Skip to main content
. Author manuscript; available in PMC: 2020 Jul 17.
Published in final edited form as: J Neurosci Methods. 2020 May 4;341:108756. doi: 10.1016/j.jneumeth.2020.108756

Table 4.

Performance of the leave-one-site-out method in MDD/HC classification.

Method ACC(%) SEN(%) SPE(%) f1(%) AUC(%)

Nearest Neighbors 55.5(2.0) 57.3(2.5) 53.9(4.6) 55.5(4.4) 55.6(1.2)
AdaBoost 47.9(1.4) 49.3(5.2) 47.1(1.5) 42.1(1.6) 48.3(2.0)
Naive Bayes 55.1(6.8) 59.5(9.5) 52.8(6.9) 48.2(12.7) 55.6(6.3)
Gaussian Process 56.9(5.0) 59.2(4.6) 55.0(6.8) 55.8(8.9) 57.1(2.6)
Linear SVM 55.9(6.2) 59.0(2.7) 53.7(9.0) 52.4(15.8) 56.1(4.8)
Deep Neural Net 55.0(3.4) 60.8(5.0) 52.4(3.1) 44.7(2.9) 55.6(1.8)
GAN 64.3(2.9) 61.5(3.1) 70.8(6.5) 70.5(1.5) 63.8(3.4)

Table 4 The performance of the leave-one-site-out method in MDD/HC classification. SVM, support vector machine; GAN, Generative Adversarial Networks; ACC, Accuracy; SEN, sensitivity; SPE, specificity; F1, F-score; AUC, area under curve; MDD: major depressive disorder; HC: healthy control.