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Abstract

Thaumarchaeota constitute an abundant and ubiquitous phylum of Archaea that play critical roles in the global nitrogen and
carbon cycles. Most well-characterized members of the phylum are chemolithoautotrophic ammonia-oxidizing archaea
(AOA), which comprise up to 5 and 20% of the total single-celled life in soil and marine systems, respectively. Using two
high-quality metagenome-assembled genomes (MAGs), here we describe a divergent marine thaumarchaeal clade that is
devoid of the ammonia-oxidation machinery and the AOA-specific carbon-fixation pathway. Phylogenomic analyses placed
these genomes within the uncultivated and largely understudied marine pSL12-like thaumarchaeal clade. The predominant
mode of nutrient acquisition appears to be aerobic heterotrophy, evidenced by the presence of respiratory complexes and
various organic carbon degradation pathways. Both genomes encoded several pyrroloquinoline quinone (PQQ)-dependent
alcohol dehydrogenases, as well as a form III RuBisCO. Metabolic reconstructions suggest anaplerotic CO, assimilation
mediated by RuBisCO, which may be linked to the central carbon metabolism. We conclude that these genomes represent a
hitherto unrecognized evolutionary link between predominantly anaerobic basal thaumarchaeal lineages and mesophilic

marine AOA, with important implications for diversification within the phylum Thaumarchaeota.

Introduction

Archaea of the phylum Thaumarchaeota are among the
most abundant microorganisms on the planet, constituting
up to 20% of single-celled life in marine systems alone [1].
Although most characterized members of Thaumarchaeota
are ammonia-oxidizing archaea (AOA), the phylum also
encompasses several archaeal clades for which ammonia
oxidation has not yet been demonstrated (e.g., Group 1.lc,
and Group 1.3 [2]). These basal, non-AOA members of the
phylum have primarily been described in terrestrial systems
such as anoxic peat soils [3], subsurface aquifer sediments
[4], geothermal springs [5, 6], and acidic forest soil [7].
Availability of molecular oxygen on Earth is hypothesized

Supplementary information The online version of this article (https://
doi.org/10.1038/s41396-020-0675-6) contains supplementary
material, which is available to authorized users.

P4 Christopher A. Francis
caf@stanford.edu

1" Earth System Science, Stanford University, Stanford, CA, USA

to have influenced the evolution and habitat expansion of
AOA from the basal anaerobic guilds [8].

A deeply branching marine thaumarchaeal clade that has
eluded cultivation and genomic analysis efforts is the
pSL12-like group, also referred to as Group 1A or ALOHA
group. First detected by DeLong et al. [9] in the North
Pacific Subtropical Gyre at station ALOHA, this clade
appeared to be divergent from Marine Group 1 Archaea,
clustering with a hot spring-associated crenarchaeal 16S
rRNA sequence designated pSL12 [10]. Mincer et al. [11]
suggested that at least some members of the clade may
harbor the ammonia-oxidation machinery, based on corre-
lating abundances of the 16S rRNA gene and the amoA
gene in oceanic water column samples (amoA encodes the
alpha-subunit of ammonia monooxygenase (AMO); con-
ventionally used as the functional marker for AOA). The
only available genomic information for the pSL12-like
lineage comes from a fosmid clone library generated from
the Mediterranean Sea [12]. One of the three pSL12-like
fosmid sequences recovered by Martin-Cuadrado et al. [12]
contained genes putatively involved in nitrogen fixation;
however, there has been no genomic or biogeochemical
evidence supporting this observation since. Several SSU
rRNA gene surveys have detected the pSL12-like group in
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various marine systems such as the Atlantic Ocean [13],
Mediterranean Sea [14], multiple Pacific Ocean transects
[15], the Northern Gulf of Mexico [16], and Monterey Bay
[17]. Despite their suggested roles in N-cycle transforma-
tions, the metabolic adaptations of the pSL12-like lineage
remain an open question.

Here we analyze the genomic repertoire and metabolic
strategies of the pSLI12-like lineage, based on two
metagenome-assembled genomes (MAGs) obtained from
seawater incubation metagenomes derived from Monterey
Bay. Metabolic reconstructions point to a heterotrophic
lifestyle. Intriguingly, both genomes also encoded a form III
ribulose-bisphosphate carboxylase (RuBisCO), which may
participate in a CO, incorporation pathway linked to
nucleoside salvage reactions. The high degree of phyloge-
netic and metabolic separation between these MAGs and
typical marine thaumarchaeal clades suggests that the
pSL12-like lineage represents an evolutionary link between
anaerobic basal clades of Thaumarchaeota and aerobic
marine AOA.

Materials and methods
Sample collection, incubation, and DNA extraction

Water column samples for AOA enrichment incubations
were collected from Monterey Bay, CA, in May 2010.
ASW?2 was collected from 150 m at station M1 (36.747 N,
—122.022 W), and ASWS8 was collected from 200 m at
station M2 further offshore (36.697 N, —122.378 W). After
8 years of incubation at 12°C (seawater samples were
unamended; the long incubation period was to facilitate
natural enrichment of AOA), 925 and 1000 mL each of the
samples (for ASW2 and ASWS, respectively) were filtered
using a 0.22-um filter (Supor, Pall Inc, New York, USA).
DNA was extracted using the DNeasy kit (Qiagen, Valen-
cia, CA, USA), following the manufacturer’s protocol. To
maximize DNA yield, DNeasy capture columns were eluted
twice with 50 uL each of elution buffer, resulting in 100 pL
total elution volume for each sample. DNA concentration
was measured using Qubit Fluorometer (Invitrogen, NY,
USA); 1.41 and 1.88pg/mL. DNA was obtained from
ASW?2 and ASWS, respectively.

Metagenome sequencing, assembly, and binning

Metagenome sequencing was performed as a part of a
Community Science Program (CSP) project with the DOE
Joint Genome Institute (JGI); the samples were sequenced
(2x 151 bp) using the HiSeq 2000 ITB platform. Read
quality-filtering was carried out using the custom JGI script
jgi_mga_meta_rqc.py (v2.0.0). Briefly, trimmed paired-end
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reads filtered using BBDuk [18] (v37.50; BBTools software
package, http://bbtools.jgi.doe.gov) were read-corrected
using BFC (v.r181 [19]). Reads without a mate pair were
removed.

Quality-filtered reads were assembled using MEGAHIT
(v1.1.3 [20, 21]), using a range of k-mers (k =21, 33, 55,
77, 99, 127). Contigs longer than 2000 bp were binned
using two algorithms: MetaBAT2 (v2.12.1 [22]) and
MaxBin2 (v2.2.6 [23, 24]). Resulting bins were refined
using the bin refinement module in metaWRAP (v1.2.2
[25]), and subsequently re-assembled using SPAdes
(v3.13.0 [26]) to improve assembly quality. CheckM
(v1.0.12 [27]) was used to assess bin completion. Taxo-
nomic classifications were obtained using the GTDB-tk
toolkit (v0.3.2 [28]). Dereplication based on average
nucleotide identity (ANI) was performed using dRep
(v2.3.2 [29]). Only bins with estimated completeness >70%
and contamination <10% were retained for downstream
analysis.

The assembled genome sequences can be accessed under
the BioSample IDs SAMN14765629 and SAMN14765628,
respectively, for ASW2_bind5 and ASWS8_binl (corre-
sponding BioProject accessions are PRJNA621967 and
PRINAS5393660, respectively).

MAG annotation and metabolic reconstruction

Prodigal (v2.6.3 [30]) was used for gene prediction, and
functional annotations were obtained using Prokka (v1.12
[31]). In addition, the BlastKOALA and GhostKOALA tool
servers [32] were used to obtain KO annotations for genes
predicted by Prodigal. KEGG-decoder [33] was used to
estimate pathway completeness based on KO annotations,
and the results were plotted in R [34]. SEED annotations
were obtained from the online Rapid Annotation using
Subsystem Technology server [35]. Metabolic reconstruc-
tions were carried out using the ‘Reconstruct Pathway’ tool
in KEGG mapper (https://www.genome.jp/kegg/mapper.
html). TransportDB (v2.0 [36]) was used to predict mem-
brane transporters; these annotations were further confirmed
by BLASTp searches against the NCBI nonredundant pro-
tein database. SignalP-5.0 Server was used for signal peptide
prediction (http://www.cbs.dtu.dk/services/SignalP-5.0/).

Phylogenetic analyses

Reference genomes for Thaumarchaeota and Aigarchaeota
were downloaded from NCBI or the Integrated Microbial
Genomes system. The phylogenomics module in Anvi’o
(v5.4 [37]) was used to retrieve ribosomal sequences from
the MAGs and the reference genomes. The ‘anvi-get-
sequences-for-hmm-hits’ command was used to search for
and retrieve 30 ribosomal proteins from each genome (these
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included ribosomal proteins L1, L10, L11, L11_N, L13,
L14, L16, L18p, L2, L22, 123, L29, L2_C, L3, L4, L5,
L5_C, Le, S11, S13, S15, S17, S19, S2, S3_C, S5, S5_C,
S7, S8, and S9). Amino acid sequences for the retrieved
proteins were aligned using MUSCLE [38] and con-
catenated. The alignment was trimmed using trimal [39],
with the parameters: -gapthreshold 0.75 -simthreshold
0.001. Further manual refinement was carried out in Gen-
eious (v10.2; Biomatters Ltd, New Zealand). Since some of
the genomes included in the analysis were assembled from
metagenome or single-cell genome data, not all ribosomal
proteins were universally identified across genomes. In the
final alignment, only those genes identified in all genomes
were retained, and this amounted to a total of 11 genes
across 23 genomes. A maximum-likelihood tree was com-
puted using FastTree [40] with 100 bootstrap replicates.

We used BLASTp [41] to search the MAGs for proteins
of interest—both to confirm automatic annotations and to
search for specific pathways/genes. Barrnap (v0.9; https://
github.com/tseemann/barrnap) was used to identify riboso-
mal features. 16S rRNA sequences were aligned with
reference sequences using MAFFT [42], and a maximum-
likelihood phylogenetic tree was computed in FastTree [40]
with 1000 bootstrap replicates. RuBisCO reference
sequences were obtained from Jaffe et al. [43]; MAFFT and
FastTree, respectively, were used for generating an align-
ment and a phylogenetic tree.

FastANI [44] was used to compute ANI between the
MAGs. GTDB-tk identified a moderate-quality (62% esti-
mated completeness) MAG assembled from a deep hydro-
thermal plume [45] as a close relative of the MAGs
assembled here; this genome (UBAS7) was also included in
FastANI and function comparison analyses.

Assessing environmental distribution of MAGs

As part of the time-series microbiome survey in Monterey
Bay, we previously obtained a depth-resolved dataset of
16S rRNA V4-V5 amplicon sequences [46], as well as
metagenomes and metatranscriptomes [47]. We were able to
match one of the MAG-derived 16S rRNA sequences to an
operational taxonomic unit (OTU) obtained in the 16S
rRNA time-series dataset. We estimated the relative abun-
dance of this OTU as well as another that shared 96-97%
sequence identity with the MAG-derived sequences.

We used three metagenome sets for read recruitment:
(i) a depth- and time-resolved metagenome dataset from
Monterey Bay; (ii) a North Atlantic Ocean depth profile
from the TARA Oceans dataset; and (iii) a North Pacific
Ocean depth profile from the TARA Oceans dataset. Note
that the TARA oceans datasets do not represent a con-
tinuous depth profile (Table S1). Bowtie2 (v2.3.5 [48])
was used to recruit metagenomic and metatranscriptomic

reads against the MAGs. Read abundances were normal-
ized as the number of reads recruited per kilobase of
MAG and gigabase of metagenome (RPKG). The RPKG
values allowed the direct comparison of genome abun-
dances (measured as coverage) between metagenomes of
different sizes.

Results and discussion

Genomes recovered from reduced-diversity
metagenomes

Unamended seawater incubations were started in 2010,
using water collected from various depths in Monterey Bay
(see Materials and methods). Prior to metagenome
sequencing, 16S rRNA gene amplicon libraries were gen-
erated to examine the community composition in each
incubation. This suggested an enrichment of Thaumarch-
aeota in both samples presented here (Fig. S1), and these
samples were further examined via metagenome sequen-
cing. Assembly and binning resulted in three genomic bins
of the pSL12-like lineage, which were further dereplicated
into two MAGs (see Materials and methods).

The MAGs assembled here represent the first high-
quality genomes reported for the pSL12-like lineage
(completion estimates for the two MAGs are 88.8 and
97.08%, with <3% contamination; Table 1). Their relative
placement within the phylum Thaumarchaeota was con-
firmed by both phylogenomic and single-gene phylogenetic
analyses (Fig. 1). Both MAGs contained two partial copies
each of the 16S ribosomal rRNA gene. On two separate
maximum-likelihood trees computed on nucleotide align-
ments that included reference sequences from all major
thaumarchaeal lineages, the MAG-derived 16S rRNA
sequences clustered with Group 1A clone fragments gen-
erated from various ocean regions in prior studies (Figs. la
and S2; [11-13]). The 3’-truncated 16S rRNA gene frag-
ments within the MAGs shared 93.85% nucleotide identity
along the aligned region (910 aligned positions), while the
5'-truncated fragments shared 92.32% nucleotide identity
(664 aligned positions). The original primer pairs developed
by Mincer et al. [11] to target the pSL12-like lineage
aligned without any mismatches to the longer 3’-truncated
16S rRNA gene fragments from both genomes. Similarly,
the widely used universal primers targeting the V4-V5
region of the 16S rRNA gene [49] also aligned with the
MAG-derived sequences, again without any mismatches.
Thus, microbial community surveys employing either of
these primer sets should pick up the pSL12-like/Group 1A
lineage. We were able to verify this in a high-resolution 16S
rRNA gene dataset generated from Monterey Bay targeting
the V4-V5 region (see discussion below).
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Table 1 Metagenome-assembled

(MAG) statisti MAG ID Completion Contamination Number of N50  Number ANI

genome staistics. contigs of bases with UBAS57
ASWS8_binl  97.08% 2.91% 91 16957 996,535 95.00%
ASW2_bin45 88.83% 0.97% 46 35482 918,577 80.21%

Estimates of genome completeness and contamination. Also presented are the average nucleotide identity
(ANI) comparisons with UBA57, a closely related metagenome-assembled genome from a deep
hydrothermal plume metagenome (See Materials and methods for details).
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Fig. 1 The assembled genomes cluster within the marine pSL12-
like thaumarchaeal lineage. a Maximum-likelihood phylogenomic
tree computed using a concatenated alignment of 11 ribosomal pro-
teins. Bootstrap values are indicated on nodes. See Materials and

The closest genomic relative in the database was a MAG
obtained from a hydrothermal vent plume metagenome
(from 4900 m depth on the Mid-Cayman Spreading Center
[45]), which potentially represents a species-level relative
[50] of ASWS8_binl (Table 1). Within a maximum-
likelihood tree computed using a concatenated alignment
of 11 core ribosomal proteins, the two MAGs were placed
as a sister-clade to all known ammonia-oxidizing Thau-
marchaeota of Group 1.la (marine AOA) and 1.1b (soil
AOA) (Fig. 1a). Similarly, based on 16S rRNA gene phy-
logeny, the MAGs clustered with environmental clone
sequences of the pSL12-like clade (Fig. 1b). The original
hot spring pSL12 lineage (including the only available
MAG for this lineage, DRTY-7 bin_36, assembled from a
hot spring metagenome [6]) comprised a distant sister clade
to the marine pSL12-like group.
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Mesophilic AOA
J (Terrestrial and
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methods for details on alignment and tree computation. b Phylogeny
of MAG-derived 16S rRNA gene sequences with genomic as well as
environmental reference sequences. Node shading indicates bootstrap
support.

Metabolic potential distinct from typical marine
Thaumarchaeota

Capacity for ammonia oxidation was not detected in either
MAG, as we could not retrieve homologs of the AMO or
nitrite reductase (nirK) genes. Moreover, the carbon-
fixation pathway uniquely found in chemolithoautotrophic
Thaumarchaeota—a modified version of the 3-hydro-
xypropionate/4-hydroxybutyrate (HP/HB) cycle [51]—
appeared to be missing in both genomes. The myriad of
multicopper oxidases characteristic of mesophilic AOA
genomes [52] were also missing; although manual BLASTp
searches did identify copper-binding proteins of the plas-
tocyanin/azurin family in both genomes. These genes were
located in the vicinity of cytochrome or ATP synthase
proteins, suggesting a role in electron transfer. Since the
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Fig. 2 Metabolic capabilities of pSL12-like clade distinct from
typical AOA. a Comparison of selected metabolic features across
thaumarchaeal genomes. pSL12-like MAGs are highlighted in red.
Caldiarchaeum subterraneum belonging to the closely related candi-
date phylum Aigarchaeota, is also included for comparison. Gene
abbreviations: AMO, ammonia monooxygenase; nirK, nitrite reduc-
tase; CA, carbonic anhydrase; pqg-adh, PQQ-dependent alcohol
dehydrogenase; fixABC, electron transferring flavoprotein subunits A,
B, and C. Taxa abbreviations: Caldi, Ca. Caldiarchacum sub-
terraneum; NO23, SCGC AAA007 O23; Nbrevis, Ca. Nitrosopelagi-
cus brevis CN25; Ncatalina, Ca. Nitrosomarinus catalina SPOTO01;
Nexaq, Ca. Nitrosocosmicus exaquare; NAQO6f, Ca. Nitrosotenuis
aquarius AQOf; Nvien, Nitrososphaera viennensis; Ncavasc, Ca.

genomes are not closed, our failure to detect the ‘expected’
pathways/genes does not definitively indicate their absence.
However, there were striking differences in the overall
genomic repertoire of typical AOA genomes and the MAGs
recovered here (Fig. 2a), which cannot be explained by the
lack of genome completeness alone.

None of the six canonical carbon-fixation pathways were
complete in the MAGs. It is possible that these Thau-
marchaeota may use the recently described reverse oxida-
tive TCA cycle for CO, fixation [53], since the genomes
contained fumarate reductases, and 2-oxoglutarate/2-oxoa-
cid ferredoxin oxidoreductases. In this pathway, a reversible
citrate synthase catalyzes the production of citrate from
acetyl-CoA. Recently, metabolic reconstructions were used
to predict the existence of the roTCA cycle in Aigarchaeota
[6]. However, we take caution in asserting roTCA CO,
fixation in pSL12-like Thaumarchaeota, since genomic
inference alone is not sufficient evidence for this pathway
(many of the enzymes are bifunctional and common with
the anabolic TCA cycle).

Metabolic reconstructions indicate aerobic
heterotrophy

The presence of respiratory complexes and various organic
carbon-assimilating metabolic pathways (e.g., fatty acid
oxidation, sugar metabolism, amino acid degradation, and

ASW2_bin45_RuBisCO
c ASW8_bin1_RuBisCO
IV-like Methanocella arvoryzae MRE5S_Form Illa
Methanocella paludicola_Form llla
Methanofolliis liminatans DSM 414_Form llla

Methanospirillum hungatei_Form llla

/m

2+
£

*k

RuBisCO (this study)
+ Ca. N. bavarica RuBisCO
## Thaumarchaeota BS4, DS1 RuBisCO

Nitrosocaldus cavascurensis; Ndev, Ca. Nitrosotalea devanaterra;
Nbavar, Ca. Nitrosotalea bavarica, BS4, Thaumarchaeota archaeon
BS4 (MAG); DSI1, Thaumarchaeota archaeon DS1 (MAG); and
DRTY36, DRTY-7 bin_36 (MAG). b Phylogenetic tree of RuBisCO
sequences computed in FastTree using a MAFFT alignment of amino
acid sequences. The MAG-derived RuBisCO sequences are high-
lighted. Previously reported thaumarchaeal RuBisCO sequences are
also highlighted. Forms I, II, and III exhibit carboxylation activity,
whereas the form IV RuBisCO does not. ¢ Subtree highlighting the
relative placements of the MAG-derived RuBisCO sequences with
respect to Form III-a sequences from methanogens. This subtree was
extracted from the original maximume-likelihood tree presented in (b).

potential methylotrophy; Fig. 3) suggest a predominantly
heterotrophic lifestyle for these Thaumarchaeota. No
external inorganic electron donors were identified based on
the genome annotations. In addition to the aerobic respira-
tory chain, both genomes contained electron transfer fla-
voprotein (fixABC) homologs. These proteins are involved
in electron transfer to nitrogenase in diazotrophic bacteria
[54]. Homologs of fixABC have previously been reported in
non-diazotrophic archaea, including terrestrial AOA [55];
yet their functional role in non-diazotrophs remains unclear.
The fix operon has not been reported in marine AOA, but it
appears that the deep marine AOA clade (water column B
(WCB) group found predominantly at depths >200 m [56])
may also contain the fix genes (Fig. 2a; SCGC AAA007
023 is a representative WCB genome). As discussed in a
later section, the pSL12-like lineage appears to be particu-
larly abundant deeper in the water column, resembling the
distribution of the WCB lineage (also observed in a recent
survey of Thaumarchaeota communities in Monterey Bay
[17]). The presence of fixABC genes in these two clades
might be a reflection of their niche adaptation, and will need
to be investigated further.

Unlike other AOA, our two MAGs encoded several
pyrroloquinoline  quinone  (PQQ)-dependent  dehy-
drogenases containing N-terminal signal peptides (indicat-
ing extracellular localization), which can directly contribute
reducing equivalents to the respiratory chain via
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Fig. 3 Overview of metabolic potential based on metabolic
reconstructions of the pSL12-like MAGs. Red dashed arrows indi-
cate unidentified genes. The TCA cycle is presented in the anabolic
direction. For detailed gene information, see Dataset 1. PEP phos-
phoenol pyruvate, 2-PG 2-phosphoglycerate, 3-PG 3-phosphoglyce-
rate, 1,3-BPG 1,3-bisphosphoglycerate, G3P glyceraldehyde 3-
phosphate, DHAP dihydroxyacetone phosphate, F6P fructose 6-

extracellular sugar and/or alcohol oxidation (Fig. 3). Spe-
cific proteins were identified in both MAGs as putative
PQQ-dependent methanol, ethanol, and glucose dehy-
drogenases (Dataset 1). Both methanol and glucose dehy-
drogenases that use PQQ as the prosthetic group are known
to catalyze the oxidation of diverse alcohols and hexoses/
pentoses, respectively [57], suggesting some degree of
metabolic versatility in these archaea. PQQ synthase pro-
teins were also identified in both genomes (Dataset 1). Up
to 5 quinoprotein dehydrogenases were found to be colo-
calized on the same contig, along with amicyanin/plasto-
cyanin-like small copper proteins and ATP synthase
subunits (e.g., contigs ASW2bin45_2 and ASW8binl_21;
Dataset 1), indicating their combined involvement in an
electron transport chain coupled to energy conservation.
Formaldehyde resulting from methanol oxidation is cyto-
toxic, and hence is promptly removed via dissimilatory or
assimilatory pathways. Formaldehyde oxidation to formate
likely proceeds via the tetrahydromethanopterin (H4MPT)
pathway in these archaea, as the annotated genes included a
F420-dependent methylene-tetrahydromethanopterin  dehy-
drogenase (mtd) and a methylene-tetrahydromethanopterin
cyclohydrolase/reductase (Dataset 1). Whether formaldehyde
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oxidation proceeds all the way to CO; is unclear based on the
annotations, since neither MAG encoded a formate dehy-
drogenase. Alternatively, formaldehyde may also get assimi-
lated via the tetrahydrofolate or the serine pathway (neither
pathway annotations were complete).

Metabolic reconstructions suggest the use of diverse
organic compounds as potential electron donors. In addition
to the fatty acid oxidation pathway, multiple sugar trans-
porters with homology to trehalose/maltose import proteins
and arabinose permeases were annotated in the MAGs
(Dataset 1). Both MAGs also encoded a halolysin-like
protease, which may hydrolyze proteins extracellularly and
the resulting peptides may be imported as nutrients. Sup-
porting this, peptide ABC transporter permease proteins and
branched-chain amino acid transporters were identified in
both genomes. Protein topology modeling suggested the
extracellular localization of the halolysin protease, sug-
gesting its involvement in protein degradation externally.

Thaumarchaeal lineages previously identified as basal
groups lacking the capacity to oxidize ammonia (which
were obtained from nonmarine environments) are reported
to possess anaerobic energy generation pathways such as
sulfate or nitrate reduction [5]. The MAGs assembled here



Metagenome-assembled genomes reveal unique metabolic adaptations of a basal marine Thaumarchaeota lineage 21

contained no definitive evidence for anaerobic respiration,
although we acknowledge this might be due to the lack of
genome completeness. Moreover, many of the genomic
features identified as unique/core features for the anaerobic
basal thaumarchaeal lineages in a recent comparative meta-
analysis [8] were also absent in these MAGs [(i.e., pyruvate:
ferredoxin oxidoreductase (porABDG), cytochrome bd-type
terminal oxidase (cydA), and acetyl-CoA decarbonylase/
synthase (codhAB)]. Thus, multiple lines of evidence point
to these MAGs representing a divergent, basal lineage
within the aerobic, mesophilic clade of Thaumarchaeota.

Metabolic hypothesis on a RuBisCO-mediated
anaplerotic CO, assimilation pathway

Unexpectedly, both MAGs harbored an archaeal type III
RuBisCO gene (463 aa long; 96.76% amino acid identity to
each other). Hypothesized to be the most ancient form of
RuBisCO, form III is predominantly found in Archaea [58].
Recent metagenomic surveys have revealed numerous
members of the candidate phyla radiation [59, 60] and
DPANN archaea [43, 61] also encoding a form III-like
RuBisCO. A divergent variant categorized as form Ill-a is
found in methanogenic archaea. Our MAG-derived
sequences clustered with the methanogen III-a RuBisCO
sequences (Fig. 2b—c), albeit with 30-35% amino acid
identity.

Two separate studies have previously reported a form III
RuBisCO in Thaumarchaeota, and in both cases the
assembled genomes represented acidophilic terrestrial
lineages: (i) Ca. Nitrosotalea bavarica SbT1 was assembled
and binned from an acidic peatland metagenome [62], and
(i1) the deeply branching BS4 and DS1 were assembled
from acidic geothermal spring sediments in Yellowstone
National Park [5]. RuBisCO sequences from these MAGs
clustered within the main archaeal form III clade (Fig. 2b),
and were <30% identical (in the amino acid space) to the
sequences we obtained in this study.

Despite exhibiting carboxylase activity, genomic and
biochemical evidence suggest that form III RuBisCO is
not involved in carbon fixation via the canonical
Calvin—-Benson—Bassham (CBB) cycle [63, 64]. In many
archaea harboring RuBisCO, phosphoribulokinase (PRK)
required for the regeneration of the RuBisCO substrate
(RuBP) is missing [63], suggesting the absence of a func-
tional CBB pathway. Intriguingly, methanogenic archaea
harboring form IIl-a RuBisCO encode a PRK, yet are
missing other key components of the CBB cycle [65]. Thus,
RuBisCO in these methanogens is thought to be involved in
carbon assimilation via the reductive-hexulose-phosphate
(RHP) pathway [65]. As demonstrated in Methanospirillum
hungatei, RuBP regeneration in the RHP pathway involves
the activity of PRK, as well as the formaldehyde-

assimilating ribulose monophosphate (RuMP) pathway
operating in reverse [65].

The second proposed route for form III RuBisCO-
mediated carbon metabolism involves nucleoside assimila-
tion/degradation via the archaeal AMP pathway [63, 64].
Briefly, adenosine monophosphate (AMP, retrieved from
the phosphorylation of nucleosides) is converted to ribose
1,5-bisphosphate (R15P) by AMP phosphorylase. Subse-
quently, R15P is isomerized to ribulose 1,5-bisphosphate
(RuBP) by ribose 1,5-bisphosphate isomerase (R15Pi). In
an irreversible reaction, RuBisCO combines RuBP with
CO, and H,O to yield 3-phosphoglycerate (3-PG), which
then enters the central carbon metabolism (via glycolysis or
gluconeogenesis). Sato et al. [63] proposed that the reduc-
tive pentose phosphate pathway, if present, may cyclize the
above-described series of transformations, effectively ren-
dering it a carbon-fixation pathway.

Homology comparisons revealed the conservation of
key active site residues for carboxylation in our MAG-
derived RuBisCO sequences (Fig. S3). However, little
evidence exists to support the methanogenic RHP CO,
fixation pathway—in addition to a missing PRK, many
key enzymes in the methanogenic RHP and RuMP path-
ways could not be identified. Metabolic inferences best
support an anaplerotic function for the carboxylation
reaction via the AMP pathway for nucleotide salvage. A
key difference from the archaecal AMP pathway, however,
is the presence of a complete non-oxidative pentose
phosphate pathway (nPPP) and gluconeogenesis in the
pSL12-like lineage. The nPPP pathway operating in
reverse to generate RSP from gluconeogenesis inter-
mediates, combined with RuBP regeneration from PRPP
and/or AMP, might constitute a cyclic CO, fixation
pathway ([63, 66]; Fig. 3). Several of the genes encoding
key enzymes in the proposed pathway appeared to be
colocalized on the same assembled contigs in both MAGs
(Fig. S4), suggesting potential co-expression. This path-
way, however, likely has an anaplerotic function, poten-
tially regulated by intracellular levels of AMP and/or
PRPP. We, however, emphasize that the proposed path-
way 1is inferred purely via bioinformatic methods,
and may well be impacted by the lack of genome
completeness.

A gamma-class carbonic anhydrase (CA) was present in
both MAGs, which catalyzes the interconversion of CO,
and HCO; . CA homologs have been identified in several
terrestrial AOA, and are hypothesized to function extra-
cellularly to facilitate CO, uptake for carbon fixation [52].
However, marine lineages do not harbor CA genes
(Fig. 2a). Unlike the CAs from terrestrial AOA, the pSL12-
like CAs did not contain signal peptide sequences and,
therefore, are likely involved in intracellular reversible
dehydration of HCO; ™ to CO,. While CA is not exclusively

SPRINGER NATURE



2112

L. Reji, C. A. Francis

? D T T R ST R R R

_ 0.5
=
S 0.4
g 04 @
5 0.3 g
o =l
% 0.2 z
< 0.14 I I
g 0.0- AL - . — - j et
8 0.5
§
g 0.4 "
2 0.3 g
£ 0.2 S
3 0.1 =
20

0.0k dihfh

b ASW2_bin45 ASW8_bin1

1w @ © @ o @|® © ® ¢ @

20

=]

RPKG
@ os
300 @

® -

Depth (m)

400

>0
2 3 8 B
2 2 4 &

Apr
Aug
Nov
Dec
Feb

5
<
Month

Fig. 4 Distribution of pSL12-like lineage in oceanic water columns.
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recruitments of each MAG against Monterey Bay metagenomes. Size

indicative of carbon fixation, its activity may facilitate CO,
incorporation by RuBisCO and/or phosphoenol pyruvate
carboxykinase in the pSL12-like Thaumarchaeota.

Distribution of the pSL12-like lineage in the water
column

To assess the environmental distribution of the pSL12-like
lineage, we matched the MAG-derived 16S rRNA sequen-
ces to a previously generated 16S rRNA amplicon dataset
from the Monterey Bay upwelling system [46]. One of the
MAG-derived 16S rRNA gene sequences (from ASWS_-
binl) was an exact match to an OTU #694, which com-
prised <0.5% of the total thaumarchaeal abundance at any
given time in the depths sampled. The next closest match
was OTU #8597, which shared 96.02% and 97.08%
sequence identity with sequences from ASW2_bin45 and
ASWS8_binl, respectively. At any given time, these two
OTUs together comprised at most 0.5% of thaumarchaeal
abundance in the time-series dataset (Fig. 4a). As observed
in previous surveys, the pSL12-like group of Thaumarch-
aeota appeared to be more abundant below the euphotic
zone [11, 13, 15, 16, 17], with potential seasonal variations
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in relative abundances. Occasional abundance peaks were
observed in the photic zone during spring at M1 (Fig. 4a),
which likely reflects upwelled populations (station M1 is
situated directly above the upwelling plume in Monterey
Bay).

In recruiting metagenomic reads from Monterey Bay
against the MAGs, we observed the highest recruitment at
500 m for ASW2_bin45. ASWS8_binl recruited slightly
fewer reads but appeared to have a similar abundance dis-
tribution across depths as ASW2_bind5 (Fig. 4b). In addi-
tion, the relative abundances appeared to change with
seasonal hydrologic changes in the system (Fig. 4b).
Recruitment against TARA Ocean metagenomes repre-
senting Atlantic Ocean and Pacific Ocean depth profiles
revealed similar depth distribution of the pSL12-like line-
age, with the greatest abundance at depths well below the
euphotic zone (200-800 m; Fig. 4c).

Conclusions

In this work, we used reconstructed population genomes to
infer metabolic adaptations of the elusive pSL12-like
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lineage of Thaumarchaeota, widely distributed in marine
systems. The high-quality genomes described here offer a
first glimpse into the genomic repertoire of a marine thau-
marchaeal group devoid of an exclusively chemoauto-
trophic energy generation strategy. Only terrestrial basal
lineages of Thaumarchaeota have been described thus far;
the MAGs presented here represent the first genomic
description of a basal lineage inhabiting the marine oxic
environment. In this context, an especially intriguing con-
sideration is the relative positioning of the pSL12-like clade
within the thaumarchaeal evolutionary trajectory. The
diversification of Thaumarchaeota, from basal groups to the
mesophilic AOA appears to have included multiple meta-
bolic changes—acquiring the 3-HP/4-HB pathway for CO,
fixation, ammonia oxidation, and potential differences in
co-factor use, among others (Fig. 2a; also reviewed in [8]).
The MAGs described here represent a basal lineage that
appears to coexist with aerobic ammonia-oxidizing Thau-
marchaeota in marine waters (basal lineages reported thus
far have been found in terrestrial systems, as reviewed in
[8]). These MAGs may thus enable a more detailed probing
of the trajectory leading to marine AOA evolution from
basal groups, and help constrain the relative timing of the
acquisition of aerobic metabolism and ammonia oxidation
within the phylum.

Overall, the divergent genomic features of the pSL12-like
clade significantly alter our understanding of the metabolic
diversity within this abundant archaeal phylum in the oceans.
While further biochemical characterization is warranted to
confirm the proposed metabolic pathways, our results suggest
that obligate aerobic heterotrophy might be an overlooked
metabolic strategy within pelagic Thaumarchaeota.
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