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Abstract

The sequestration of the essential nutrient iron (Fe) from bacterial invaders that colonize the 

vertebrate host is a central feature of nutritional immunity and the “fight over transition metals” at 

the host-pathogen interface. The Fe quota for many bacterial pathogens is large, as Fe enzymes 

often comprise a significant share of the metalloproteome. Fe enzymes play critical roles in 

respiration, energy metabolism and other cellular processes by catalyzing a wide range of 

oxidation-reduction, electron transfer, and oxygen activation reactions. In this Concepts report, we 

discuss recent insights into a diversity of ways that bacterial pathogens acquire this essential 

nutrient beyond well-characterized tris-catecholate FeIII complexes, in competition and 

cooperation with significant host efforts to cripple these processes. We also discuss pathogen 

strategies to adapt their metabolism to less-than-optimal Fe, and briefly speculate on what may be 

an integrated adaptive response to concurrent limitation of both Fe and Zn in the infected host.
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Bacterial pathogens employ myriad strategies to acquire the essential nutrient iron. Here we 

highlight newly emerging features of bacterial Fe acquisition beyond classical FeIII-siderophores, 

including the use of coordinatively unsaturated FeIII-catechol complexes and FeII uptake. The 

bacterial adaptive response to host efforts to restrict Fe availability is also discussed.
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1 Introduction

1.1 Iron in bacterial cellular metabolism

Iron (Fe) is among the most Earth-abundant transition elements and is extensively used by 

nearly all living organisms to perform an impressive array of chemical transformations. Fe-

dependent catalysis impacts many aspects of metabolism, including energy metabolism, 

respiration, lipid metabolism, amino acid and cofactor biogenesis and DNA metabolism.[1] 

Fe enzymes play important roles in electron transfer processes and as oxidoreductases, and 

both functions derive from the accessibility of ferrous (FeII) and ferric (FeIII) oxidation 

states. Fe-dependent mono- and dioxygenases often cycle to higher oxidation states, e.g., 

FeIV, which is a potent oxidant. Fe speciation in proteins involves ionic mononuclear Fe and 

multi-metal (Fe-Fe, or mixed metal, e.g., Ni-Fe) coordination complexes, Fe-heme or iron-

sulfur (Fe-S) clusters, the latter of which are inorganic complexes of Fe with sulfide (S2−), as 

[2Fe-2S] or [4Fe-4S] cubane structures. In a typical Fe-centric, facultative anaerobic, Gram-

negative bacterium, e.g., Escherichia coli, characterized by an outer membrane (OM) and an 
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inner cytoplasmic membrane (CM) that collectively encompass the periplasm, Fe-containing 

proteins are estimated to comprise upwards of 85% of the metalloproteome,[2] which itself 

accounts for ≈30% of the entire proteome.[3] This metal quota is significant, with the next 

largest contributor to the metalloproteome zinc (Zn) metalloenzymes, which comprise the 

majority of what remains (≈15%; or 5–6% of a typical bacterial proteome).[4]

1.2 Fe bioavailability and the microenvironmental niche

Since the footprint of Fe-dependent metabolic activity is large, Fe withholding from a 

bacterial pathogen that colonizes the vertebrate host is foundational to the concept of 

nutritional immunity (see below).[5] Fe sparing[6] has emerged in response as a broadly 

employed strategy that bacterial cells use to lower their cellular demand during extreme Fe 

restriction during infection.[7] In addition, the successful pathogen employs a myriad of 

strategies to secure Fe from the surrounding microenvironment The latter helps to avoid the 

collateral damage of weakly complexed “free” FeII in an aerobic environment, which 

becomes a potent autocatalytic producer of oxidative stress, as highly reactive hydroxyl 

radicals (OH•) formed by the Fenton reaction. FeII will predominate in the reducing 

environment of the cytoplasm, and is considered a weakly competitive transition metal, 

which generally binds to protein sites with only modest affinity, only greater than that of 

MnII.[8] Some bacteria have evolved FeII efflux transporters, likely as a means to mitigate 

the impact of FeII excess,[6a, 9] particularly under conditions of host-derived oxidative stress.
[9–10] Maintaining bioavailable Fe concentrations and optimal Fe speciation that is 

compatible with cellular viability during infection is controlled by metalloregulatory 

proteins that sense either FeII, e.g., Fur (ferric uptake regulator),[11] Fe-S loads,[12] or in 

some cases, heme-Fe.[13] Fur, for example, represses the expression of the Fur regulon when 

Fe is replete.[8] As Fe becomes increasingly scarce, FeII dissociates from Fur, and Fur, in 

turn, sequentially releases from individual DNA operator sites in “waves”, driving a graded 

transcriptional response to cellular Fe deprivation.[6a] FeII sensing in many organisms is 

intertwined with oxidative stress resistance[14] and MnII acquisition[15] since MnII can 

substitute for FeII in some non-heme Fe enzymes, thus protecting these enzymes against Fe-

catalyzed oxidative damage.[16]

Since Fe is clearly a precious commodity, bacteria have evolved a remarkable array of 

mechanisms to scavenge this nutrient from the environment. In this Concepts paper, we 

review recent progress in our understanding of Fe uptake by bacterial pathogens that goes 

beyond the well-studied FeIII-tris-catecholate systems, exemplified by the FeIII-enterobactin 

(enterochelin) extensively characterized in E. coli (Figure 1).[17] The work reviewed here is 

not meant to be comprehensive, but instead highlights newly emerging features of Fe 

acquisition and the bacterial adaptive response to host efforts to restrict the availability of 

this essential metal.

2 The tris-catecholate complexes

2.1 General features and regulation

Siderophores are small molecule, high affinity FeIII chelators that harbor up to six 

coordinating donor atoms and typically form coordinatively saturated complexes with the 
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metal.[18] Four structural classes of siderophores have thus far been identified, and these 

include the catecholate, hydroxamate, carboxylate and mixed-type siderophores 

distinguished by their distinct combinations of FeIII coordinating donors (Figure 2A).[19] 

The archetypal siderophore is enterobactin (Ent), a tris-catechol derivative of a cyclic 

triserine lactone. The metal coordinating motif is an ortho 2,3-dihydroxybenzoate (DHB) 

substituent coupled to the α-amino group of L-serine via an amide linkage. The cyclic 

trilactone core contains three ester linkages with three dihydroxybenzylserine (DHBS) metal 

coordinating groups that completely surround the FeIII atom (Figure 2A). FeIII binds with a 

stability constant of log KFe of ≈36 at pH 7.0 with a significant contribution of the chelate 

effect, and thus competes well with host mononuclear FeIII complexes of the major serum Fe 

transport protein, e.g., transferrin (log KFe of 22[20]) or lactoferrin. These ester linkages are 

susceptible to slow hydrolysis in aqueous solution [21] or in a reaction catalyzed by esterases 

(Figure 2A, top).

A typical Gram-negative bacterium like E. coli or Salmonella enterica sevovar Typhimurium 

harbors the biosynthetic machinery to synthesize Ent. The biosynthesis is typically 

controlled by Fur, which in E. coli regulates the expression of three Ent-related gene 

clusters, fepDGC-entS, fepB-entC, and fepA-fes.[22] The fepDGC genes encode an inner 

(cytoplasmic) membrane localized ATP-binding cassette (ABC) transporter to which FepB, 

the periplasmic solute binding protein (SBP), binds when bound to cargo FeIII-Ent, and is 

transported across this membrane using the energy of ATP hydrolysis (Figure 3A). entS 
encodes the apo-Ent effluxer that pumps Ent into the periplasm and ultimately into the 

extracellular milieu where it captures FeIII. FeIII-Ent then binds to an outer membrane (OM)-

integrated 22-stranded β-barrel receptor (FepA), which via a TonB-ExbB-ExbD-dependent 

transport process, is brought into the periplasm (Figure 3A).[23] Once across the cytoplasmic 

membrane via FepBCDG, FeIII-Ent is subjected to esterase-catalyzed cleavage by Fes and/or 

reduction to FeII in the cytoplasm by resident ferric siderophore reductase(s); this makes FeII 

bioavailable to client biomolecules.[24] Other bacteria, including Acinetobacter baumannii 
and Pseudomonas aeruginosa, lack the machinery to biosynthesize Ent, but express an OM 

receptor that specifically brings FeIII-Ent into the periplasm (P. aeruginosa PfeA; Figure 3B).
[25] Thus, Ent is a xenosiderophore for these organisms (Figure 1). This strategy of iron 

piracy is ubiquitous in polymicrobial niches, and highlights the importance to the bacterium 

of tapping any and all bioavailable sources of Fe in that niche.

2.2 Siderophore-dependent FeIII acquisition across membranes

The ligand specificity of the FeIII-siderophore uptake appears to lie largely at the level of the 

OM receptor in Gram-negative organisms (Figure 3A). Although the structure of the ligand-

free OM FeIII-Ent receptor E. coli FepA has been known for over twenty years,[23c] the 

structure of the FepA homolog from P. aeruginosa, PfeA, bound to FeIII-Ent provides new 

insights into the transport mechanism.[23c] This structure reveals a series of large 

extracellular loops that capture FeIII-Ent, coupled to an N-terminal globular plug domain 

that is inserted into the pore of the barrel (Figure 3B, C). FeIII-Ent binds to these 

extracellular loops that extend above the barrel itself, which function as “fingers on a hand” 

to grab the ligand. FeIII-Ent binding triggers a conformational change in the N-terminal plug 

domain that appears to push the FeIII-Ent complex to a second, intramembrane binding site. 
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This allows the “Ton-box” on the plug domain to physically engage TonB which in turn 

triggers a relocation of plug domain to open a periplasmic gate to allow FeIII-Ent uptake into 

the periplasm.[26] Although both FepA and PfeA transport FeIII-Ent, PfeA also binds and 

transports other tris-catechol xenosiderophores, e.g., protochelin, as well as a bis-catechol, 

FeIII-azotochelin (Figure 2), which form complexes that are nearly isostructural with that of 

FeIII-Ent [26a] and thus represents a further example of Fe piracy (Figure 1). Other OM 

receptors reported as catecholate-type siderophore uptake systems in E. coli are CirA and 

Fiu, the latter of which is a candidate receptor of FeIII-DHBSn complexes (see Section 3).[27] 

The structure of Fiu reveals a selectively-gated cavity in the transporter that binds the Fiu 

substrate and appears to function in a P. aeruginosa PfeA-like two-step mechanism.[28]

In Gram-negative organisms, the FeIII-siderophore complex enters the periplasm after 

crossing OM where it is captured by an SBP and then transported into the cytoplasm via an 

ABC-type active transporter (Figure 3A, left).[29] In Gram-positive organisms, SBPs are 

anchored to the cell membrane coupled with an ABC transporter and are termed lipoproteins 

(Figure 3A, right).[29] In these organisms, the lipoprotein SBP actively discriminates among 

various FeIII-chelates, to form specific, high affinity, yet transport-competent complexes 

with their cargo.[30] For example, the major human pathogen Staphylococcus aureus 
synthesizes two citrate-derived polycarboxylate-type siderophores, staphyloferrin A (SA) 

and staphyloferrin B (SB) (Figure 2A)[31] The lipoprotein SBPs HtsA[32] and SirA[31a] bind 

with high affinity and specificity to only their cognate FeIII complexes formed by SA and 

SB, respectively (Figure 3A). All metal-transporting SBPs and lipoproteins, including those 

that transport FeIII-siderophore complexes, are members of the class III (cluster A) clade in 

which the two internally duplicated “lobes” are connected by a long α-helix or “brace” 

helix, with the cavity between the lobes defining the ligand binding pocket (see Figure 4B, 

below).[29] Ligand binding to class III SBPs results in little or no overall conformational 

change, unlike other SBP classes.[33] E. coli FepB, like FepA, has high specificity for FeIII-

Ent[34] and even a linear tris-catecholate FeIII-siderophore such as agrobactin cannot be 

transported by FepB.[35]

Analogous transporters have been described for other siderophore classes in many human 

pathogens (Figure 2A). These include the E. coli ferrichrome (hydroxamate) uptake system, 

composed of the OM receptor FhuA and the FeIII-ferrichrome binding protein FhuD.[36] In 

the Gram-negative pathogen, A. baumannii, a mixed type siderophore FeIII-acinetobactin is 

first transported across the OM as 1:1 or 1:2 FeIII-(pre)acinetobactin complexes through 

BauA,[37] which is then bound by the SBP, BauB, as a 1:2 FeIII-acinetobactin complex 

(Figure 2).[38] There is evidence in some organisms that periplasm-resident esterases might 

process (hydrolyze) cyclic siderophores once brought across the OM, as shown for the tris-

lactone esterase IroE which required for linear salmochelin uptake in uropathogenic E. coli.
[24a] The extent to which this is generally true is not known, and competing models for IroE 

function exist, including hydrolysis of the metal-free tris-catecholate prior to export.[39]

2.3 The intracellular fate of FeIII-siderophore complexes

FeIII release once inside the cytoplasm is generally accomplished by two general strategies. 

These are covalent modification or hydrolysis of, for example, the tris-lactone siderophore, 
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and/or reduction of the bound FeIII to FeII. Both lower metal-chelate stability, and in the case 

of the reduction to FeII, greatly enhances Fe aqueous solubility (Figure 3A).[40] In E. coli for 

example, the Fur-regulated cytoplasmic FeIII-Ent esterase Fes hydrolyzes the tris-lactone 

ester bonds to generate DHBS monomers as the final product (Figure 2A, top).[39] Although 

each DHBS harbors the bidentate catechol motif, the complex is less thermodynamically 

stable than FeIII-Ent. YqjH is a widespread NADPH, FAD-dependent FeIII reductase in E. 
coli capable of promoting FeII release from a variety of tris-catecholates including Ent, 

vibriobactin and aerobactin;[41] others have been characterized in S. aureus.[40] The 

reduction efficiency for FeIII bound to bidentate or simple organic ligands, such as DHBS 

and dicitrate, is high thus increasing the bioavailability of FeII in the cytoplasm.[41] These 

iron release mechanisms mentioned above are generally transcriptionally controlled by the 

global iron response regulator, Fur. YqjH is regulated by both Fur and YqjI, a transcriptional 

regulator that senses nickel toxicity in E. coli, as expected since nickel toxicity is known to 

disrupt Fe homeostasis.[42]

A cytoplasmic membrane associated [2Fe-2S] cluster protein, E. coli FhuF, is capable of 

reducing FeIII-hydroxamate siderophore complexes, including those formed with 

ferrichrome and ferrioxamine B (Figure 2).[43] In addition, there is evidence to suggest that 

one of the N-hydroxyl groups of ferrichrome is subject to acetylation after FeIII reduction so 

as not to negatively impact Fe speciation in the cytoplasm; the acetylated ferrichrome is then 

effluxed into the extracellular space where it is slowly hydrolyzed.[44] In this way, 

ferrichrome is recycled so as to maximize the benefit of energy-intensive de novo 
siderophore biosynthesis.

3. Coordinatively unsaturated bis- and mono-catecholate FeIII complexes 

as Fe sources

3.1 General considerations

In order to form high affinity complexes with FeIII, a typical siderophore forms coordinate-

covalent bonds with all six donor atoms derived from a single molecule, like those described 

for the cyclic tris-catecholate Ent (Figure 2A,B). However, atypical FeIII complexes can also 

be used by bacterial pathogens to acquire Fe. These can be operationally grouped into two 

groups: coordinatively saturated and coordinatively unsaturated FeIII complexes (Figure 2B). 

Coordinatively saturated FeIII complexes incorporate six donor atoms derived from one, two 

or three liganding molecules and thus might have mixed ligand donor sets (Figure 2B, left), 
an early example of which is the FeIII complex formed by pyochelin (tetradentate) and 

cepabactin (a bidentate, monomeric hydroxamate ligand) in Pseudomonas cepacia.[45] 

Coordinatively unsaturated complexes, in contrast, are formed by one tetradentate dimer 

molecule or by two bidentate monomers with the remaining two coordination sites occupied 

by solvent (Figure 2B, right). Even though these coordinatively unsaturated FeIII complexes 

are characterized by lower overall FeIII stability constants, they still function as biologically 

important FeIII scavengers. This structural diversity may offer significant growth advantages 

in specific tissue niches, particularly for those bacteria that do not synthesize their own 

siderophores. These bacteria include the obligate human pathogens Neisseria meningitidis 
and Neisseria gonorrhoeae,[46] the intestinal pathogen Campylobacter jejuni[47] and two 
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respiratory pathogens capable of colonizing the human nasopharynx, Streptococcus 
pneumoniae and Haemophilus influenzae.[48]

3.2 Coordinatively unsaturated tetra- and bidentate catecholate siderophores

The most well-studied coordinately unsaturated FeIII-siderophores are the tetradentate and 

the bis-catecholate-type siderophores (Figure 2A). These siderophores include, but are not 

limited to, the endogenously synthesized bis-catecholates azotochelin and azotobactin d 

from Azotobacter vinelandii,[49] pyochelin from Pseudomonas ssp.[50] and amonabactin 

from Aeromonas spp.[51] The hydrolysis products of Ent including linear tri-DHBS, di-

DHBS and DHBS monomers (Figure 2A) are also present, and although their origin within a 

complex milieu of FeIII-siderophores at infection sites[52] is often not known, they allow 

bacteria to grow under iron-limited conditions.[27b, 53] In addition to these siderophore 

hydrolysis products of likely bacterial origin, other host-derived candidate FeIII chelators are 

the monomeric catechols, e.g., the catecholamines, human stress hormones that localize to 

sites of infection[54] at concentrations approaching 10 μM.[55] The catecholamine 

norepinephrine (NE) (Figure 2A) is known to enhance the proliferation of a number of 

bacterial pathogens, including S. pneumoniae, under Fe-limited growth conditions,[47b, 56] 

particularly in tissue niches where transferrin is the primary available iron source.[57] 

Although some organisms, including Neisseria spp. and H. influenzae can extract FeIII from 

transferrin directly via an OM receptor,[46, 58] others cannot. It is thought that the auto-

oxidation of NE reduces FeIII to FeII, thus triggering iron release from transferrin;[59] the 

released Fe is then re-oxidized to FeIII upon capture by NE. Consistent with this, it is known 

that catecholamines form 2:1 or 3:1 (Figure 2B) FeIII-catecholamine complexes at 

physiological pH.[60] The generality of these findings and their relevance during infections is 

not yet known. To explore this further, the metabolic fate of these catecholates will have to 

be elucidated as described in the context of FeIII-bacillibactin metabolism in Bacillus 
subtilis.[61]

3.3 Iron acquisition via coordinately unsaturated tetra- and bidentate FeIII complexes

How do these simple, coordinately unsaturated FeIII complexes get into cells? Recent studies 

confirm that catecholate siderophore FeIII complexes cross the OM via a TonB dependent 

OM receptor CfrA in Campylobacter ssp.; as expected, inactivation of CfrA strongly impairs 

norepinephrine-dependent growth (Figure 4A).[47b, 56a, 56b, 62] A periplasmic esterase Cee in 

C. jejuni, capable of hydrolyzing Ent to DHBS monomers analogous to that carried out by 

the cytoplasmic Ent esterase Fes in E. coli, [63] becomes essential when FeIII-Ent is the sole 

iron source in culture, consistent with the hypothesis that periplasmic hydrolysis of Ent is 

required for FeIII uptake in this organism.[63] This finding predicts the presence of a 

periplasmic SBP that is specific for coordinately unsaturated FeIII-NE and FeIII-Ent 

hydrolysis products localized to the cytoplasmic membrane (see Figure 2B, right); this is, in 

fact, CeuE, from the ABC transporter, Ceu.[64] Although the structure of CeuE (Figure 4B) 

reveals a positively charged, ligand binding pocket reminiscent of the FeIII-Ent binding 

pocket of E. coli FepB or P. aeruginosa PfeA,[56c] CeuE binds FeIII-Ent relatively weakly, 

while coordinatively unsaturated FeIII-di-DHBS or FeIII-[DHBS]2 complexes bind with far 

higher affinity.[56c] The crystal structures of CeuE bound to a series of 1:1 FeIII complexes 

of an artificial tetradentate, bis-catecholate complex, 4-LICAM, establish why: the two open 
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FeIII coordination sites on one side of the bis-catecholate chelate are occupied by a 

conserved tyrosine (Y288), buried in the binding pocket, and a conserved histidine (H227) 

derived from a flexible loop that covers the binding pocket (Figure 4C,D).[56c, 65]

This FeIII acquisition system in C. jejuni establishes the physiological importance of 

coordinatively unsaturated FeIII-siderophore complexes as nutritional iron sources. In fact, 

CeuE-type SBPs that conserve both Tyr and His ligands are found in Gram-negative and 

Gram-positive pathogens.[56c] This includes Vibrio cholerae VctP[66] which is known to 

bind the FeIII complex of a tetradentate bis-catecholate, salmochelin S1, preferentially over 

hexadentate siderophores. A similar CueE-type SBP, SstD, is found in Staphylococcus 
aureus and has been shown to be required for Ent-dependent FeIII acquisition and 

catecholamine-stimulated growth under severely iron-restricted conditions.[31b] This occurs 

despite the fact that both V. cholerae and S. aureus biosynthesize their own siderophores 

(Figure 2). The capacity to utilize hydrolysis products of tris-catecholate siderophores in 

polymicrobial niches is likely important, since intact siderophores may be limiting due to 

scavenging by other bacteria or sequestration by host siderocalin (Section 5).[56c, 66]

4. FeII uptake

4.1 FeII bioavailability at the host-pathogen interface

Although FeIII has long been considered the nutritionally important oxidation state of Fe at 

the host-pathogen interface, FeII can also be bioavailable particularly in anaerobic and/or 

acidic niches, both of which would enhance the solubility of FeII.[67][68] However, FeII can 

be accessible in other microenvironments as well. For example, extracellular FeII 

bioavailability may be increased by redox active metabolites like phenazines (see Figure 1) 

that are secreted by pathogens like P. aeruginosa and are capable of reducing FeIII to FeII.
[68a, 69] Weakly complexed FeII can diffuse freely into the periplasm through outer 

membrane porins in Gram-negative organisms; alternatively, a ferric reductase anchored to 

the cytoplasmic membrane functions to reduce periplasmic FeIII to FeII,[70] which is then 

transported into the cytoplasm by the Feo system (Section 4.2). The source of electrons for 

FeIII reduction by these ferrireductases could be heme,[70b] NADH[70a] or flavins.[71] In 

another variation on FeII uptake, the obligate intravacuolar pathogen Legionella 
pneumophila directly accesses the labile cytoplasmic FeII pool of the host cell by inserting 

an FeII selective transmembrane importer into the vacuolar membrane; once enriched inside 

the vacuole, FeII is then likely imported by the Feo transporter (Section 4.2).[72]

4.2 Feo system for FeII uptake

The major bacterial system that transports FeII across the cytoplasmic membrane is the Feo 

system (Figure 5A).[73] The canonical feo operon is comprised of three genes, named 

feoABC and is Fur regulated; however, the core transporter is FeoAB since FeoC is not 

encoded by the vast majority of feo operons.[74] FeoA is a small, cytoplasmic β-rich protein, 

while FeoB is a membrane protein typically comprised of three domains: an N-terminal 

cytoplasmic G protein domain, a GDP dissociation inhibitor domain (essentially a linker 

domain that connects the G domain to the transmembrane domain) and the transmembrane 

domain itself, thought to form the FeII transport channel.[73] FeoB is anticipated to couple 
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FeII transport with GTP hydrolysis with FeoA and FeoC functioning as accessory proteins in 

this process.[73–75]

Metal specificity of the Feo system.—FeoB was originally discovered by 

characterization of iron transport mutants that arose following the addition of antibiotics, 

which often generate intracellular ROS in the presence of Fe.[73, 76] Mutants that had low 

internal Fe and thus survived the treatment were isolated and feo locus was identified.[76] 

The specificity for FeII has generally been established by culturing siderophore biosynthesis 

deficient mutants under conditions where FeII speciation is favored. For example, in studies 

of V. cholerae, ascorbate added to the growth medium was found to stimulate 55Fe uptake in 

a Feo-dependent manner, and thus it was concluded that Feo was specific for FeII.[77] 

However, FeoB homologs in Porphyromonas gingivalis and Clostridium perfingens impact 

MnII uptake as well, but the extent to which this characterizes other bacterial systems is not 

known.[78] Clearly, Fe-specific FeoB proteins from E. coli and Klebsiella pneumoniae are 

more closely related than are Fe-only vs. Fe-Mn FeoB2 transporters (88 vs. 31% sequence 

identity), but the origin for this apparent relaxed metal specificity in the latter is unknown. 

The metal specificity of Feo transporters, particularly those present as second copies in 

genomes, clearly warrants further investigation.

The Feo system and virulence.—FeoB is known to be crucial for the virulence of 

several microbial pathogens. C. jejuni and Helicobacter pylori are expected to encounter 

significant FeII in the relatively acidic and oxygen-limited conditions of the upper 

gastrointestinal tract,[74] and feoB mutants in C. jejuni and H. pylori have lower viability and 

decreased colonization efficiencies in the piglet intestine and the mouse stomach, 

respectively.[79] The same is true of Salmonella in infected macrophages.[80] The feoB 
transcript has been detected in P. aeruginosa extracted from the lungs of patients suffering 

from cystic fibrosis.[68a] FeoB may act in concert with other Fe uptake systems in some 

bacterial species such as Yersinia pestis and Francisella tularensis which demonstrate 

reduced viability only when a feoB deletion is accompanied by deletion of other FeIII uptake 

systems.[81] Although most studies that investigate the impact of Feo system on bacterial 

virulence have focused on FeoB, a number of reports reveal that a feoA deletion can result in 

a significant reduction of Fe uptake and bacterial growth in several pathogens including V. 
cholerae, Salmonella enterica and A. baumannii, although the precise function of FeoA 

remains to be clarified.[82] For example, in S. enterica, both feoA and feoB deletion strains 

result in a ≈3-fold decrease in ferrous uptake, but only when other known FeII uptake 

systems are deleted. A feoA-feoB double mutant could be rescued from the defect in FeII 

uptake only by complementation of both genes, and FeoA interacts with FeoB in vivo, 

consistent with a functionally important interaction.[82b]

5. Mechanisms of Fe sequestration by the host

5.1 FeIII sequestration by the host

The host deploys siderocalin (lipocalin 2) at sites of infection to sequester FeIII-Ent and 

some other carboxymycobactin siderophores[83] thereby withholding FeIII from the 

pathogen. Abundant host proteins lactoferrin and transferrin also play a role in sequestering 

Zhang et al. Page 9

Chembiochem. Author manuscript; available in PMC 2021 July 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



extracellular FeIII. Siderocalin belongs to lipocalin family of proteins characterized by eight-

stranded antiparallel β-barrel harboring a calyx where the FeIII-siderophore complex binds 

(Figure 5B). Three positively charged side chains form a cation-π interaction with each of 

the three catechol rings of the tris-catecholate siderophore and there are additional hydrogen 

bonding interactions involving a highly conserved tyrosine residue (Figure 5B).[84] In the 

ongoing “arms race” for Fe in the infected host,[58, 85] some bacteria have adapted to 

siderocalin-mediated FeIII-Ent sequestration by synthesizing modified Ent molecules that 

cannot be bound by siderocalin, and are therefore designated stealth siderophores (Figure 1). 

These include salmochelin, which is essentially Ent derivatized with a bulky C-linked 

glucose substituent on the catechol moieties, and petrobactin, produced by Bacillus 
anthracis, which incorporates a 3,4 catechol instead of 2,3 catechol characteristic of all other 

catecholate family siderophores (see Figure 2A).[83]

5.2 FeII sequestration by the host

Although originally described as playing a role in manganese and zinc restriction at sites of 

infection,[86] the multi-metal withholding protein calprotectin (Figure 5C) is now believed to 

play an important role in FeII sequestration,[87] certainly in liquid culture-based assays,
[4b, 88] and perhaps at the host-pathogen interface. Secreted by neutrophils and highly 

abundant at infection sites, calprotectin is a heterotetramer of two S100 family proteins 

(S100A8 and S100A9; α2β2) (Figure 5C).[89] Two distinct metal coordination sites present 

at its αβ heterodimer interface exhibit distinct metal specificities and are strongly activated 

to coordinate transition metals by CaII, which is abundant in the extracellular environment.
[90] The His3Asp site 1 binds ZnII with picomolar affinity and is generally conserved in other 

S100-family metal-chelating proteins. The His6 site 2, on the other hand, is a “jack of all 

trades” and coordinates FeII, MnII, ZnII and NiII to form what are believed to be 

isostructural, His6 octahedral coordination complexes[91] of high thermodynamic and/or 

kinetic stability.[92] FeII binding by calprotectin shifts the redox speciation of Fe from FeIII 

to FeII in an aerobic environment in the absence of a extracellular reductant,[93] and is 

capable of withholding Fe from a number of Gram-positive and Gram-negative bacteria 

including P. aeruginosa, E. coli, S. enterica and K. pneumoniae.[88] [4b, 88, 92]

6. Physiological adaptation to host-mediated FeII or FeIII sequestration by 

the pathogen

A primary physiological response to severe Fe restriction is induction of the Fur regulon. Fur 

and other Fe-sensing transcriptional regulators are global regulators in many organisms, and 

thus goes well beyond the regulation of genes encoding Fe acquisition systems to a 

significant re-programming of cellular metabolism. An important mechanistic feature of this 

re-programming is the expression of one or more Fur-regulated small regulatory RNAs 

(sRNAs) that inhibit the synthesis of non-essential Fe requiring proteins and enzymes, which 

for P. aeruginosa is important in murine lung infections.[6b, 7, 94] This results in post-

transcriptional downregulation of genes that encode for cell-abundant Fe enzymes, including 

succinate dehydrogenase and cytochromes, which optimizes use of scarce bioavailable iron 

to metallate essential enzymes, a prioritization mechanism termed Fe sparing.[95] In B. 
subtilis, sRNA-regulated Fe sparing is effectively an adaptation of “last resort” and is within 
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the final “wave” of Fur-induced derepression observed upon increasingly severe degrees of 

Fe limitation.[6a] Some other effects include repression of chemotaxis and motility genes 

that has been observed during Fe limitation in A. baumannii.[96]

A major metabolic shift that may well represent a widespread, “frontline” adaptive response 

to Fe restriction is a shift toward flavin-anchored metabolic pathways, and away from a 

reliance on Fe-S-containing ferredoxins as cellular reductants. As ferredoxins and 

flavodoxins possess similar reduction potentials, flavodoxins are capable of substituting for 

ferredoxin as electron carriers (reductants) under conditions of Fe limitation, even for highly 

specific transformations including dehydration reactions in Acidaminococcus fermentans[97] 

and the desaturation of fatty acids in B. subtilis.[98] Indeed, genes encoding flavodoxins are 

highly transcriptionally induced under Fe limitation in Clostridium acetobutylicum[99] and 

in the strict anaerobe and intestinal pathogen, Clostridium difficile.[100] In many species of 

bacteria and algae, flavodoxin protein levels are detected only under conditions of Fe 

limitation [98c] and this is true for the flavodoxin WrbA in A. baumannii as well;[4b] indeed, 

the ratio of cellular flavodoxin to ferredoxin is often considered a benchmark for Fe 

limitation in marine phytoplankton.[101] In order to fully activate this metabolic switch, a 

concomitant prioritization of flavin biosynthesis must occur, which can result in an 

accumulation of riboflavin in the culture supernatant.[99, 102] The regulatory mechanisms 

that drive this switch, however, likely differ among organisms. In some bacteria, riboflavin 

biosynthesis is directly Fur-regulated, [95, 99, 102–103] while in others, this adaptive response 

to Fe limitation is not so straightforward.[104]

Recent work reveals that calprotectin induces an overlapping ZnII and Fe starvation response 

in A. baumannii, as determined by changes in both the transcriptome and the soluble 

proteome.[4b] These changes include transcriptional upregulation of the FeII importer 

FeoAB, several FeIII siderophore OM receptors, acinetobactin biosynthetic proteins and 

decreased cellular abundance of a number of Fe proteins, including the hemoprotein 

cytochrome b562 and the major ferredoxin FdxB, alongside induction of the entire Zur 

regulon.[4b, 105] More importantly, these studies uncover a strongly integrated coupling of 

extreme Fe/ZnII restriction and de novo riboflavin biosynthesis and perhaps other metabolic 

processes. To illustrate, the first enzyme in the convergent de novo flavin biosynthesis 

pathway is encoded by ribB which catalyzes the conversion of ribulose-5-phosphate to 3,4-

dihydroxy-2-butanone 4-phosphate (DHBP) (DHBP synthase or RibB). In A. baumannii, a 

novel RibB fusion protein, RibBX, an active DHBPS, becomes detectable only under 

conditions of calprotectin stress; RibBX appears to enhance flavin biosynthesis by 

dramatically increasing the flavin toxicity “set-point” thus working around riboflavin-

sensing riboswitch-mediated inhibition of authentic ribB expression.[4b] Furthermore, the 

Zur-inducible, candidate ZnII metallochaperone ZigA[106] becomes cell-abundant under 

calprotectin stress, and a calprotectin-treated ΔzigA A. baumannii strain grows poorly and 

fails to sustain cellular flavin levels. Riboflavin supplementation partially rescues this 

phenotype. How ZigA sustains flavin biosynthesis in A. baumannii is unknown, but it is 

known that this pathway harbors two obligate ZnII metalloenzymes, including the rate-

determining enzyme, GTP cyclohydrolase II, encoded by ribA. It is interesting to note that 

the Zur-regulated ZigA homolog in Bacillus subtilis, ZagA, appears to sustain folate 
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biosynthesis under conditions of zinc restriction, by interacting with an obligatory ZnII 

metalloenzyme GTP cyclohydrolase I, encoded by folE.[107]

Detailed studies like these raise the interesting possibility that in some microbial pathogens, 

the adaptive response to ZnII limitation may be more strongly interwoven with the Fe-

limitation response than previously anticipated,[108] since both stresses may be present 

concurrently in the host, particularly for extracellular pathogens, and therefore potentially 

negatively impacts nearly the entire metalloproteome. For example, the biosynthesis of the 

broad-spectrum transition-metal binding metallophore, staphylopine, in Staphylococcus 
aureus, is under dual transcriptional control by both Fur and Zur.[108] In addition, low Zn or 

low Fe jointly regulate the expression of a “hybrid” ABC-family metal transporter in 

Corynebacterium diptheriae.[109] Detailed investigations of low Zn-low Fe crosstalk should 

yield new insights in a systems-level response to co-incident host-derived ZnII and Fe 

restriction during infections.

7. Concluding Remarks

In this Concepts report, we highlight new “variations on a theme” of pathogen Fe acquisition 

that diverge from the well-studied E. coli FeIII-Ent model. We place these new studies in the 

context of recent observations that begin to challenge the FeIII-centric view of Fe acquisition 

at even aerobic or oxic/anoxic interfacial sites of infection, that collectively suggest an 

important role for FeII acquisition by the pathogen in these niches. In these sites, calprotectin 

and perhaps other small molecule divalent metal-specific chelators yet to be discovered, e.g., 

those analogous to the broad-spectrum nicotianamine-like metallophores, staphylopine and 

pseudopaline from S. aureus and P. aeruginosa, respectively,[110] may well function here. 

Staphylopine biosynthesis, efflux, metal capture, and holo metallophore uptake precisely 

parallel the FeIII-siderophore systems described here (Figures 3–4).[111] Staphylopine, 

whose biosynthesis is strongly induced by calprotectin stress,[112] does in fact bind FeII but 

with a stability constant (log KFe 12.1) nearly 1000-fold weaker than ZnII (log KZn 15.0).
[110a] Consistent with this, staphylopine outcompetes calprotectin for nutrient ZnII in S. 
aureus during infections.[111a] and the closely related pseudopaline functions to capture ZnII 

in P. aeruginosa cultures.[110b] It is interesting to note, in the context of a continuously 

evolving host-pathogen “fight over metals”,[58] that an OM-localized calprotectin receptor in 

N. gonorrhoeae is capable of hijacking ZnII from calprotectin for use as a nutritional source.
[113] Although characterized in ZnII uptake, FeII-bound calprotectin might function in this 

way as well.

Multi-modal mass spectrometry-based imaging approaches will continue to play an 

important role in future efforts to detect and quantify the chemical constituents linked to 

transition metal (Fe, Zn) speciation at tissue sites of infection, particularly important in the 

context of polymicrobial communities.[114] Such an approach was recently used to map the 

tissue distribution of siderophores in animals infected with S. aureus as well as for the 

detection of secreted proteins, e.g., calprotectin,[86a, 115] at the host-pathogen interface.[52] 

Detailed mass spectrometry analysis of a pathogen secretome ex vivo or from infected 

animals may also be leveraged for the discovery of new metallophore-like small molecules 

bound to their biologically relevant metals, e.g., as previously illustrated for the virulence-
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associated metallophore yersiniabactin in uropathogenic E. coli infections of the urinary 

tract,[116] or extracellular ferric reductases that could be involved in enhancing FeII 

bioavailability at sites of infection. The “arms race” for Fe[58] in the context of broad host-

mediated transition metal restriction continues unabated and new discoveries await.
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Figure 1. 
A schematic overview of the fight over nutrient Fe at the host (top)-bacterial pathogen 

(bottom) interface during infections. The green arrow is meant to indicate that a previously 

characterized FeIII-siderophore, e.g., yersiniobactin, from Yersinia spp. and uropathogenic E. 
coli, is capable of binding other transition metals (yellow sphere) in infected animals.
[116a, 116c] A host siderophore-like molecule is the simple catecholamine, norepinephrine 

(NE) (Figure 2A) that is proposed to strip FeIII from transferrin in redox-dependent manner.
[59]
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Figure 2. 
A) Chemical structures of the four major classes of FeIII siderophores, including the Ent 

hydrolysis products (top). This table is not meant to be exhaustive, but instead provides a 

snapshot of the structural diversity of the FeIII-chelating small molecules discussed in the 

text. The three-dimensional structures of the FeIII-Ent[26a] (pdb 6q5e; P. aeruginosa PfeA, 

see Figure 3B) and FeIII-acinetobactin[38] (pdb 6mfl; A. baumannii BauB, the SBP) are 

shown, derived from protein-ligand complexes. The α-hydroxy carboxylate and α-amino 

carboxylate bidentate chelating moieties of the citrate-derived polycarboxylate siderophores 

SA and SB are highlighted in brown. Red asterisks, although the linear structure of the SB is 
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shown, these two atoms are known to cyclize to form a hemiaminal and resulting α-hydroxy 

carboxylate moiety in the active molecule.[31c] B) Cartoon illustrations of coordinatively 

saturated and coordinatively unsaturated FeIII-siderophore complexes. The different shapes 

and colors represent distinct bidentate FeIII-chelating (e.g., catechol, hydroxamate, 

carboxylate) moieties. Thick lines, covalent connection of the component bidentate 

coordinating units; thin lines, coordination bonds to the FeIII atom (black filled circle). Red 
filled circle symbol, solvent water molecule.
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Figure 3. 
A) An expanded view of FeIII-Ent uptake (left) and FeIII-staphyloferrin A (SA)[30] (right) as 

representative of steps involved in FeIII-tris-catecholate uptake by Gram-negative bacteria 

and FeIII-polycarboxylate siderophore uptake in Gram-positive pathogens, respectively. 

Siderophore biosynthesis is not shown. Although not discussed here, TolC is a periplasm-

spanning protein required to pump apo-Ent and presumably other apo-siderophores into the 

extracellular space.[117] B) Ribbon representation of the structure of the OM β-barrel 

receptor P. aeruginosa PfeA bound to FeIII-Ent (pdb 6q5c).[26a] C) Expanded view of the 

favorable electrostatics in the binding pocket for FeIII-Ent.
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Figure 4. 
A pictorial representation of the uptake of enterobactin (Ent) hydrolysis products by Ceu 

system in C. jejuni. A) Overall process. B) Ribbon representation of the structure of the 

FeIII-4-LICAM complexed to the SPB CeuE (pdb 5a1j).[65] C) Close-up of the first 

coordination sphere around the FeIII, with CeuE-derived ligands H227 and Y288 shown 

coordinating the metal. D) Chemical structure of the synthetic tetradentate bis-catechol, 4-

LICAM.[65]
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Figure 5. 
A) Schematic illustration of FeII FeoB uptake system, with the three domains of FeoB 

indicated. See text for details. B, C) Host-derived weapons that limit the bioavailability of 

FeIII and FeII, respectively, at infection sites. B) K125A derivative of human siderocalin 

bound to FeIII-Ent (pdb 3cmp).[118] FeIII-Ent binds to positively charged calyx in the center 

of the β-barrel where favorable electrostatics govern the affinity of the complex.[119] C) 

Calprotectin. Ribbon representation of the structure of the S100A82–S100A92 

heterotetramer is shown (pdb 4ggf), with an expanded view of the site 1 and site 2 transition 

metal coordination sites, bound to ZnII and MnII respectively, in this structure (right).[89] 

The locations of the four CaII binding sites are also shown.
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