Skip to main content
. Author manuscript; available in PMC: 2020 Jul 17.
Published in final edited form as: J Neurosci Methods. 2020 May 4;341:108756. doi: 10.1016/j.jneumeth.2020.108756

Table 5.

Performance of different methods in SZ/HC classification with 10-fold cross-validation.

Method ACC(%) SEN(%) SPE(%) f1(%) AUC(%)

Nearest Neighbors 64.6(0.6) 69.1(0.8) 61.6(0.6) 61.0(0.8) 64.8(0.6)
AdaBoost 72.3(1.1) 72.4(1.1) 72.1(1.1) 72.8(1.0) 72.2(1.1)
Naive Bayes 69.6(0.5) 67.5(0.4) 72.7(0.6) 72.1(0.5) 69.5(0.5)
Gaussian Process 64.3(0.8) 68.5(1.0) 61.4(0.7) 60.9(0.9) 64.4(0.8)
Linear SVM 77.1(0.9) 77.4(1.0) 76.8(0.9) 77.4(0.9) 77.1(0.9)
Deep Neural Net 80.3(0.5) 80.8(0.9) 79.8(0.9) 80.5(0.5) 80.3(0.5)
GAN 82.1(0.7) 78.1(1.5) 86.2(1.1) 81.6(0.8) 82.3(0.7)

Table 5 The performance of different methods in SZ/HC classification with 10-folds cross-validation. SVM, support vector machine; No FM, No feature matching; GAN, Generative Adversarial Networks; ACC, Accuracy; SEN, sensitivity; SPE, specificity; F1, F-score; AUC, area under curve; SZ: schizophrenia; HC: healthy control.