in 

sporadic tumors of numerous origins (12, 18). In addition to MMR gene mutations, the 

promoter region of Mlh1 can by hypermethylated, thus silencing Mlh1 and leading to an 

MSI-high tumor phenotype (19). Defects in MMR, in addition to being tumor-promoting, 

also lead to resistance to common chemotherapeutics such as 5-fluorouracil, cisplatin and 

carboplatinum, and temozolomide (20). Although the mechanisms are not well understood, a 

functional MMR pathway is required for the recognition of certain DNA lesions and the 

downstream signaling that ultimately results in apoptotic cell death (21). For example, MMR 

is required for the recognition of O6-methylguanine mispaired with a T that can occur after 

treatment with an alkylating agent,.

Despite the overall resistance to chemotherapy, colon cancers with MSI-high phenotypes 

have a better clinical prognosis in general (22, 23). One theory is that this is due to the more 

favorable immune system engagement with these tumors (24). With the dawn of 

immunotherapy, MMR deficient/MSI-high tumor types seem to respond particularly well to 

anti-PD checkpoint inhibitors in general. This enhanced response is thought to be due to the 

increased generation of neo-antigens due to a high mutational burden (25). As advances 

continue to be made in immunotherapy and chemotherapy and as our ability to sequence 

human tumors increases, continuing to understand the detailed mechanisms of the MMR 

pathway is critical to our future success in treating patients.

Many details of how the MMR pathway works in eukaryotes remain to be discovered. 

Among these are the emerging studies into how MMR functions in a chromatin environment 
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and how chromatin factors interplay with MMR processes. MMR is believed to follow 

behind the progressing replication fork, correcting errors left over by the proofreading 

replicative DNA polymerases, Polδ and Polε. MMR proteins should be closely coordinated 

with the replication machinery in order to accomplish this. However, a comprehensive 

understanding of this interplay between the two pathways is not fully worked out. Among 

the outstanding questions is whether or not MMR occurs primarily in the naked DNA 

environment occurring immediately after replication, or if mispair recognition also occurs in 

an environment containing partially or fully reconstituted nucleosomes. Furthermore, 

whether MMR has to accommodate a variety of chromatin states at different steps of MMR 

or in different chromosomal locations or cellular contexts is still a question, and if so, how 

are these states managed. MMR also has multiple mechanistic steps following the initial 

recognition of the mispair (Figure 1), and it is unclear if different steps in the process require 

different interactions with histones or chromatin-associated factors. A further understanding 

of these interactions among MMR, chromatin-associated factors, and the chromatin 

landscape is paramount to fully understanding the fundamental mechanisms of MMR.

2. DNA mismatch repair and chromatin assembly

MMR is spatially and temporally linked with DNA replication (26, 27). The MMR mispair 

recognition complexes, Msh2-Msh6 and Msh2-Msh3, bind to the mispair and can undergo a 

conformational change in a mispair- and ATP-dependent manner into a sliding-clamp 

formation that allows diffusion along the DNA (28, 29). Msh2-Msh6 physically binds to the 

replicative clamp loader, PCNA, through an unstructured tether on Msh6 (30, 31). This 

interaction can be visualized in vivo as Msh2 co-localizing with labeled replication factories 

(26, 32). Loss of the PCNA-Msh6 interaction results in a 10–15% decrease in MMR in the 

Saccharomyces cerevisiae system as a single mutation; however, in the absence of EXO1 
MMR becomes absolutely dependent on the Msh6-PCNA (26, 33, 34). Together this 

suggests at least a portion of MMR in vivo requires a physical link to replication (26, 33, 

34). MMR has been thought to preferentially take place during S-phase (27) when DNA is 

actively replicating. Experiments in yeast using cell cycle restricted MMR genes showed 

that MMR could only take place within a short window after a region has been replicated 

(27). Artificially restricting Msh6 expression to the G2/M cell cycle phase by fusing Msh6 

with a fragment of CLB2 under the control of the cell cycle-regulated CLB2 cyclin 

promoter, resulted in the loss of ability for MMR to correct errors in a frameshift reversion 

assay that replicates in mid-S-phase. However, the movement of the assay to a late 

replicating region allowed repair by G2/M expressed Msh6, but not S-phase expressed Msh6 

(27).

Also taking place behind the replication fork is the deposition of nucleosomes and the 

packaging of DNA into a higher-order chromatin structure. This process is carried out in part 

by the histone chaperone, chromatin assembly factor 1 (CAF1) that binds to PCNA and 

deposits newly synthesized (H3-H4)2 tetramers onto DNA (35). The full nucleosome is later 

formed by the addition of H2A and H2B dimers. With both of these two processes, repair 

and histone deposition, taking place shortly behind the replication fork, a natural question is 

how these two processes influence each other. This question has been addressed by several 

studies utilizing elegant in vitro MMR assays that have been augmented with nucleosome 
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deposition systems, reviewed below. Human MutSα (Msh2-Msh6) easily recognizes 

mispairs in vitro on naked DNA (36). The addition of nucleosome octamers added to a DNA 

substrate with a mispair and nucleosome positioning sites showed that MutSα binds to 

mispairs between nucleosome octamers, but binds to mispairs incorporated into 

nucleosomes to a lesser degree (37). In in vitro MMR assays utilizing human cell extracts, 

excess MMR-associated degradation of the nicked strand can be observed for a mispair 

containing plasmid substrate incubated with cytosolic HeLa cell extract (38). The same 

MMR associated degradation was not seen in a nuclear HeLa extract. Further investigation 

led to the identification of CAF1 as the nuclear factor that suppresses excess MMR provoked 

degradation of the discontinuous strand (38). CAF1 nick-dependent deposition of 

nucleosomes is hypothesized to limit the sliding of the MutS-MutL incision complex away 

from the mispair, thus limiting excess degradation (38). This observation that histones can 

block MMR protein movement on DNA is similar to the observed block to the MutSα 
sliding clamp movement seen by Li et al. (37). Together, this raises the hypothesis that the 

MMR reaction must take place before DNA is packaged into nucleosomes or otherwise 

displace nucleosomes.

When CAF1 nucleosome assembly is incorporated into in vitro MMR assays, MutSα can 

repress nucleosome assembly at that mispair and adjacent to the mispair in the plasmid 

substrate (38–40). A functional MMR pathway slows the overall deposition of nucleosomes 

(38–40). This slowing of nucleosome assembly seems to allow efficient MMR, as the 

addition of a CAF1 nucleosome assembly reaction, with or without the ASF1 chaperone, did 

not diminish MMR reactions in vitro (39, 40). This was true regardless of whether the in 
vitro reactions contained Exo1 or were dependent on DNA pol δ-mediated strand 

displacement (40). The authors also carried out reactions in which DNA Polε carried out the 

gap-filling step. In the DNA Pol ε reactions, CAF1 and ASF1-H3-H4 actually led to slightly 

enhanced MMR capacity in the in vitro assay. This was hypothesized to be due in part to the 

suppression of excessive degradation of the discontinuous strand (40). It is worth noting that 

the results of in vitro studies, at least in part, depend on the specifics of histone deposition in 

the system, the strength of the nucleosome-DNA interaction, and the concentration of 

proteins present. While Li et al. observe a block to MutSα sliding clamp movement by 

established nucleosomes, alternately, Javaid et al. show that a Msh2-Msh6 sliding clamp can 

dissociate a nucleosome from DNA in a mispair dependent manner (41). This dissociation is 

enhanced by H3 acetylation, suggesting interplay could depend on context.

In addition to an important role in the repair of replication-associated errors, MMR protein 

interactions with nucleosome deposition components may also play a role in response to 

cytotoxic lesions that are recognized and processed by the MMR pathway. In the 

Saccharomyces cerevisiae system, the deletion of either the CAC1 or CAC2 subunits of 

yeast CAF1resulted in an increased sensitivity to SN1-type alkylating agent MNNG (42). 

The authors propose this is through the excessive MMR-dependent degradation of the 

discontinuous strand that then results in additional conversion of the nicked DNA to 

doublestrand breaks (42). Deletion of Rtt106, also involved in replication-associated 

nucleosome deposition, does not alter MNNG sensitivity like CAF1 depletion, nor does the 

deletion of the non-replication associated histone chaperone, HIR (42). This may indicate 

redundancy in vivo as compared to the in vitro system or may be an inherent difference in 
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how MMR and histone deposition interact in relation to replication-associated mispairs 

versus irreparable cytotoxic mispairs. Recent in vivo genome-wide analysis using the newly 

developed NMP-seq method in Saccharomyces cerevisiae showed that base excision repair 

of alkylation-induced N7-methylguanine and N3-methyladenine is faster in nucleosome-

depleted regions. Furthermore, alkylation-induced mutations accumulate at sites of strong 

nucleosome positioning (43). Overall, the toxicity and mutagenicity of alkylating agents are 

likely closely tied with chromatin structure, regardless of whether the lesion is an MMR or 

base excision repair substrate.

This coordination between nucleosome assembly and MMR is likely to be facilitated by 

direct protein-protein interactions between the MMR protein MutSα and components of the 

nucleosome deposition machinery. Both CAF1 and Msh6 have known interactions with 

PCNA (33, 34, 44, 45). PCNA is a critical component of the MMR pathway not only for gap 

filling but in upstream steps, including the stimulation of the MutLα endonuclease (46–49). 

Interactions with PCNA seem to be especially critical in Exo1-independent pathways of 

MMR requiring highly active Mlh1-Pms1 (Pms2 in human) endonuclease activity (50). One 

possibility is that PCNA interacting with MutSα may prevent CAF1 binding, which may 

explain the ability of MMR to prevent nucleosome deposition near the mispair. CAF1 also 

directly binds MutSα, and this binding is enhanced during S-phase, in part due to enhanced 

Msh6 expression during S-phase (39). MutSα is capable of pulling down purified ASF1-H3-

H4, although the interaction seems to be with the histone components and not the ASF 

chaperone components (42). Understanding how these multiple protein interactions work 

together is essential for fully understanding MMR occurring behind the replication fork.

3. DNA mismatch repair and recruitment by histone modifications

MMR components have also been found to physically interact with histone modifications. 

Human Msh6 has a Pro-Trp-Trp-Pro (PWWP) motif in the unstructured N-terminal domain 

facilitating binding to the H3K36me histone mark (51). This interaction between human 

MutSα and chromatin modifications that peak in G1/S-phase and diminish in G2, suggests 

enhanced recruitment of MMR activity during S-phase of the cell cycle. A previous special 

edition of DNA Repair reviewed this work (52). The common cancer-driving H3G34V/R/D 

mutations in the H3 subunit block the interaction with MutSα (53). Recently it has also been 

suggested that the MutSα interaction with the chromatin H3K36me3 marks may also play a 

role in promoting MMR activity at sites of transcription (54).

4. DNA mismatch repair and chromatin remodeling

In a recent study, initially designed to characterize the interaction between Msh2 and 

Exonuclease 1 (Exo1), a novel Msh2 interaction peptide motif (SHIP box) was newly 

identified (55–57). This Msh2 interaction peptide had similar characteristics to the 

previously identified Mlh1 interaction peptide motif (MIP box) given that it consisted 

primarily of two bulky hydrophobic residues in a region of Exo1 predicted to be 

unstructured and largely hydrophilic. However, unlike the MIP box in which two 

phenylalanine residues are directly adjacent to each other, the SHIP box motif consists of a 

phenylalanine or tyrosine spaced with one unconserved amino acid in between (57, 58). 
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These motifs are notable in that while the intrinsically unstructured C-terminal tail of Exo1 

is poorly conserved throughout evolution in length and primary amino acid sequence, the 

MIP and SHIP box motifs themselves are well conserved from fungi through humans, 

although their location within the C-terminal region varies. The MIP box motif was 

originally identified as the interaction site between base excision repair protein, Ntg2, and 

Mlh1, but has been identified as a common interaction motif in at least two other proteins, 

Exo1 and Sgs1(58–60). Based on the idea that the MIP box is a shared mode of binding to 

Mlh1 by several proteins, a bioinformatic search was performed to identify if the SHIP box 

may also be a shared mode of Msh2 binding and to identify potential novel SHIP box 

containing proteins. Using a positionspecific scoring matrix (PSSM) to measure similarity to 

the SHIP box motif and IUPRED analysis to determine predicted disorder, the entire yeast 

proteome was analyzed for potential SHIP box containing proteins (57). A subset of proteins 

was prioritized for validation by yeast two-hybrid assay based on high PSSM/IUPRED score 

and/or previous association with DNA metabolism or repair. From this study, two 

Saccharomyces cerevisiae SHIP box containing proteins were confirmed, the DNA 

polymerase ε subunit, Dpb3, and chromatin remodeling factor, Fun30. Binding of these 

protein partners with Msh2 is mediated by the SHIP box motif, as the mutation of the F/Y 

amino acids to alanine disrupted the in vivo binding (57).

Fun30, and its human homolog, SMARCAD1, is an SNF-2 family nucleosome remodeler 

with ATPase activity that has been shown to have roles in the control of histone turn over 

during replication, control of translation, and resection during homologous recombination 

(61–65). It is also implicated in the restoration of heterochromatin after replication and is 

known to bind PCNA (66, 67). In the study of FUN30 in homologous recombination end 

resection, FUN30 was initially selected for study out of a Saccharomyces cerevisiae screen 

that looked for deletion mutations that resulted in a lower frequency of homologous 

recombination promoted gene integration (65). Further experiments show that the deletion of 

FUN30 inhibited long-range resection by Exo1 5kb to 28kb away from the induced double-

strand break, and both the helicase and ATPase functions of the protein were required for 

long-range resection. The deletion of other nucleosome remodeling complexes implicated in 

resection, RSC2, and to a lesser extent INO80, when combined with deletion of FUN30 had 

a synergistic effect on long-range resection (65). The excision step of MMR can be carried 

out through either exonuclease-dependent or exonuclease-independent mechanisms (4). 

Exo1 performs the excision step in exonuclease-dependent MMR. The binding of Msh2 to 

both Fun30 and Exo1 suggests this interaction could play a role in controlling excision, 

similar to the role of Fun30 in homologous recombination.

Unsurprisingly, a single mutation deletion of FUN30 did not affect MMR capacity in vivo as 

measured by frameshift reversion assays. In genetic backgrounds that eliminate Exo1-

independent repair through a pol30-K217E mutation (49), fun30Δ caused a small but 

statistically significant increase in mutation rate (57). Similar to what was seen in assays for 

homologous recombination excision tract length, the deletion of RSC2, seems to have a 

synergistic effect with the deletion of FUN30. These data point to a need for nucleosome 

remodeling during Exo1 excision based MMR, in at least a subset of repair reactions. Given 

the relatively small change in mutation rate, it can be hypothesized that either extensive 

excision and chromatin remodeling is not required in a majority of MMR reactions, or that 
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additional chromatin remodeling factors play redundant roles in the process. Additional 

studies in vivo and in in vitro reconstitution reactions will be required to determine if Fun30 

and Rsc2 change Exo1 processivity or excision tract length in the presence of nucleosomes. 

In a genetic background in which Exo1-independent repair occurs (exo1Δ mutation), rsc2Δ 
also increases the mutation rate. The rsc2Δfun30Δ double mutant, however, has a lower 

mutation rate than the single rsc2Δ (57). This data suggest the role of chromatin remodelers 

in Exo1-independent repair, carried out by either DNA polymerase δ strand displacement 

(68) or successive rounds of endonuclease nicking (48, 49) may be more complicated and 

require further studies to comprehend fully. Roles for Fun30 discovered in yeast, such as in 

resection after a double-strand break, seem to translate to the human homolog SMARCAD1 

(64). It is likely that the same will be true for the Msh2-SMARCAD1 interaction. Human 

peptide analysis of potential SHIP box containing proteins using the PSSM and IUPRED 

analysis pipeline led to the identification of human Exo1-SHIP boxes along with a high 

score for the potential SMARCAD1 SHIP box. Phylogenetic analysis indicates that this 

motif is well conserved from yeast Fun30 to human SMARCAD1 (57).

In support of the idea that the Msh2-Fun30/SMARCAD1 interaction is significant 

throughout evolution, Msh2 and Xenopus SMARCAD1 physically interact, and 

SMARCAD1 depletion changes nucleosome exclusion around mispairs in extract-based 

repair assays (69). In Xenopus nucleoplasmic egg extracts, plasmids are supercoiled due to 

HIRA deposition of histones. A mispair in the plasmid disrupts plasmid supercoiling leading 

nucleosomes to be excluded in a 1kb region around the mispair. By immunodepleting the 

extracts of either Msh2-Msh6 or Mlh1-Pms2, it was shown that this nucleosome exclusion 

phenotype is Msh2-Msh6 dependent. Furthermore, the addition of Msh2 to the 

immunodepleted extract could displace preassembled nucleosomes (69).

Xenopus Msh2 and SMARCAD1 also directly bind. By linking the mispair containing 

plasmid to biotin, the authors were able to pull down associated proteins and look for 

proteins enriched in the presence of a mispair. SMARCAD1 and the FACT subunits, spt16 

and ssrp1, were increased when a mispair was present. SMARCAD1 was confirmed to co-

immunoprecipitate with Msh2 (69). Both this study and the above Saccharomyces cerevisiae 
study independently identified a Fun30/SMARCAD1-Msh2 interaction through unbiased 

approaches, strengthening the evidence that this is a significant interaction. In the Xenopus 
extract system, the depletion of SMARCAD1 led to more supercoiling around the mispair. 

An ATPase mutant of SMARCAD1 also resulted in increased supercoiling in the region 

around the mispair, suggesting that the ATPase function of SMARCAD1 is required (69). 

The presence of SMARCAD1 also facilitated MMR in the condition where nucleosomes 

were preassembled around the mispair in a Xenopus nucleoplasmic extract (69). This study 

brings up the possibility that Fun30/SMARCAD1 is an MMR accessory factor that may 

allow both access to naked DNA and control excision in Exo1-dependent MMR. What 

contribution redundant chromatin remodeling factors play is yet to be clarified.

While chromatin marks may help recruit MMR to chromatin during S-phase, carrying out 

efficient MMR in the context of chromatin is a challenge the cell must overcome, whether 

that is through inhibition of chromatin deposition or the movement of already established 

nucleosomes. The studies reviewed above clearly point to important and conserved 
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interactions between Msh2-Msh6/MutSα and chromatin metabolism proteins. (Figure 2) 

Detailed studies into how these pathways interplay with each other are required if we want 

to fully understand what effect they have on genome stability and the development of human 

tumors.
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Figure 1. Steps in Eukaryotic Mismatch Repair.
MMR occurs after replication to repair base-base mispairs and small insertion/deletion 

loops. Eukaryotic MMR occurs using a set of common steps: mispair recognition by the 

MutS homologs, recruitment of MutL homologs containing endonuclease activity, 

recruitment of Exo1 exonuclease and excision of the daughter strand, and gap filling by the 

replicative DNA polymerases.
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Figure 2. Reported interactions between Msh2-Msh6 (MutSα) and chromatin remodeling 
proteins.
Dashed lines indicated reported physical interactions between proteins in either 

Saccharomyces cerevisiae, Xenopus, or Humans. There is a high level of physical 

interaction between the MutS homologs and chromatin modulating proteins, with PCNA 

being a common interacting protein. Not all interactions are confirmed in all species. Yeast 

Exo1 lacks the PCNA PIP-box that is contained in human Exo1.
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