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Abstract

Interferon gamma has long been studied as a critical mediator of tumor immunity. In recent years, 

the complexity of cellular interactions that take place in the tumor microenvironment has become 

better appreciated in the context of immunotherapy. While checkpoint inhibitors have dramatically 

improved remission rates in cancer treatment, IFN-γ and related effectors continue to be identified 

as strong predictors of treatment success. In this review, we provide an overview of the multiple 

immunosuppressive barriers that IFN-γ has to overcome to eliminate tumors, and potential 

avenues for modulating the immune response in favor of tumor rejection.
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1. Introduction

In recent years, we have witnessed enormous growth in the application of immunotherapy to 

treat various malignancies. Extending from a standard of surgery, chemo- and radiation 

therapies, remarkable improvements in response rates have been observed through the 

application of various antibody [1,2] and cell based therapies [3–5]. A major contributing 

factor to the efficacy of these treatments is mediated by the secretion of cytokines which 

activate and instruct cells of the immune system, as well as exert direct cytotoxic effects on 

tumor cells themselves. It was a consequence of the highly potent effects exerted by 

cytokines that they were first explored as treatments for different malignancies. The earliest 

FDA approved cytokine treatment was recombinant Interleukin-2 (IL-2), which arose from 

clinical trials demonstrating responses in renal cell carcinoma (RCC) and metastatic 

melanoma [6]. However, despite promising responses, these therapies encountered severe 

toxicities which curbed their acceptance as a viable therapy. Indeed, given the broad 

cytokine-sensitivity of cells spread throughout the body, including cells of hematopoietic 

and non-hematopoietic origin, systemic administration of cytokines is not well tolerated due 

to acute [7,8] and chronic adverse events [9,10]. Recognizing the challenges of systemic 

toxicity, efforts were undertaken to localize the delivery of cytokines, and to better 
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understand the immunological activity of cells found within the tumor [11,12]. It was 

appreciated early on, that a good correlation existed between the anti-tumor activity of tumor 

infiltrating lymphocytes (TILs), and their capacity to secrete IFN-γ [13–15]. In very early 

adoptive cell therapy trials, transfusion of ex vivo expanded TILs and treatment with 

systemic IL-2 produced regression of tumors, and this was suspected to be a function of 

IFN-γ secretion [13,16]. Attempts at exploiting the potency of IFN-γ have yielded 

conflicting results, with both anti- and pro-tumorigenic effects being observed. 

Unfortunately, intravenous or sub-cutaneous administration of IFN-γ has not improved the 

outcome of melanoma [17], renal cell carcinoma [18], leukemia [19], pancreatic carcinoma 

[20], breast cancer [21], and colon cancer [22].

2. IFN-gamma biology

Following its discovery in 1965 as a soluble antiviral factor released by phytohemagglutinin-

stimulated PBMC [23], Interferon gamma (IFN-γ) became well known for its pleiotropic 

immunomodulatory effects on both innate and adaptive immunity. As a soluble homodimer 

[24], IFN-γ has been shown to be secreted primarily by activated lymphocytes such as CD4 

and CD8 T cells [25,26], gamma delta T cells [27], as well as NK [28,29] and NK T cells 

[30]. Additional sources include B cells [31–34] and antigen presenting cells (macrophages 

[35], monocytes [36] and dendritic cells [37]). IFN-γ signals through a heterodimer of 

IFNgR1/2, whose expression is broadly distributed among hematopoietic and non-

hematopoietic cells alike [38]. Signaling is tightly regulated through controlled expression of 

IFNgR2 with stable expression of IFNgR1 among different cells [39,40]. This differential 

regulation of receptor subunits is thought to influence the balance between the mitogenic 

and growth inhibitory effects of IFN-γ [41]. Numerous antitumor effects of IFN-γ have 

been described, and include the regulation of antigen presentation, promotion of 

inflammatory and chemotactic signals [42,43], activation and polarization of responding 

leukocytes, as well as direct antiproliferative [44–46] and anti-angiogenic effects [47] (Fig. 

1). Induction of angiostatic chemokines, CXCL9 (MIG), CXCL10 (IP-10) and CXCL11 (I-

TAC) by IFN-γ block neovascularization and also recruit effector leukocytes [48–50]. IFN-γ 
also antagonizes suppressive cytokine expression (TGF-β, IL-10), and favors the induction 

of IL-12 expression in macrophages [51,52]. IFN-γ signaling is able to repress tumorigenic 

M2-differentiation of macrophages [53]. Proapoptotic effects have also been attributed to 

IFN-γ [54,55]. Induction of TRAIL and its cognate receptor, a potent mediator of apoptosis 

in tumor cells, is also upregulated by IFN-γ [56,57]. Direct induction of caspase-1 and −8 in 

tumor cells by IFN-γ is also an effective inducer of apoptosis [58,59]. Tumor cell apoptosis 

is also induced through upregulation of Fas and FasL [60,61]. Generation of reactive oxygen 

species and nitric oxide are potent cytotoxic effectors that are also regulated by IFN-γ 
[62,63].

Secretion of IFN-γ by tumor infiltrating lymphocytes (TILs) results in the upregulation of 

antigen presentation in dendritic cells and macrophages [42,64]. IFN-γ also upregulates 

specific components of the immunoproteasome thereby producing unique peptides for 

MHC-I presentation [65–67]. In macrophages and dendritic cells, IFN-γ upregulates MHC-

II expression through activation of MHC class II transactivator (CIITA) [68,69]. Acting on 

APC, IFN-γ upregulates expression of costimulatory molecules and cytokines which are 
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necessary for activation of T cells [70]. In tumor cells, IFN-γ also induces the expression of 

MHC-I and STAT1 associated cyclin dependent kinase resulting in apoptosis of tumor cells 

and immune recognition [47,71]. Underscoring the requirement for IFN-γ in eliminating 

tumors, many studies have utilized various genetic and antibody blocking approaches to 

demonstrate both the direct [72,73] and indirect [74] aspects of IFN-γ-mediated tumor 

suppression.

Contrary to the many antitumorigenic effects exerted by IFN-γ, protumoral effects have also 

been observed. This activity is thought to occur primarily through a loss of IFN-γ signaling 

sensitivity, reduced antigen presentation [75] and induction of indolamine 2, 3-dioxygenase 

(IDO) [76] and checkpoint inhibitors [77]. Resistance to IFN-γ mediated cytotoxicity and 

cytostasis can be mediated by mutations in JAK-STAT signaling and antigen processing 

proteins [78–80]. A loss of IFN-γ signaling reduces MHC-I induction. Additionally, tumor-

associated methylation of the IFN-γ promoter reduces MHC-I expression in tumors tissues 

[81]. The loss of IFN-γ responsiveness in tumors is associated with lower antigenicity [72]. 

Along with the aberrant expression of the coinhibitory molecule, PD-L1, in tumor tissues 

[82,83], its expression is also induced through exposure to IFN-γ [84,85]. Interestingly, the 

duration of IFN-γ exposure also dictates the responsiveness of tumors to immune 

suppression, with chronic exposure producing a loss of sensitivity known as “adaptive 

resistance” [77].

3. IL-12 biology

A major inducer of IFN-γ is IL-12, and the expression of both genes is coordinated (i.e. 

IL-12 induces IFN-γ, and IFN-γ induces IL-12). IL-12 exerts potent immunomodulatory 

effects of cells of innate and adaptive immunity. Secreted as a biologically active 70 kDa 

heterodimer, IL-12 is composed of disuphide linked alpha (p35) and beta (p40) subunits 

[86]. Binding to its cognate heterodimeric IL12RB1/2 receptor induces signaling via Jak-

mediated phosphorylation of STAT4 [87,88]. Signaling through STAT4 induces the 

expression of IFN-γ [89] (Fig. 1). During the activation of naïve CD8 T cells, IL-12 

provides a third signal, alongside TCR and CD28 costimulation which improves clonal 

expansion and cytolytic activity [90,91]. Proliferative responses to IL-12 can be influenced 

by induction of CD25, a necessary component of IL-2 signaling [92]. Other significant 

effects of IL-12 include the induction of T cell, NK and NK T cell cytolytic activity, and 

enhanced antigen presentation [93]. Many of the IL-12 mediated effects are exerted through 

inducible IFN-γ expression and the skewing of CD4 T cells to a Th1 phenotype [94,95]. 

Induction of IFN-γ in T cells initiates a positive feedback loop whereby IFN-γ sensitive 

APCs are primed to produce additional IL-12 [96]. Synergy between IL-12 and IL-18 has 

also been demonstrated to strongly induce IFN-γ in B cells [33,34]. IL-12, and other 

cytokines have been shown to enhance the CTL activity of T cells through increasing the 

sensitivity to weak or self antigens [97,98]. This has been one explanation for the 

development of autoimmunity developing during microbial infections, as there is often an 

abundance of IL-12 present at the site of infection [99]. IL-12 is mainly produced by APCs 

(dendritic cells, monocytes, macrophages and B cells) and can be activated by various TLR 

signals. This effect is currently being explored as a potential mechanism to boost anti-tumor 

immunity [100–103]. However, opposing effects have also been observed where TLR 
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ligands can promote a tolerogenic response in DCs through the upregulation of IL-10 and 

TGF-β [104]. Signals that inhibit IL-12 production include IL-10 and TGF-β, and these 

same signals also inhibit IFN-γ [105,106].

4. Tumor microenvironment

As our understanding of tumor immunology has advanced, we have appreciated that various 

malignancies exert profoundly suppressive cues toward anti-tumor immune cells [107–110] 

(Fig. 1). The tumor microenvironment, once formed, is a formidable obstacle for innate and 

adaptive immunity to overcome. Prominent barriers to elimination include the tumor 

promoted conditioning of immunosuppressive cells such as Treg, MDSC and M2-

macrophages, as well as limited antigen presentation, upregulation of T cell suppressive 

signals (e.g. PD-1/L1 and CTLA-4) and metabolic cues.

One prominent inhibitory molecule that is produced in tumors, and is associated with poor 

outcome, is IL-10, a potent anti-inflammatory cytokine [111,112]. Within the tumor 

microenvironment, tumor cells themselves have been shown to express IL-10 [113,114] in 

addition to infiltrating hematopoietic cells of myeloid [115] and lymphoid origin [116]. 

Regulatory CD4 T cells (Treg) are also significant sources of IL-10 in tumors, and their 

presence in high proportion relative to CD8 T cells is indicative of poor prognosis [117–

119]. Opposing effects of IL-10 have been observed, where a decrease in antigen 

presentation is detected in CD4 T cells [120,121] and macrophages, and a stimulatory effect 

is observed in CD8 T cells [122–125]. Cross-regulation between cytokines has been shown 

to exist between IL-10 and IFN-γ [126]. Depending on the timing and magnitude of 

expression, both cytokines can interfere with one another. IL-10 has been clearly shown to 

mitigate the effects of IFN-γ in antigen presentation through down regulation of MHC-II, 

costimulatory molecules and proteolytic enzymes [127–132]. This effect is mediated by 

interference with IFN-γ signaling through the Jak-STAT and NFkB transcriptional pathways 

[133,134]. In macrophages, IL-10 mediates downregulation of costimulatory molecules and 

MHC-II through the induction of March-1, an E3 ubiquitin ligase, which specifically targets 

these critical molecules for proteolytic degradation [135]. Mirrored in T cells, IL-10 also 

inhibits tyrosine phosphorylation and activation of CD28 [136]. IFN-γ exerts a strong 

antagonism towards IL-10 through transcriptional suppression [137]. Suppression of IL-10 

in CpG-stimulated DCs was accompanied by a strong induction of IL-12 expression [138]. 

A number of studies have also provided evidence for the suppressive effect of IFN-γ 
towards Treg stability [32,139,140].

Another contributor to tumor immunosuppression is myeloid derived suppressive cells 

(MDSC), which are activated through inflammatory processes and serve to dampen immune 

responses. MDSC secrete various immunosuppressive molecules including arginase 

(ARG1), iNOS-2, TGF-β, IL-10, COX2 and indoleamine 2, 3-dioxygenase (IDO) which 

sequesters tryptophan and decreases L-selectin expression on T cells [141–144] (Fig. 1). Of 

interest is the fact that IFN-γ induces many of these genes, thus it’s actions enhance the host 

immune response but also damped the response if IFN-γ signaling is prolonged. Both 

arginase and iNOS2 utilize L-arginine as a substrate, and thus deplete its availability to T 

cells, which limits their functional capacity. Surface expression of ADAM17 on MDSC 
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cleaves L-selectin (CD62 L) and interferes with homing to lymph nodes [145]. Production of 

ROS can interfere directly with TCR activation and chemokine activity through protein 

nitration [146,147] (Fig. 1). In macrophages, nitration of STAT1 has also been suggested to 

limit IFN-γ inducible signaling [148]. Additionally, MDSC promote tumorigenesis through 

expression of VEGF, bFGF, Bv8 and MMP9 which have been shown to be angiogenic 

[149,150].

Tumor-associated macrophages are another significant leukocyte population commonly 

found in tumors, and can be generally defined by their pro- or anti-inflammatory function 

[151,152]. Pro-inflammatory M1-type macrophages can suppress tumor growth through 

production of IL-1, IL-6, IL-12, TNF-α and upregulation of antigen presentation and 

costimulatory molecule expression [153]. Their development is promoted by the presence of 

IFN-γ, GM-CSF or LPS [154]. In contrast, anti-inflammatory M2-type macrophages 

produce abundant IL-4, IL-10, TGF-β, prostaglandin E2 and VEGF which favor 

tumorigenesis. Environmental factors which influence the development of M2-type 

macrophages include tumor secreted IL-4, IL-13, IL-10 and M-CSF [152]. Additionally, 

their development is also favored by exposure to lactic acid and contact with apoptotic cells 

or damage-associated molecular patterns (DAMPs) which are distributed through tumor 

tissue [155,156]. The presence of M2-type macrophages is correlated with poor prognosis in 

a variety of malignancies [157,158].

Co-inhibitory molecules are normally upregulated on activated T cells following stimulation. 

These signals serve to limit excessive inflammation, and exert negative feedback. In animals 

lacking co-inhibitory molecules, or during administration of checkpoint inhibitors in the 

clinic, autoimmune-like pathologies have been documented [159]. However, in tumors, these 

regulatory mechanisms limit the development of a robust response. Consequently, a number 

of co-inhibitory signaling molecules (PD-1/-L1, CTLA-4 and others) have been investigated 

in the context of boosting anti-tumoral immunity [160,161]. The expression of these markers 

correlates well with the degree of unresponsiveness. PD-1 is expressed on the surface of 

activated T cells, and directly attenuates CD28-mediated signaling through the recruitment 

of phosphatases to TCR-proximal signaling complexes [162] (Fig. 1). CTLA-4 is also 

upregulated on the surface of activated T cells, but interferes with CD28 costimulation 

through distinct mechanisms from PD-1 [162,163]. During chronic viral infection, or in 

tumors, where persistent exposure to antigen can occur, the degree to which T cells are 

stimulated with antigen, corresponds with their loss of functional capacity [164]. Continual 

TCR signaling leads to a reduced rate of remethylation at the PD-1 locus, thereby 

reinforcing expression and potentiating inhibitory effects [165]. A progressive loss of 

proliferative capacity and IL-2 production by T cells is followed by a failure to produce 

TNF-α and IFN-γ. This process, termed exhaustion, is not a terminal cell fate, and can be 

reversed in vivo through the blockade of co-inhibitory receptors [161,166]. Indeed, FDA-

approved monoclonal antibodies directed against PD-1, PD-L1 or CTLA-4 have proven 

effective at interfering with the immunosuppressive effects that are exerted by tumor tissues 

on cytotoxic T cells [167]. Additional co-inhibitory receptors such as Lag-3, Tim-3, BTLA, 

CD160 and 2B4 are being explored in clinical and pre-clinical development [168,169].
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Another hallmark of the tumor microenvironment is dysregulated metabolism, where 

glucose is utilized through aerobic glycolysis instead of oxidative phosphorylation. This 

process, known as the Warburg effect, produces considerable secreted lactate (lactic acid) 

which signals though GPR81 on surrounding tumor cells to induce PD-L1 expression [170] 

(Fig. 1). Lactate also strongly inhibits the expression of cytolytic effectors granzyme B and 

IFN-γ in CD8 T cells [171]. Additionally, given the rapid consumption of glucose by tumor 

cells, it’s reduced availability limits T cell function [172]. This metabolic restriction is 

sensed by the metabolic enzyme and RNA binding protein, GAPDH, which, in turn, binds to 

the AU-rich regions of the 3′ UTR of IFN-γ transcripts and reduces expression [173]. 

Interestingly, glucose deprivation exerts a stronger inhibitory effect on IFN-γ expression 

than IL-2 [174].

5. Overcoming immunosuppression

With increasing usage of checkpoint inhibitors, our understanding of their mechanistic role 

in facilitating immune-mediated tumor clearance is becoming better understood. Certainly, 

an IFN-γ-associated gene signature was shown to be necessary for clinical benefit during 

PD-L1 blockade [175]. In a recent structural study of IFNγR activation, Mendoza et al. 

identified synthetic IFN-γ mimetics that were able to specifically activate signaling to 

upregulate MHC-I expression in tumor cell lines, without upregulating the 

immunosuppressive molecule, PD-L1 [176]. This decoupling of immunostimulatory and 

immunosuppressive effects certainly opens exciting possibilities for development. A recent 

study by Garris et al. highlighted the critical function of PD-1 blockade in enabling the 

amplification of IL-12 and IFN-γ reciprocal regulation to permit an effective anti-tumoral 

response [177]. In the context of adoptive T cell therapy, ex vivo activation and expansion of 

T cells in the presence of IL-12 has improved CTL activity [178–180]. This effect has been 

attributed to dampening the negative regulatory effects exerted by IFN-γ. Specifically, a 

reduction of PD-1 expression in T cells limited the suppressive effects of IFN-γ-inducible 

PD-L1 expression in tumor tissues. Additionally, a decrease in IFN-γR2 expression on 

expanded T cells also reduced the negative autocrine effects of IFN-γ expression [181].

Given the importance of IL-12 in augmenting IFN-γ expression, and the cytolytic activity of 

T cells, its incorporation into immunotherapy regimens is still being pursued with emphasis 

on targeted delivery. Systemic administration of IL-12 has shown limited success, with 

numerous adverse events being observed in clinical trials, likely a consequence of off-target 

effects, as well as poor pharmacokinetics [182–184]. To target IL-12 expression to the tumor 

microenvironment, plasmids encoding IL-12 have been introduced via electroporation 

[185,186], intratumoral injection of viral vectors encoding IL-12 [187], engineered tumor-

specific T cells expressing IL-12 [188–195] and intratumoral injection of microspheres 

containing slow-release IL-12 [196,197]. Recent attention has been given to an IL-12-fused 

anti-his-tone antibody (NHS-IL12) which targets sites of cell necrosis where free cellular 

DNA is abundant. When combined with radiation therapy in a mouse model, a significant 

anti-tumor immune response was observed alongside increased survival [198,199]. More 

recently, in a phase I clinical trial, NHS-IL12 was well tolerated, and was accompanied by 

an indication of anti-tumor immunity [200].
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6. Conclusions

Coupled with an increasingly sophisticated understanding of anti-tumor immunity, the 

powerful tools of molecular immunology are allowing us to develop innovative new 

therapies to treat cancer. We have already seen encouraging improvements in potency of 

immunotherapy, and it is clear that many targets still exist for intervention. Given the 

complexity of tumor-mediated immunosuppression, it is very likely that integrating multiple 

facets of tumor immunity will be necessary to overcome the existing barriers. The 

pleiotropic nature of IFN-γ underscores this, and certainly maintains it as an attractive 

candidate for development, despite previous challenges. To better reflect a natural 

mechanism of localized activity, it is critical that the delivery of the right treatment is to the 

right place. Indeed, the continued honing of immunotherapy will undoubtedly yield more 

effective and better tolerated therapies in the clinic.
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Fig. 1. 
IFN-γ exerts pleiotropic effects to overcome tumor immunosuppression.

The tumor microenvironment exerts strong antagonism toward infiltrating lymphocytes 

through various cytokine, receptor and metabolic processes. To overcome these pathogenic 

barriers, IFN-γ and IL-12 operate in concert to amplify an anti-tumoral response through 

dampening immunosuppressive signals and increasing cytolytic effector function and direct 

antiproliferative signals.
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