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Heat and charge transport in H,O at ice-giant
conditions from ab initio molecular dynamics
simulations
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The impact of the inner structure and thermal history of planets on their observable features,
such as luminosity or magnetic field, crucially depends on the poorly known heat and charge
transport properties of their internal layers. The thermal and electric conductivities of dif-
ferent phases of water (liquid, solid, and super-ionic) occurring in the interior of ice giant
planets, such as Uranus or Neptune, are evaluated from equilibrium ab initio molecular
dynamics, leveraging recent progresses in the theory and data analysis of transport in
extended systems. The implications of our findings on the evolution models of the ice giants
are briefly discussed.
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ydrogen and oxygen are two of the three most abundant

elements in the universe, helium being the second. As a

consequence, H,O is thought to be a major constituent of
celestial bodies formed far enough from their host star for it to
condense!. Many moons of the outer solar system, such as
Ganymede, Europa, and Enceledus, have rigid icy shells and
interior water oceans, which are key for understanding the
observed surface mass flux? and the generation of magnetic
fields3. The ice giants, Uranus and Neptune, are thought to be
composed primarily of H,0% throughout most of their interior,
the large pressure and temperature (e.g., 240 GPa and 5000 K at
half the radius of Uranus) favor a super-ionic (SI) phase, where
oxygen ions are arranged in a crystalline lattice and protons
diffuse freely like in a fluid>. Partially dissociated, liquid (PDL)
water may instead be confined to the outermost third of the
interior, where the magnetic field is generated”. Outside the solar
system, the observed characteristics of many exoplanets are also
consistent with with water-rich interiors®.

Our knowledge of the interior of planets other than Earth
mostly relies on the observation of their magnetic fields and
surface properties, which are affected by the inner structure
through the transport of energy, mass, and charge across inter-
mediate layers. In the case of Uranus, for instance, it has long
been recognized that its remarkably small luminosity? can be
explained by nonadiabatic models of the interior®19, featuring
thermal boundary layers whose transport properties are poorly
known. Likewise, any model aiming to explain the anomalous
multipolar and non-axisymmetry magnetic fields of Uranus and
Neptune requires the knowledge of the electric conductivity of the
various phases of water occurring in their interior!!. More gen-
erally, a detailed knowledge of the transport properties of dif-
ferent phases of H,O occurring at high-pT conditions is key to
any quantitative evolutionary model of water-rich celestial bodies.
In spite of the steady progress in diamond-anvil-cell and shock-
wave technologies, the experimental investigation of transport
properties of materials at planetary conditions is still challenging.
In the specific case of H,O, the electrical conductivity is only
known with large uncertainties along the Hugoniot curve on a
limited portion of the pT diagram, and nothing is known about
the heat conductivity®12-14,

Computer simulations may be our only handle on the prop-
erties of matter at physical conditions that cannot be achieved in
the laboratory. In the case of water, they have allowed us to
discover new phases® and to predict their properties at extreme
pT conditions®!> over an ever broader portion of its phase dia-
gram!®. The diverse local chemical environments that char-
acterize the different relevant phases of water make classical force
fields unfit for an accurate simulation of their properties, and call
for a full quantum-mechanical, ab initio (AI), treatment of the
chemical bond. Some transport properties of water at high-pT
conditions, such as ionic (H and O) diffusivities and the electrical
conductivity have indeed been estimated using AI molecular
dynamics (AIMD) simulations!” and the Green-Kubo (GK)
theory of linear response!®-21. However, it has long and widely
been argued that quantum-mechanical simulation methods could
not be combined with the GK theory, because the latter is based
on a microscopic representation of the energy (current) density,
which is evidently ill-defined at a quantum-mechanical level?2.
The soundness of this objection, which would actually apply to a
classical representation of the interatomic forces as well, was
recently refuted for good by the introduction of a gauge invar-
iance principle for transport coefficients?3-2°. In a nutshell, gauge
invariance means that transport coefficients do not depend on the
details of the microscopic representation of the conserved
quantity being transported, as long as this representation sums to
the correct value in the thermodynamic limit and its space

correlations are short ranged. This remarkable finding implies
that any (good, in the above sense) local representation of the
energy leads to the same heat conductivity, thus paving the way to
a fully ab initio treatment of heat transport?3, which was recently
generalized to multi-component systems20,

In this work we leverage these recent theoretical advances to
estimate the thermal conductivity and other transport coefficients
of stoichiometric H,O in the pT conditions to be found on ice-
giant planets, like Uranus and Neptune, from equilibrium AIMD
simulations, exploring its solid, PDL, and SI phases.

Results

Theory. Transport in macroscopic media is governed by the
dynamics of hydrodynamic variables, i.e., by the long-wavelength
components of the (current) densities of conserved extensive
quantities?>27-28, For short, we will dub such densities conserved
densities, the corresponding currents conserved currents, while
the macroscopic averages of the latter will be called conserved
fluxes. The GK theory of linear response!8-2! states that transport
coefficients (i.e., conductivities) are integrals of the various flux
time autocorrelation functions, which, according to the
Wiener-Khintchine theorem?®30, are the zero-frequency values
of the corresponding power spectra. An important concept in the
theory of transport is that of diffusive flux: we say that a flux is
diffusive if its power spectrum does not vanish?>2% at zero fre-
quency. Gauge invariance states that two different representations
(“gauges”) of a same conserved density that differ by the diver-
gence of a bounded vector field are equivalent in that they give
rise to macroscopic fluxes whose difference is non-diffusive, thus
resulting in the same conductivity?324,

When addressing heat transport, the relevant conserved
quantities are the energy and the numbers of particles (or
masses) of each atomic species. Since the total-mass flux itself
(i.e., the total momentum) is a constant of motion, for a P-species
system the number of independent conserved fluxes is equal to P
(energy, plus P—1 partial masses). Further constraints may
reduce the number of relevant conserved fluxes. For instance, in
solids, such as ordinary ice, atoms do not diffuse and there cannot
be any macroscopic mass flow: energy flux is therefore the only
relevant one. In molecular liquids, such as ordinary water, the
partial mass fluxes of each atomic species are non-diffusive if the
molecules do not dissociate. This is so because the integral of the
difference between the individual total momenta of different
atomic species is bound by the finite variation of the molecular
bond lengths?>2°: also in this case, therefore, energy is the only
relevant conserved quantity. On the contrary, the PDL and SI
phases of water are truly multi-component systems, because the
momentum of at least one atomic component is neither
conserved nor is its integral bound by any molecular constraints.

Heat transport in multi-component systems has long been the
subject of theoretical misconceptions and/or considered to be
numerically intractable. For instance, the thermal conductivity is
sometimes computed as the GK integral of the energy flux, Jg
ko< [ (Jp(t)J(0))dt. This simplistic approach is manifestly
wrong, as the resulting conductivity would depend on the
arbitrary choice of the atomic formation energies. To see why
this is so, let us consider the classical expression of the energy

53 Jp =& |50, Vo6, + 3R, = R, )E,, - V, | where
Q is the system’s volume, R, V,,, and €, are the atomic positions,
velocities, and energies, respectively, and F,,, = —0d¢,/0R,, are
interatomic forces. The heat conductivity cannot evidently
depend on the arbitrary zero of the atomic energies. For instance,
in ab initio calculations these energies differ in a pseudo-potential
or in an all-electron scheme, whereas transport coefficients
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should not. A better choice would be to compute the heat
conductivity from the GK integral of the heat flux, defined as
J, =Jp — &35  heNsVs, where Vg is the center-of-mass
velocity and hg the partial enthalpy of the S-th atomic species32.
This approach has the advantage that J, is no longer sensitive to a
rigid shift in the atomic energies; it is still an approximation,
though, as it neglects the coupling between energy and mass flow
(Soret effect) in the calculation of . Even if, for several systems, it
has been argued that the error in doing so is small®2, this
argument cannot be taken for granted a priori for any generic
system. Furthermore, the calculation of partial enthalpies is rather
involved33-3, and often the subject itself of crude
approximations.

A rigorous methodology to deal with multi-component
systems is provided by a combination of Onsager’s phenomen-
ological approach3®37 and the GK theory of linear response!8-21.
In this approach the interactions among different conserved
fluxes are explicitly accounted for by Onsager’s phenomenological
relations:

o= 20y (1
J

where ] is a generic conserved flux, f a thermodynamic affinity,
i.e,, the average gradient of the intensive variable conjugate to a
conserved quantity, A is the matrix of Onsager’s phenomen-
ological coefficients, and the suffixes enumerate in principle both
different conserved quantities and the Cartesian components of
their fluxes/affinities. In practice, in the following we will dispose
of Cartesian components, and only enumerate different con-
served fluxes/affinities, given that we will only be concerned with
isotropic or cubic systems. Within the GK theory, and the A
coefficients are expressed as integrals of the time correlation
functions of the relevant fluxes:

Q o0
r=p [ (707,0)d. @)

BJ 0
where 7,(t) is the time series of the i-th flux, kg is the Boltzmann
constant, and ( - ) indicates an equilibrium average. From now
on, calligraphic fonts indicate samples of stochastic processes.
The thermal conductivity is defined as the ratio between the
energy flux and the temperature gradient, when all the other
conserved fluxes vanish. In a two-component system this
condition leads to the following expression for the heat

conductivity:
! |Apwl”
K= T [AEE - . s (3)

where the M suffix indicates the mass flux of one of the two
components. The expression in square brackets is the inverse of
the EE matrix element of the inverse of the 2 x 2 matrix of the
Onsager coefficients. In the general, multivariate, case, the heat
conductivity is proportional to the Schur complement of the mass
block in A. In ref. 26 we have shown that this expression for the
heat conductivity is invariant under the addition of an arbitrary
linear combination of conserved fluxes (such as mass or adiabatic
electronic charge) to the energy flux, and we named this further
remarkable property of transport coefficients convective
invariance.

Equation (3) shows that this procedure is numerically ill-
conditioned, because the estimator of the integral in Eq. (2)
becomes a random walk as a function of the upper limit of
integration, as soon as the integrand has exhausted all its weight,
thus making the expression in Eq. (3) singular whenever the
estimator of the denominator vanishes38-4l. A solution to this
problem is provided by multivariate cepstral analysis2®, briefly

sketched below. According to the Wiener-Khintchine
theorem?%30, the Onsager coefficients in Eq. (2) are proportional
to the zero-frequency values of the flux cross power spectral

density, S;(w) = [7 (T;(£)T;(0))e " d:

A = %s,j(w —0) (4)
§y(@) = lim (5}(0) o
Sjl@) =1 7(0) - Tj(@) ©

T (w) = / 0 J(t)e dt. (7)

The continuity and smoothness of the power spectrum at low
frequency can be leveraged to systematically reduce the noise
affecting the estimator of its zero-frequency value, as explained
below. According to the central-limit theorem, the flux processes,
J (), are Gaussian because they are the space integrals of current
densities, whose correlations are short ranged. Stationarity
implies that their Fourier transforms, Eq. (7), are normal deviates
that for large 7 are uncorrelated for w # «’. It follows that the
sample spectrum of Eq. (6), aka the cross-periodogram, is a
collection of complex Wishart random matrices*> that are
uncorrelated among themselves for different frequencies. Now,
the Schur complement of a block of dimension P — 1 in a Wishart
matrix of order P is proportional to a y? stochastic variable?6:42.
We conclude that the Schur complement of the mass block, Sj, in
the cross-periodogram given by Eq. (6), is the product of a
smooth function of frequency, whose w — 0 limit is the thermal
conductivity we are after, times a set of independent, identically
distributed, 42 stochastic variables. By applying a low-pass filter to
the logarithm of this quantity, one obtains a consistent estimator
of the logarithm of the conductivity, as explained in ref. 29, a
procedure that is known as cepstral analysis in sound engineering
and speech recognition applications®3.

Simulations. The heat and charge transport properties of dif-
ferent (solid, PDL, and SI) phases of water in the 1000-3000 K
and 30-250 GPa pT range have been explored by Car-Parrinello
(CP) ab initio NVE molecular dynamics*4, using the QUANTUM
ESPRESSO suite of computer codes*>*°. We believe that the CP
Lagrangian formalism is particularly fit for transport simulations
because the accurate conservation of the (extended) total energy
allows one to generate long and stable trajectories without using
thermostats. Figure 1 shows the phase diagram of water in such
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Fig. 1 High-pT phase diagram of water. Shown are the ice-SI (dotted) and
SI-PDL curves (dashed), and Uranus' isentrope (gray solid). The symbols
indicate the pT conditions at which the simulations were run.
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Table 1 Summary of our results.
phase T P pP . K g ONE 2D
K] [GPa] [g/cm”]  [W/(Km)]  [S/cm] [S/cm] [A”/ps]
iceX v 1490+£50 182+1 3.52 16.1 £1.1 — — —
SIPCC @ 2470+80 174+2  3.39 94+06 135+7 83+2  4.88+0.13 (H)
SIPCC @ 2950+90 171+2  3.35 10.7+£0.7 1805 1054+2  7.4140.12 (H)
SIPCC @ 2910490 218+2  3.61 9.9+0.7 198+9 11442  7.3840.16 (H)
SIFCC m 2920 +£90 257+ 2 3.82 128 £1.0 256 + 8 117+ 2 7.17+0.13 (H)
PDL 1970+ 60 3341 2.04 4.1+0.3 42+ 3 3.10 = 0.03 (H)
0.92 +0.02 (0)
T, P, and p indicate temperature, pressure, and density, respetively. k, 6, and D are thermal and electrical conductivities and atomic diffusivities, respectively. ong is the value of the electric conductivity
obtained from the Nernst-Einstein relation, Eq. (9).

pT range. The SI-PDL (dashed) and ice-SI (dotted) phase
boundaries are obtained from state-of-the-art shock-compression
experiments®; Uranus’ isentrope (solid gray) from ab initio
simulations*’ is also reported. We have verified that a body-
centered-cubic (BCC) to face-centered-cubic (FCC) transition in
the oxygen lattice occurs for the SI phase at P =~ 240 GPa and T =
3000 K, in accordance with recent theoretical!® and experimental
findings*8. We then ran three simulations for the BCC-SI phase
(blue circles) and one for the FCC-SI one (blue square). We also
ran a simulation for solid ice X (green triangle) and a simulation
for the PDL (orange triangle) at pT conditions where the fraction
of dissociated molecules is ~10%%°. We have explicitly checked
that the electron energy gap computed along the various MD
trajectories is always way larger than kg7, thus ruling out any
direct electronic contributions to heat and charge transport. All
the technical details of the simulations are reported in the Sup-
plementary Note 1. Our results are summarized in Table 1.

Discussion

We start the discussion of our results by highlighting the
importance of a multi-component analysis of the heat- and mass-
flux time series resulting from our simulations. In Fig. 2 we
display the power spectrum of the energy flux of FCC-SI water at
an average temperature 7= 2920 + 90 K and pressure P =257 +
2 GPa, evaluated according to two different prescriptions: blue
lines refer to the plain spectrum of the energy flux computed
within density-functional theory using the formulation of ref. 23;
orange lines indicate the “residual spectrum” computed by
assuming that the mass flux vanishes, according to Eq. (3). The
sample power spectra (the “periodograms”) are displayed with
faint lines, whereas those subject to cepstral filtering are displayed
with thick lines; the latter are zoomed-in at low frequency and
displayed in the inset, together with their statistical uncertainties.
By looking at the zero-frequency value of the spectrum, cepstral
analysis gives k=202 W/(Km), and x=13+2 W/(Km)
neglecting and accounting for the interaction with the H mass
flux, respectively. In effectively one-component systems, statistical
analysis can be greatly facilitated by fixing a suitably defined
optimal gauge for the diffusing current®?. Since SI is a truly
bicomponent system, a bivariate analysis is indeed needed to
account for the interaction between different conserved fluxes
and for a correct estimate of x: considering the time series of the

R 7
150 | £ /
SE
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3
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Fig. 2 Energy-flux power spectra for FCC-SI water at average T = 2920 K
and P =257 GPa. Blue: plain periodogram, Sg. Orange: reduced
periodogram, Sg, computed at vanishing mass fluxes, Eq. (3). The thick
lines are the filtered spectra obtained via cepstral analysis. Inset: low-
frequency zoom of with their estimated uncertainties.

energy flux alone—as if the system were one-component—would
overestimate the heat conductivity by 80%.

Convective invariance can also be leveraged to reduce the
statistical noise, and thus the uncertainty, on the estimated value
of , as explained in ref. 26, The addition of one or more com-
ponents to the set of conserved fluxes to be analyzed decreases the
total power of the reduced spectrum without affecting its value at
zero frequency, thus making it smoother and the low-pass ceps-
tral filter more efficacious. By adopting the adiabatic electron
current as an additional flux, one obtains the refined result: ¥ =
12.8 +1.0 W/(Km). Further details on the statistical analysis of
our data can be found in the Supplementary Information.

Multi-component cepstral analysis, which has been performed
using the thermocepstrum code’l, allows us to obtain accu-
rate transport coefficients from relatively short AIMD trajectories,
particularly for the strongly anharmonic exotic phases of water
occurring at the high-pT conditions of interest here. Figure 3
shows the values and the statistical uncertainties of the heat
conductivity of different phases of water as a function of the
length of the (reduced) energy-flux time series from which they
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Fig. 3 Thermal conductivity as a function of the length of the AIMD
trajectory. Solid ice X (green), BCC-SI (T=2470K, P=174 GPa, blue),
and PDL (orange) phases of water, see Table 1. The shaded areas indicate
the estimated statistical uncertainty.

are estimated. These data show that well-converged results with
an uncertainty of =15% are obtained with trajectories as short as
10-20 ps. Not surprisingly, the more crystalline a phase is, the
larger the uncertainty for a same trajectory length (ice X > SI>
PDL), due to the larger residual harmonicity of the structure. We
stress that cepstral analysis is a self-averaging technique, in that
the statistical error affecting the estimated conductivities can be
accurately estimated and systematically reduced by increasing the
length of the simulation, thus avoiding the need to average over
different MD trajectories. Nonetheless, isotropy allows one to
consider the three Cartesian components of the fluxes as different
samples of a same process: the spectra have been thus averaged
over Cartesian components.

Our results are summarized in Table 1. In the pT conditions
examined here, the thermal conductivity of solid ice X is larger
than that of the SI phase, which is itself larger than in PDL water.
This is expected, again due to the decreasing level of harmonicity
in going from a crystalline to a partially liquid and eventually fully
liquid phase. We did not observe a significant dependence of «
upon the temperature for the SI phase in the explored range. The
FCC-SI water has slightly larger heat conductivity than BCC-SI.

Pioneering AIMD simulations of charge transport in PDL
water!” revealed that, rather unexpectedly, a classical model of
charge conduction where hydrogen and oxygen ions carry an
integer charge whose magnitudes equal their formal oxidation
numbers (qg =+1 and go = —2) yields the same conductivity
that would be obtained from the exact quantum-mechanical
expression of the electric current, based on Born’s effective char-
ges. This surprising finding was given a solid theoretical founda-
tion in a recent paper of ours where it was shown to result from
the combined effects of gauge invariance of transport coefficients
and topological quantization of adiabatic charge transport®2.
Leveraging this result, we computed the electrical conductivity
from the cepstral analysis of the classical charge flux, defined as:

jZ:é<qHZVn+qOZVn)7 (8)

neH neO

where the V’s are ionic velocities.

The electrical conductivities resulting from our simulations are
reported in Table 1. The data tagged with the “NE” subscript are
obtained using the Nernst-Einstein equation®3, which neglects

all interionic correlations and that in the one-component case
reads:

equz{NHDH (9)
Qk,T

where Ny and Dy are the number of hydrogen atoms and their
diffusivity, respectively. In the case of PDL, Eq. (9) hardly applies,
as it would depend on too large a number of parameters (the
concentrations, life-times, and diffusivities of the various ionic
charge carriers). Our results are consistent with previous theo-
retical estimates'®!7, as well as with the experimental data
obtained from electrical impedance measurements along the
liquid or precompressed Hugoniot!?-14, summarized in Fig. 4 of
ref. % 0 ~ 150 S/cm for the SI phase in the range 100-150 GPa
and 2000-3000 K; and o ~ 30 S/cm for the PDL phase at =30 GPa
and 2000 K. Two important trends emerge from our results. First,
the NE relation severely underestimates the conductivity in SI
water, as already observed in other SI systems®3. At variance with
these findings, when charge carriers of opposite signs coexist in
an electrolyte, the short-range correlations among them may
screen the amount of transported charge, thus determining a
decrease of the electric conductivity with respect to the predic-
tions of the NE approximation®*. In the second place, the elec-
trical conductivity in the FCC-SI phase is sensitively larger than
in the BCC one, in contrast to the opposite trend displayed by
hydrogen diffusivity, which are instead slightly smaller in the
FCC phase, thus resulting in comparable predictions for the two
phases of the NE approximation (ong). The lesser ability of the
NE approximation to predict the conductivity in the FCC than in
the BCC phase indicates a stronger effect of interionic correla-
tions in the former case: the higher energy barriers for a single
proton hop in FCC—due to its larger packing density®>, and
resulting in a slightly smaller jonic diffusivity—may be effectively
decreased by a cooperative motion of two or more protons (as
already observed for the carrier dynamics in solid-state electro-
lytes°©), and thus lead to an overall larger electrical conductivity.

In this paper we have reported on the first theoretically rigorous
and numerically accurate evaluation of the thermal and electric
conductivities of various phases of water occurring at the pressure
and temperature conditions to be found in the interior of ice-giant
planets, made possible by recent advances in transport theory and
data analysis. In the case of the heat conductivity, our results set a
reference in the wide range of values used in evolution models of
Uranus and Neptune®” or given by recent MD-based estimates on
dissociating water®8, and their moderate values point towards
more efficient trapping of heat in the deep interior of these pla-
nets. These results have been instrumental in the development of a
novel model of the thermal evolution of Uranus, featuring a frozen
core and an anomalously low heat flow, resulting in the observed
low luminosity of this planet®®. Finally, the electrical conductivity
that we find for SI ice is far larger than assumed in previous
models of the generation of the magnetic fields in Uranus and
Neptune®. Since SI ice is likely to dominate the deeper sluggish
layer that underlies the shallow fluid outer layer in which the
magnetic field is produced, the large electrical conductivity of the
SI phase can have a substantial impact on the geometry and time
evolution of the magnetic field of these planets.
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Data availability
The data that support the plots and relevant results within this paper are available on the
Materials Cloud Platform at https://doi.org/10.24435/materialscloud:hn-6f.

Code availability
Computer codes are available and freely downloadable from the QUANTUM ESPRESSO
site and the Thermocepstrum GitHub page referenced below.
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