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Abstract
Activity cliffs (ACs) consist of structurally similar compounds with a large difference in potency against their target. Accord-
ingly, ACs introduce discontinuity in structure-activity relationships (SARs) and are a prime source of SAR information. In 
compound data sets, the vast majority of ACs are formed by differently sized groups of structurally similar compounds with 
large potency variations. As a consequence, many of these compounds participate in multiple ACs. This coordinated forma-
tion of ACs increases their SAR information content compared to ACs considered as individual compound pairs, but com-
plicates AC analysis. In network representations, coordinated ACs give rise to clusters of varying size and topology, which 
can be interactively and computationally analyzed. While AC networks are indispensable tools to study coordinated ACs, 
they become difficult to navigate and interpret in the presence of clusters of increasing size and complex topologies. Herein, 
we introduce reduced network representations that transform AC networks into an easily interpretable format from which 
SAR information in the form of R-group tables can be readily obtained. The simplified network variant greatly improves the 
interpretability of large and complex AC networks and substantially supports SAR exploration.
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Introduction

Activity cliffs (ACs) are generally defined as pairs or groups 
of structurally similar or analogous compounds that share 
the same biological activity but have large differences in 
potency [1–3]. Accordingly, ACs encode small chemical 
changes having large effects on compound potency, which 
rationalizes their relevance for structure-activity relation-
ship (SAR) analysis and chemical optimization [1–6]. For 
AC assessment, it must be decided when two compounds 
are sufficiently similar and their potency differences large 
enough to qualify as an AC. The evaluation of molecular 

similarity depends on chosen molecular representations and 
similarity measures [7]. For AC definition, different similar-
ity and potency difference criteria are applicable and their 
choice characterizes different generations of ACs [8]. For 
systematic computational identification and analysis of ACs, 
consistent definitions must be applied [2, 3]. In addition, 
reliable AC assignments also depend on the use of high-
quality activity measurements [6]. Much of our current 
knowledge about ACs and their distribution has resulted 
from systematic search calculations in large compound 
databases. Depending on the molecular representations that 
are used for structural similarity assessment and potency 
difference criteria that are applied, the frequency of ACs 
moderately varies. For example, ~ 20–30% of bioactive com-
pounds participate in the formation of ACs and ~ 5–6% of 
pairs of structurally similar compounds form ACs if an at 
least 100-fold difference in potency is required [2, 3]. When 
alternative AC definitions are considered in parallel, on the 
order of 100,000 ACs are obtained on the basis of currently 
available bioactive compounds (unpublished data), which 
provide a rich source of SAR information.

One of the most important characteristics of ACs is 
that they rarely represent “isolated” compound pairs, i.e., 
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compounds having no other structural neighbors. Instead, 
ACs are typically formed by groups of structurally similar 
compounds with significant potency variations, giving rise 
to series of “coordinated” ACs in which many compounds 
are involved in multiple cliffs [9]. Regardless of the AC cri-
teria that are applied, greater than 90% of all ACs found 
in compound activity classes are formed in a coordinated 
manner [9]. AC coordination can be explored in network 
representations, in which nodes represent compounds and 
edges pairwise ACs. In such networks, coordinated ACs 
give rise to the formation of AC clusters of varying size 
and topology [9]. AC clusters have higher SAR information 
content than ACs studied individually but, their interactive 
analysis is arduous when clusters increase in size and their 
topologies become rather complex [10]. Therefore, attempts 
have been made to computationally extract SAR informa-
tion from AC clusters, for example, by organizing them in 
index maps on the basis of different intra-cluster structural 
relationships [10] or by isolating sequences of AC com-
pounds from clusters that follow a potency gradient [11]. 
These approaches help to dissect clusters selected from AC 
networks and isolate AC subsets, providing at least partial 
access to SAR information.

While AC networks are essential for the rationalization 
and exploration of coordinated ACs, the interpretability of 
complex networks is limited. Difficulties in interpreting 
complex AC networks hinder SAR exploration on the basis 
of AC clusters. Therefore, we have developed a network var-
iant that reduces complexity and provides immediate access 
to SAR information, as reported herein.

Materials and methods

Compound activity classes

Activity classes for AC network analysis were extracted 
from ChEMBL release 26 [12]. Compounds directly inter-
acting with human targets (target relationship type: “D”) at 
the highest assay confidence level (assay confidence score: 
9) having equilibrium constants (Ki values) with exact “=” 
relationships as potency measurements were selected. If 
multiple measurements were available they were averaged, 

provided all potency values fell within the same order of 
magnitude; otherwise, the compound was disregarded. 
Table 1 summarizes the composition of three large activity 
classes used for AC network analysis.

Compound decomposition

Systematic single-cut fragmentation of exocyclic single 
bonds was carried out using an algorithm for the genera-
tion of matched molecular pairs (MMPs) [13]. An MMP is 
defined as a pair of compounds that are only distinguished 
by a chemical modification at a single site [13]. During 
each fragmentation step two fragments per compound were 
obtained including a core and a substituent. In the core, 
a hydrogen atom was added to the substitution site. Size 
restrictions were applied to confine cores and substituents 
to those typically observed in analog series [14]. First, the 
number of non-hydrogen (heavy) atoms in the core was 
required to be at least twice as large as  in the substitu-
ent. Second, the substituent fragment was restricted to at 
most 13 heavy atoms. Third, the size difference between 
exchanged substituents in an MMP was set to at most eight 
heavy atoms.

Activity cliffs

For AC analysis, the MMP-cliff definition was used [14], 
which is tailored towards medicinal chemistry applications 
[6]. Accordingly, as AC criteria, two compounds from the 
same activity class are required to form a size-restricted 
MMP and have an at least 100-fold potency difference (ΔpKi 
≥ 2.0). By definition, MMP-cliffs contain a single substitu-
tion site.

Matching molecular series

As an extension of MMP concept, matching molecular series 
(MMSs) were systematically extracted from all AC com-
pounds. An MMS consists of two or more analogs that share 
the same core (MMS-core) and are only distinguished by 
substituents at a single site [15]. All identified MMS-cores 
were subjected to a second round of MMP fragmentation, 
as described above, to identify structurally analogous cores. 

Table 1   Activity classes

For AC network analysis, three large activity classes were taken from ChEMBL. For each class, the 
ChEMBL target ID, target name, number of qualifying compounds (CPDs), their potency value (pKi) 
range, and the number of MMP-cliffs are reported.

Target ID Target name No. CPDs pKi range No. MMP-cliffs

259 Melanocortin receptor 4 1281 [3.65, 10.10] 426
244 Coagulation factor X 1641 [3.59, 11.40] 915
237 Kappa opioid receptor 1982 [4.09, 11.52] 987
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Two MMS-cores were structurally analogous if they formed 
a core-MMP and the corresponding MMSs were the classi-
fied as an MMS-pair (MMSP). Figure 1 shows an exemplary 
MMSP.

Networks

AC networks were generated in which nodes represent 
compounds and edges indicate the formation of pairwise 
MMP-cliffs [14]. Reduced AC networks were designed as 
detailed below. All network representations were drawn with 
Cytoscape [16].

Results and discussion

Network design principles

AC networks such as the one shown in Fig. 2 (top) are 
essential for visualizing and rationalizing the coordinated 

formation of ACs. Moreover, individual clusters emerging 
in AC networks provide a basis for the extraction of SAR 
information. With a total of 426 ACs (including only two 
isolated ACs) organized in 17 clusters, the AC network for 
melanocortin receptor 4 ligands has moderate size and com-
plexity and is interpretable. However, extracting SAR infor-
mation from the three largest clusters is already difficult, if 
not impossible by interactive analysis, requiring the applica-
tion of computational approaches [10, 11]. We note that the 
use of the MMP concept as a substructure-based similarity 
criterion for AC formation supports interpretability of the 
network structure because MMP relationships are clearly 
defined and select structural analogs modified at a single 
site as AC compounds. Moreover, extension of the MMP 
concept through the MMS formalism makes it possible to 
trace MMSs in AC clusters as a basis for series-centric SAR 
analysis [11]. However, tracing single or multiple MMSs 
in AC clusters does not simplify the network structure [11].

To enable interpretation of AC networks of increasing 
size and complexity and facilitate direct extraction of SAR 
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Fig. 1   Structural relationships. Shown are two MMSs of coagula-
tion factor X inhibitors that contain multiple MMP-cliffs (indicated 
by curved arrows) and form an MMSP. MMSs are represented as 
R-group tables including compound potency (pKi) values. Hydro-
gen atoms added to the substitution sites in the two MMS-cores are 

colored red. The core-MMP resulting from the second round of frag-
mentation that establishes the relationships between these MMSs is 
shown at the bottom. Substituents distinguishing between  MMS-
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Fig. 2   Activity cliff network 
representations. At the top, 
the AC network formed by 
melanocortin receptor 4 ligands 
is shown that contains 424 
coordinated and two isolated 
MMP-cliffs. Nodes represent 
AC compounds and edges the 
formation of pairwise MMP-
cliffs. Nodes are color-coded 
to distinguish three types of 
AC compounds: green, highly 
potent AC compound; red, 
weakly potent AC compound; 
yellow, highly/weakly potent 
compound in different ACs. The 
network reveals the formation 
of AC clusters of varying size 
and topology. At the bottom, the 
reduced network is displayed. 
Design principles, as discussed 
in the text, are summarized 
on the right. In the reduced 
network, nodes represent MMSs 
and edges pairwise MMSP 
relationships
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information, we have developed an approach for the reduc-
tion of AC networks that employs the MMS formalism in 
different ways. Design principles for the simplified network 
are summarized in Fig. 2 (bottom). A central idea underlying 
the network reduction approach is transforming the entire 
cluster structure of the AC network into an array of MMSs 
and MMSPs. Thereby, all ACs are represented on the basis 
of MMSs and structurally related MMS-cores are identified. 
In the corresponding reduced network, each node represents 
an MMS comprising two or more analogs. The inclusion of 
compound pairs accounts for isolated ACs. Edges between 
nodes indicate MMSP relationships (in algorithmic terms, 
the formation of a core-MMP). Nodes are scaled in size 
according to the number of compounds per MMS and can 
be color-coded according to different potency characteristics 
(or other properties) such as the largest potency of MMS 
members. This color scheme accounts for the distribution 
of highly potent AC compounds across MMSs. AC informa-
tion is also conveyed through node borders, the thickness of 
which reflects the AC propensity within MMSs. Propensity 
represents the percentage of all possible analog pairs that 
form an AC in a given MMS. By design, individual MMS 
clusters in the reduced network may combine multiple origi-
nal AC clusters, but have simpler topologies and limited 
complexity. However, all AC information is retained and 
MMSs or MMSPs with high AC propensity can be readily 
identified and selected for further analysis.

Reducing complex activity cliff networks

The utility of reduced networks becomes immediately evi-
dent when AC networks of increasing size and complexity 
are considered such as the example in Fig. 3a. The network 
at the top consists of 915 ACs (including only 15 isolated 
ACs) and contains several densely connected spherical clus-
ters. The two largest AC clusters are essentially impossible 
to analyze interactively. By contrast, the reduced network 
at the bottom is immediately interpretable. It consists of 91 
MSSs including 71 that form a total of 87 MMSPs. In addi-
tion, there are 20 single MSSs. In the reduced network, the 
largest AC cluster (with 363 ACs) from the original network 
is mostly (96%) represented by the MMS cluster encircled 
using a blue dashed line. It can be seen that this cluster 
combines nine MMSs of greatly varying size that contain 
highly potent cliff compounds. Seven of the nine MMSs are 
densely connected including the two largest and the small-
est ones. The remaining two MMSs only form one or two 
pairs including a medium size MMS with multiple ACs. In 
contrast to the original AC network, the reduced network can 
be easily navigated including the largest clusters. Another 
example is shown in Fig. 4a. Here, the AC network of kappa 
opioid receptor ligands (top) comprises 987 ACs that are 
organized in 54 clusters, the largest of which dominates the 

network view. In the reduced network (bottom), this very 
large and densely connected cluster (with 493 ACs) is exclu-
sively represented by the encircled MMS cluster at the upper 
left (containing MMSP 1/2). Other clusters in the reduced 
network have simple topologies and are straightforward to 
analyze.

Extracting SAR information from reduced networks

A key feature of reduced networks is that individual MMSs 
or MMSPs of interest can be easily selected and represented 
in standard R-group tables. These tables are most popular in 
medicinal chemistry for the representation of analog series 
and provide immediate access to SAR information includ-
ing ACs formed within the MMSs. Examples are shown 
in Figs. 3b and 4b. Compared to original AC networks, 
extraction of SAR information from reduced networks is 
greatly simplified. Notably, generating R-group tables from 
MMSPs, as shown in Figs. 3b and 4b, further supports SAR 
analysis compared to single MMSs. This is the case because 
MMS-cores of MMSPs are structurally analogous by design. 
Since these cores are algorithmically generated for large-
scale AC analysis, they should always be compared from a 
chemical perspective when individual MMSs are considered. 
In some instances, algorithmically defined cores might be 
chemically sufficiently similar such that the R-group tables 
of the MMSP can be jointly analyzed or even combined. For 
example, this would be the case for the MMSP in Fig. 3b. In 
other instances, cores might be chemically distinct -although 
they are structurally analogous- likely giving rise to different 
SAR characteristics exhibited by related MMSs. Examples 
are provided in Fig. 4b. Since these MMSs from reduced 
networks contain ACs, they likely reveal SAR determinants 
for related yet distinct series. The reduced networks pro-
vide many opportunities for comparing SARs encoded by 
MMSPs on the basis of their R-group tables, which benefits 
SAR exploration from a medicinal chemistry perspective.

Conclusions

The vast majority of ACs are formed in a coordinated man-
ner. For their analysis, network representations play a central 
role. In AC networks, coordinated ACs centred on different 
analog series emerge as disjoint clusters of different com-
position and varying topology. These AC clusters become 
a primary focal point for SAR exploration. However, with 
increasing size and complexity, AC networks become dif-
ficult to navigate and clusters hard to analyze interactively. 
Accordingly, there is a need for making coordinated ACs 
and the information they provide available in a format that 
is readily interpretable. We have reasoned that network 
reduction might be suitable for this purpose, provided that 
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Fig. 3   Activity cliff networks 
for coagulation factor X 
inhibitors. In a, the original AC 
network (top) and the reduced 
network (bottom) are displayed 
according to Fig. 2. Numbers 
at an encircled node and cluster 
mark an exemplary isolated 
MMS (1) and an MMSP (2/3), 
respectively. In b, R-group 
tables representing the isolated 
MMS (top) and MMSP (bot-
tom) are shown.
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Fig. 4   Activity cliff networks 
for kappa opioid receptor. In a 
the original AC network (top) 
and the reduced network (bot-
tom) are displayed according 
to Fig. 2. Numbers at encircled 
clusters mark three exemplary 
MMSPs (1/2, 3/4, and 5/6). In b 
R-group tables representing the 
three MMSPs are shown
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AC information could be fully retained. Therefore, in this 
work, we have introduced an approach for the generation 
of simplified AC networks that is conceptually based upon 
the MMS formalism and the assessment of structural rela-
tionships between MMSs. In reduced networks, resulting 
MMSPs and individual MMSs resolve the original AC 
cluster structure and replace it with a higher-level structural 
organization scheme, which results in simplified network 
views and ensures interpretability. This represent a key 
aspect of the design strategy. As shown herein, original and 
reduced networks can be analyzed side-by-side, providing 
complementary views. Moreover, from reduced networks, 
MMSs and MMSPs can be easily selected and represented as 
R-group tables that reveal ACs and SAR information. This is 
another key feature of the approach. Presenting analog series 
from simplified networks in the form of R-group tables ena-
bles SAR analysis from a medicinal chemistry perspective, 
without requiring further computational input, and hence 
supports practical applications. In our proof-of-concept 
study, representative activity classes and AC populations 
have been investigated to demonstrate the utility of the 
approach. Reduced networks have been generated for many 
more activity classes, consistently enabling interpretation 
of AC clusters and SAR analysis on the basis of R-group 
tables. We also note that reduced network representations 
will not replace original AC networks, but are designed to 
aid in their analysis through the generation of complemen-
tary simplified views. AC networks remain important tools 
for globally visualizing the coordinated formation of ACs 
and comparing AC populations originating from differ-
ent compound data sets. However, reduced networks will 
be essential for detailed analysis of large AC clusters with 
complex topologies.
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