Skip to main content
. Author manuscript; available in PMC: 2020 Jul 17.
Published in final edited form as: J Neurosci Methods. 2020 May 4;341:108756. doi: 10.1016/j.jneumeth.2020.108756

Table 3.

Performance of different methods in MDD/HC classification with 10-fold cross-validation.

Method ACC(%) SEN(%) SPE(%) f1(%) AUC(%)

Nearest Neighbors 54.5(0.9) 55.9(0.9) 53.1(0.9) 56.1(0.9) 54.5(0.9)
AdaBoost 54.6(1.7) 55.8(1.5) 53.3(1.8) 56.6(1.8) 54.5(1.7)
Naive Bayes 59.2(0.9) 62.1(1.0) 56.8(0.8) 57.3(1.0) 59.4(0.9)
Gaussian Process 60.4(0.6) 61.1(0.8) 59.6(0.5) 62.4(0.4) 60.3(0.6)
Linear SVM 62.8(0.7) 61.9(0.6) 64.2(0.9) 66.7(0.7) 62.5(0.7)
Deep Neural Net 64.2(0.9) 64.4(1.0) 64.1(1.2) 66.3(1.2) 64.1(0.9)
GAN 70.1(0.6) 73.5(4.7) 66.5(4.7) 71.7(1.5) 70.3(0.9)

Table 3 The performance of different methods in MDD/HC classification with 10-fold cross-validation. SVM, support vector machine; GAN, Generative Adversarial Networks; ACC, Accuracy; SEN, sensitivity; SPE, specificity; F1, F-score; AUC, area under curve; MDD: major depressive disorder; HC: healthy control.