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Coarsened exact matching (CEM) is a matching method proposed as an alternative to other techniques
commonly used to control confounding. We compared CEM with 3 techniques that have been used in pharma-
coepidemiology: propensity score matching, Mahalanobis distance matching, and fine stratification by propensity
score (FS). We evaluated confounding control and effect-estimate precision using insurance claims data from
the Pharmaceutical Assistance Contract for the Elderly (1999-2002) and Medicaid Analytic eXtract (2000-2007)
databases (United States) and from simulated claims-based cohorts. CEM generally achieved the best covariate
balance. However, it often led to high bias and low precision of the risk ratio due to extreme losses in study
size and numbers of outcomes (i.e., sparse data bias)—especially with larger covariate sets. FS usually was
optimal with respect to bias and precision and always created good covariate balance. Propensity score matching
usually performed almost as well as FS, especially with higher index exposure prevalence. The performance of
Mahalanobis distance matching was relatively poor. These findings suggest that CEM, although it achieves good
covariate balance, might not be optimal for large claims-database studies with rich covariate information; it might
be ideal if only a few (<10) strong confounders must be controlled.

coarsened exact matching; covariate balance; fine stratification; Mahalanobis distance matching; plasmode
simulation; propensity score; propensity score matching

Abbreviations: ATT, average treatment effect among the treated; CEM, coarsened exact matching; FS, fine stratification by
propensity score; IEP, index exposure prevalence; MDM, Mahalanobis distance matching; NSAID, nonsteroidal antiinflammatory
drug; PSM, propensity score matching; rMSE, square root of mean squared error.

“Coarsened exact matching” (CEM) is a design strategy sometimes increase covariate imbalance (although such
that has been shown to produce good covariate balance increases in imbalance due to PSM appear unlikely to
between exposure groups and, thus, to reduce the impact manifest in a typical pharmacoepidemiologic study (5)).
of confounding in observational causal inference (1, 2). Because CEM has been implemented infrequently within the
The strategy is simply matching simultaneously by a set of context of pharmacoepidemiologic analyses of claims data,
potential confounders that have been “coarsened,” reducing and because CEM has properties that make it a desirable
the number of potential matching values for a given covariate choice for causal inference (1, 2), the utility of CEM for
to increase the number of matches achieved. such analyses should be explored.

It has been demonstrated that CEM may outperform Here, we compare CEM with PSM, Mahalanobis distance
certain adjustment techniques that are common in pharma- matching (MDM), and fine stratification by propensity score
coepidemiology with respect to covariate balance and effect (FS) with respect to covariate balance, confounding con-
bias (3, 4). For example, King et al. (3, 4) demonstrated trol, and effect-estimate precision, using real and simulated
that, unlike CEM, propensity score matching (PSM) can claims-based cohorts that represent typical pharmacoepi-
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demiologic claims scenarios (i.e., scenarios involving many
potential confounders of an association between a drug
and a health outcome (6-8)). Throughout, we estimate the
exposure effect among the index-exposed (i.e., the average
treatment effect among the treated (ATT)), although the
analysis weights described below for CEM and FS could be
tuned to target other estimands.

PSM was selected because of its popularity in pharma-
coepidemiology. MDM was selected because it is a scalar-
based matching technique that, like CEM (and unlike PSM),
operates in the original covariate space. FS was selected
because, similar to CEM, it relies on stratification to derive
analysis weights and can achieve good covariate balance,
retaining more study subjects than the matching techniques.
Like CEM, these 3 techniques are semiparametric design
techniques, which might be less susceptible to outcome
model misspecification, compared with a fully parametric
technique (3, 9). To our knowledge, these techniques have
not been compared, simultaneously, within the context of
claims-based analyses, although some separate comparisons
in various settings have been performed (3-5, 10-14).

METHODS

Coarsened exact matching

Let X be the vector of observed covariates. Let “covariate
balance” indicate equivalency of the empirical distributions
of the covariates in X between exposure groups (1). CEM
entails the following steps.

1. Coarsen the covariates in X, ensuring that units with
the same value for the coarsened covariate are substan-
tively indistinguishable (e.g., categorizing continuous
body mass index into clinically relevant categories such
that units in the same category are practically equivalent
with respect to body mass index). Empirical “autocoars-
ening” has been proposed when substantive knowledge
is scarce (1, 15).

2. Implement exact matching with the coarsened data—all
index-exposed and reference-exposed units (i.e., units
with and without the exposure of interest, respectively)
that appear in the same bin of the multiway array cre-
ated by the coarsening strategy are considered “exactly
matched.” Although it is a matching procedure, CEM
might equally be considered to be a multidimensional
stratification approach.

3. Eliminate units that appear in bins that do not contain
units of opposite exposure status (i.e., unmatched units).
Such bins represent regions of nonpositivity that, if not
excluded from the analysis, could bias exposure effect
estimates (16, 17).

4. Estimate the ATT in the matched data set. In each
matched set, index-exposed units receive a weight of 1,
and reference-exposed units are weighted in proportion
to the distribution of index-exposed units in the matched
set (i.e., because unequal numbers of index-exposed
and reference-exposed units may appear across bins—
thus, the empirical distribution of X might not be
equivalent between the matched exposure groups) (1, 2,

10). The weight applied to each reference-exposed unit
is (1, 2):

(Vi index-exposed in matched set/Niotal index—exposed)/

(M reference-exposed in matched set / Niotal reference—exposed)

Of note, the risk ratio form of the ATT weighted via
this scheme is equivalent to the common measure of
association, the standardized morbidity ratio (18).

With CEM, balance for each covariate is ensured—
limited only by the coarseness of the categorization—and
is never worse than in the original data set. A coarsening
strategy resulting in finer strata will achieve better bal-
ance for that covariate (1-4). For scalar-based matching
techniques, such as PSM, covariate balance for each
variable is not guaranteed. Balance can be checked after
matching, at which point it might be decided that the process
should be performed again (e.g., using a different caliper
criterion). Moreover, CEM guarantees balance for higher-
order terms (e.g., multiway interactions of covariates) (1).
In contrast, for example, no such guarantee is inherent in
a propensity score methodology—even in the rare situation
in which such terms are included in the propensity score
model (1, 19, 20).

Comparison techniques

Here we describe PSM, MDM, and FS only briefly,
because these techniques are not new to pharmacoepidemi-
ology.

By PSM, we mean the specific case of 1:1 PSM without
replacement (5, 21, 22), which is popular in biomedical
fields such as pharmacoepidemiology (23-28). The appeal
of PSM might be due to the ability to match on a scalar
summary of X, which could involve many covariates in a
typical claims study, and to other benefits that have been
outlined extensively (5-8, 26—34). MDM operates similarly
to PSM, except that it is based on the Mahalanobis distance,
which, unlike the distance between propensity scores, is
measured in the actual covariate space—a characteristic
shared by CEM (1-5).

FS is simply stratification by propensity score using a
large number of propensity score strata (10, 11, 35, 36).
The same unit-level weights described for CEM might be
applied when estimating the ATT. FS overcomes a potential
drawback of matching: the exclusion of unmatched units
that might have been chosen as matches. Losing these units
decreases precision of the effect estimate (10). With FS,
the only exclusions are from the nonoverlapping tails of the
propensity score distribution; within the range of overlap,
every unit falls into a propensity score stratum and is counted
in the analysis.

Empirical examples

We used a cohort of 49,653 low-income Medicare bene-
ficiaries, at least 65 years of age, who were enrolled in the
Pharmaceutical Assistance Contract for the Elderly database
in New Jersey over the years 1999-2002 and who initiated
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treatment with nonselective nonsteroidal antiinflammatory
drugs (NSAID) or selective cyclooxygenase-2 inhibitors
(“NSAID cohort”) (37, 38). Approximately 35% of patients
were nonselective NSAID (index exposure) initiators. The
outcome of interest was occurrence of gastrointestinal
complications (552 cases). Three covariate sets were used
for the NSAID cohort analyses. The “small” covariate set
comprised 19 continuous and binary covariates that were
selected based on clinical importance. The second and
third covariate sets (“standard” and “large,” respectively)
included binary covariates (representing concomitant
medications, comorbidities, and other medical encounters)
selected by a high-dimensional propensity-score algorithm
(39), in addition to the 19 predetermined covariates: The 50
covariates with the highest bias-based ranks were included
in the standard covariate set, and the 100 covariates with
the highest bias-based ranks were included in the large
covariate set. The distribution of the small set of prematched
covariates in the NSAID cohort is shown in Web Table 1
(available at https://academic.oup.com/aje).

We used another cohort with information on 886,996
completed pregnancies that was generated from the
Medicaid Analytic eXtract over the years 2000-2007—
the mothers in this cohort either did or did not use statins
during the first trimester of pregnancy (“statin cohort”) (10,
40, 41). Approximately 0.13% of mothers in this cohort
filled a statin (index exposure) prescription during the
first trimester of pregnancy. The outcome of interest was
congenital malformation (31,489 cases). The statin cohort
included 20 categorical covariates, selected based on clinical
importance. The distribution of prematched covariates in
the statin cohort is shown in Web Table 2. This cohort was
selected because of its unique rare exposure and because
the importance of propensity score—based methods for
identifying comparable exposure groups in pharmacoepi-
demiology has been demonstrated in this cohort in previous
work (10).

For each data set, we applied all 4 methods described
above to account for confounding. For CEM, we applied
the R (R Foundation for Statistical Computing, Vienna,
Austria) CEM package’s default autocoarsening strategy,
which attempts to divide the range of values for the
numerical covariates in X into the number of bins required
to approximate a normal density (Sturges rule) (1, 15).
We chose the autocoarsening strategy to emulate the
scenario in which substantive knowledge regarding the
best coarsening strategy for the few continuous covariates
in a typical claims data set is sparse. For the NSAID-
cohort PSM and FS analyses, all continuous variables
were categorized to relax linearity assumptions for the
propensity score model. For PSM and MDM, we used a
nearest-neighbor matching algorithm. To emulate previous
analyses of these data, we applied a 0.025 absolute
propensity-score distance caliper for PSM but allowed all
exposed units to be matched for MDM (5). We performed
MDM for all 3 NSAID cohort-based data sets for the
sake of example, even though in practice, MDM is not
warranted for high-dimensional scenarios, in which it is
slow to implement and suboptimal with respect to covariate
balance (4, 5, 42-44). Thus, we expected to observe
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worse covariate balance from MDM in the larger NSAID
cohort-based analyses. For FS, we trimmed regions of
nonoverlap between index-exposed and reference-exposed
propensity score distributions and generated 50 strata
based on quantiles of the index-exposed propensity score
distribution.

We measured covariate balance in the resulting analytical
data sets using the Mahalanobis balance metric, which
has been used in previous methodological assessments in
pharmacoepidemiology (5, 45). The Mahalanobis balance
is calculated as the Mahalanobis distance between the
vectors of covariate means in the 2 exposure groups.
Higher Mahalanobis balance values indicate worse covariate
balance.

We then estimated risk ratios corresponding to the ATT
and corresponding 95% Wald confidence intervals gener-
ated from log-binomial regression models. The outcomes of
interest were occurrence of gastrointestinal complications
and congenital malformation for the NSAID cohort and
statin cohort, respectively.

For all CEM and FS scenarios, units were weighted using
the scheme described above before calculating the Maha-
lanobis balance, risk ratio, and corresponding standard error.

Description of simulated data sets

A series of plasmode-simulated data sets were generated
using the NSAID cohort. In plasmode simulation, the true
effect of exposure on outcome is set to a known value,
using the estimated associations between covariates and
outcome from the original data to inform the outcome sim-
ulation model (46—48). This technique is particularly apt for
methodologic research in claims data because it maintains
observed complex data structures.

Simulation scenarios were constructed by simulating out-
come (gastrointestinal complications, 20% event rate in all
scenarios), using all of the covariates included in a given
scenario to predict outcome. The true risk ratio for each sce-
nario was set at 1. Each scenario comprised 1,000 simulated
cohorts of 25,000 units and represented a variation of index
exposure prevalence (IEP; 5%, 10%, 20%, 30%, and 40%)
and covariate set size (“very small,” “small,” “standard,”
and “large”). The very small covariate set comprised the
8 predetermined covariates that were expected to be most
associated with gastrointestinal complications (Web Table
1), and the small, standard, and large covariate sets were
the same as those used in the analysis of the real NSAID
cohort. Two additional small covariate scenarios included
a product term representing the interaction between con-
tinuous age and continuous Charlson Comorbidity Index
score (49) in the outcome generation model. In one scenario,
the coefficient on the product term maintained its original
estimated value from the real data (“default”). In the other
scenario, the strength of the product term was increased
by 200% (“‘exaggerated”). For both product-term scenarios,
IEP was set at 20%. We generated product-term scenarios
because, unlike the other methods, CEM guarantees balance
on such terms (within the limits of the coarsening strategy)
(1, 43). We summarize our simulation scenarios in Web
Table 3.
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Table 1. Results of Analysis of Real Data Sets, Pharmaceutical Assistance Contract for the Elderly Data Set (Nonsteroidal Antiinflammatory
Drug Cohort, 1999-2002) and Medicaid Analytic eXtract Data Set (Statin Cohort, 2000-2007), United States

Original Data Set Nzh::yl::gs No. zfng‘;tzce‘:’mes RR 95%Cl  95% Cl Width® MB
NSAID, small
Crude 49,653 552 0.92 0.558
CEM 16,139 106 1,68 1,09, 2.58 2.36 0.017
PSM 34,150 355 1.05 0.86, 1.29 1.51 0.089
MDM 35,002 361 1.05 0.86, 1.29 1.51 0.207
FS 49,634 552 1.08 0.90, 1.31 1.45 0.026
NSAID, standard
Crude 49,653 552 0.92 0.641
CEM 3,226 10 255 0.64, 10.09 15.73 0.014
PSM 33,368 339 1.12 0.90, 1.38 153 0.087
MDM 35,202 318 1.39 111, 1.74 1.56 0.541
FS 49,626 552 1.12 0.93, 1.36 147 0.051
NSAID, large
Crude 49,653 552 0.92 0.654
CEM 1,763 6 1.71 0.31,9.48 30.58 0.020
PSM 33,174 340 1.09 0.88, 1.34 153 0.089
MDM 35,202 309 1.49 119, 1.87 157 0.681
FS 49,626 552 112 0.92, 1.37 1.48 0.057
Statin
Crude 886,996 31,489 1.79 5.127
CEM 11,321 307 1413 0.54,2.36 435 0.000
PSM 2,302 144 1.03 0.75, 1.41 1.88 1632
MDM 2,304 147 0.99 0.72,1.35 1.87 0.244
FS 809,732 29,072 1.03 0.82, 1.31 1,60 0.586

Abbreviations: CEM, coarsened exact matching; Cl, confidence interval; FS, fine stratification by propensity score; MB, Mahalanobis balance;
MDM, Mahalanobis distance matching; NSAID, nonsteroidal antiinflammatory drug; PSM, propensity score matching; RR, risk ratio.
2 The 95% CI width was calculated by dividing the upper 95% CI endpoint by the lower 95% CI endpoint (using all available digits).

Analysis of simulated data sets

We applied the same methods used for the analysis of the
real data sets. For the scenarios that included a product term,
we performed CEM using a manual coarsening strategy for
the age and Charlson comorbidity score variables to ensure
that any lack of balance on those variables was not due to
use of inappropriate coarsening boundaries. Specifically, we
coarsened the age variable into groups of 5 years, and we
coarsened the Charlson comorbidity score variable into the
following groups: 0, 1, 2, 3, >4 (both categorizations were
used in previous analyses of these data (5)). We performed
MDM only for the very small and small covariate set sce-
narios, because MDM is not warranted for high-dimensional
scenarios.

We compared the following metrics among the methods
(45, 50): 1) average proportional decrease in Mahalanobis
balance (compared with starting Mahalanobis balance);
2) bias = [average adjusted In(risk ratio) value] — [true In(risk
ratio)]; 3) variance of the adjusted In(risk ratio) values; and

4) square root of mean squared error (rMSE) = \/[biasz +
variance].

RESULTS
Analysis of real data sets

We present the results of the analysis of real data sets in
Table 1. CEM always produced essentially perfect covariate
balance (Mahalanobis balance values never greater than
0.020), although PSM and FS still demonstrated notable
improvement in covariate balance, compared with crude
balance. MDM was worst with respect to covariate balance
in each NSAID cohort analysis, with Mahalanobis balance
values increasing from 0.207 to 0.681 as covariate set size
increased. For the statin cohort analysis, MDM performed
better with respect to covariate balance compared with PSM
and FS (Mahalanobis balance values: 0.244, 1.632, 0.586,
respectively).
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Results of plasmode analysis, noninteraction scenarios—average proportional decrease in Mahalanobis balance. A) Very small

covariate set scenarios. B) Small covariate set scenarios. C) Standard covariate set scenarios. D) Large covariate set scenarios. Blue: coarsened
exact matching trends; green: propensity score matching trends; purple: Mahalanobis distance matching trends; and red: fine-stratification-by-
propensity-score trends. IEP, index exposure prevalence; MB, Mahalanobis balance.

CEM always produced the least precise effect estimate
(highest 95% confidence interval widths). Conversely, FS
always was optimal with respect to precision (lowest 95%
confidence interval widths). PSM and MDM produced effect
estimates with similar levels of precision.

Analysis of simulated data sets

Noninteraction scenarios. ~ CEM and FS generally main-
tained the highest average proportional decrease in Maha-
lanobis balance among the 4 methods (Figure 1). CEM per-
formed worse than FS only with respect to covariate balance
improvement in the 5% and 10% index-exposure-prevalence
standard (Figure 1C) and large (Figure 1D) covariate set
scenarios. Generally, PSM performed worst with respect
to covariate balance improvement, especially in the lowest
IEP scenarios. For the very small covariate set scenarios
(Figure 1A), MDM performed as well as CEM, except in
the 40% IEP scenario. For the small covariate set scenarios
(Figure 1B), MDM generally performed worst among the
methods with respect to balance improvement. For both the
very small and small scenarios, MDM produced a consis-
tently decreasing trend in covariate balance improvement
with increasing IEP. Finally, in general, covariate balance

A)LIJ B)LIJ

g 12 g 12

5 10 5 10

5 8 5 8

g 6 g 6

o 4 o 4

g 2 g 24\

g 0 T T T T T (%- O 1- T T T T
510 20 30 40 510 20 30 40

IEP,% IEP,%

improvement for all 4 methods became worse, for a given
IEP, as covariate set size increased.

Perhaps the key finding is that CEM generally produced
the highest rMSE among the 4 methods, with the highest val-
ues seen in the standard (Figure 2C) and large (Figure 2D)
covariate set scenarios. The exceptions were the very small
covariate set scenarios (Figure 2A), in which CEM per-
formed as well as the other 3 methods. In the small covariate
set scenarios (Figure 2B), the rMSE from CEM was highest
with 5% IEP and generally declined as IEP increased. For
PSM, MDM, and FS, the rtMSE generally decreased as IEP
increased (Figure 3). For a given IEP, there was a slight
upward trend in rMSE as covariate set size increased for
these 3 methods. In most scenarios, FS produced the lowest
rMSE. PSM and FS always produced similar rMSE values
for the higher IEP scenarios, but FS always produced lower
rMSE values, compared with PSM, in the lower IEP scenar-
ios. For the very small covariate set scenarios (Figure 3A),
MDM performed as well as PSM, and for the small covariate
set scenarios (Figure 3B), MDM always produced the high-
est IMSE.

It was clear that variance drove the high rMSE values
for CEM, because the CEM variance trends (Web Figure
1) were similar to the CEM rMSE trends (Figure 2). The
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Figure 2. Results of plasmode analysis, noninteraction scenarios—square root of mean squared error (MSE), including coarsened exact
matching results. A) Very small covariate set scenarios. B) Small covariate set scenarios. C) Standard covariate set scenarios. D) Large covariate
set scenarios. Blue: coarsened exact matching trends; green: propensity score matching trends; purple: Mahalanobis distance matching trends;
and red: fine-stratification-by-propensity-score trends. IEP, index exposure prevalence.
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Figure 3. Results of plasmode analysis, noninteraction scenarios—square root of mean squared error (MSE), excluding coarsened exact
matching results. A) Very small covariate set scenarios. B) Small covariate set scenarios. C) Standard covariate set scenarios. D) Large covariate
set scenarios. Green: propensity score matching trends; purple: Mahalanobis distance matching trends; and red: fine-stratification-by-propensity-

score trends. IEP, index exposure prevalence.

strong influence of variance on the rMSE trends was also
seen for PSM, FS, and MDM, among which the FS variance
trends were lowest (Web Figure 2). The CEM bias trends
generally were much higher than the PSM, FS, and MDM
bias trends (Web Figure 3), with the exception of the very
small covariate set scenarios (Web Figure 3A), in which
CEM performed as well as the other 3 methods. The latter 3
bias trends were relatively similar across all scenarios, with
PSM and FS yielding the lowest bias values overall (Web
Figure 4).

Interaction scenarios.  The trends among all metrics for
the default and exaggerated product-term scenarios (Table 2)

were similar between the 2 scenarios and compared with the
trends seen for the noninteraction scenarios.

We demonstrate the extent to which CEM improved
covariate balance between the index-exposed and reference-
exposed groups within the context of the interaction
between age and Charlson comorbidity score in Table 3.
This table shows the absolute differences between the ex-
posure groups with respect to the average of the average
age (or weighted average age for CEM and FS) within each
coarsened category of Charlson comorbidity score, and vice
versa, across plasmode simulations (default product-term
scenario only). CEM yielded the lowest difference values
among the 4 methods and, unlike the other 3 methods,

Table 2. Simulation Metrics for Plasmode Analysis Results?, Small Covariate Set, 20% Index-Exposure-

Prevalence Interaction Scenarios

Scenario® Bias

Variance Square Root of MSE AMB

Default®

Crude —0.103

CEM 0.327 0.226 0.577 0.967

PSM 0.067 0.040 0.210 0.886

MDM 0.131 0.041 0.242 0.792

FS 0.070 0.027 0.178 0.946
Exaggerated®

Crude —0.091

CEM 0.341 0.220 0.580 0.967

PSM 0.079 0.040 0.214 0.886

MDM 0.143 0.038 0.242 0.792

FS 0.080 0.023 0.172 0.946

Abbreviations: AMB, average proportional decrease in Mahalanobis balance; CEM, coarsened exact matching;
FS, fine stratification by propensity score; MDM, Mahalanobis distance matching; MSE, mean squared error; PSM,
propensity score matching.

@ Using a data set based on data from the Pharmaceutical Assistance Contract for the Elderly (nonsteroidal
antiinflammatory drug cohort), United States, 1999-2002.

b The product term represented the interaction between age and score on the Charlson Comorbidity Index.

¢ The “default” scenario maintained the original product term and the “exaggerated” scenario was based on a
product term that was 200% greater than the default product term.
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Table 3. Plasmode Analysis Results?, Small Covariate Set, 20% Index-Exposure-Prevalence Interaction Scenar-
ios, Balance Improvement Within the Context of the Interaction Between Age and Charlson Comorbidity Score®

Difference in

Average Original CEM°® PSM MDM FS°¢
Average age, years
Within score 0 2.09 0.05 0.38 0.47 0.28
Within score 1 2.03 0.1 0.25 0.42 0.15
Within score 2 1.66 0.1 0.06 0.45 0.14
Within score 3 1.93 0.01 0.16 0.94 0.07
Within score >4 1.43 0.02 0.25 0.99 0.31
Average score
Within age <70 0.16 0.00 0.06 0.28 0.04
Within age 70-74 0.23 0.00 0.07 0.22 0.06
Within age 75-79 0.15 0.00 0.01 0.15 0.01
Within age 80-84 0.20 0.01 0.05 0.01 0.05
Within age 85-89 0.06 0.01 0.12 0.15 0.12
Within age 90-94 0.01 0.01 0.12 0.10 0.12
Within age >95 0.18 0.00 0.00 0.04 0.00

Abbreviations: CEM, coarsened exact matching; FS, Fine stratification by propensity score; MDM, Mahalanobis

distance matching; PSM, propensity score matching.

@ The values in this table are absolute differences between index-exposed and reference-exposed groups with
respect to the average of the average age within each coarsened category of score on the Charlson Comorbidity
Index, and vice versa, across the plasmode simulations; default product-term scenario only.

b Using a data set based on data from the Pharmaceutical Assistance Contract for the Elderly (nonsteroidal
antiinflammatory drug cohort), United States, 1999-2002.

¢ The average age and average score values were weighted (at the unit level) for the CEM and FS scenarios.

never produced a difference value that was higher than the
corresponding difference value in the original simulated
cohort. Thus, as expected, CEM led to much better covariate
balance in the product term compared with the other 3
methods.

DISCUSSION

Overall, the analyses of real and simulated data sets led
to the same conclusions. CEM generally was optimal with
respect to covariate balance and FS generally was optimal
with respect to bias and precision (and still maintained
excellent covariate balance). PSM tended to perform almost
as well as FS with respect to all simulation metrics, espe-
cially for higher exposure prevalence scenarios. The perfor-
mance of MDM generally never surpassed that of FS and
PSM, with the exception of some of the very small simu-
lation covariate set scenarios, for which MDM performed
almost as well as CEM with respect to covariate balance and
almost as well as PSM with respect to all other simulation
metrics.

The optimal performance of CEM with respect to covari-
ate balance was effectively guaranteed by the high number
of binary covariates in our data—here, CEM amounted to
exact matching (1-4, 12). The high performance of FS
with respect to covariate balance was also not surprising.
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Because 50 strata were used, the maximum distance between
index-exposed and reference-exposed units within a given
stratum usually was very low—even lower than the PSM
absolute propensity-score distance caliper of 0.025. There-
fore, the low “implied calipers” associated with FS corre-
sponded to high covariate balance overall (5). Moreover,
because it already has been shown that FS tends to out-
perform PSM with rare IEP, the differences between FS
and PSM with respect to covariate balance improvement
in the lowest IEP scenarios were not surprising (10). The
fact that all 4 methods generally performed worse with
respect to covariate balance improvement, for a given IEP,
as covariate set size increased, is attributable to the diffi-
culties of achieving covariate balance in higher dimensions
4,5).

In the analysis of simulated data sets, the very high rMSE
values associated with CEM were due to the extreme loss of
study size, and the corresponding decrease in the number of
outcomes, that occurred during creation of the matched data
sets. This extreme loss of study size might explain the dis-
crepancy between the CEM average proportional decrease
in Mahalanobis balance trends and the CEM bias trends,
which would be expected to coincide (i.e., improvement in
covariate balance for confounders should be complemented
by decreased bias in the effect estimate). In other words,
the decrease in effective study size and number of outcomes
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across simulations was so consequential that the resulting
sparse data led to elevated bias trends (51). This extreme loss
of study size was also clear in the analysis of the real NSAID
cohort: In the small covariate set scenario, the matched
data set produced by CEM comprised 16,139 units and 106
outcomes, representing a decrease in study size and number
of outcomes of approximately 70% and 80%, respectively
(Table 1). These numbers decreased dramatically as covari-
ate set size increased.

The decrease in study size associated with CEM is intu-
itive because CEM was effectively exact matching in our
scenarios. This phenomenon also explains the finding that
CEM performed best with respect to rMSE in the very small
and small covariate set scenarios with higher IEP: Matching
exactly on a small vector of covariates with many exposed
units led to better retention of outcomes and, thus, to lower
rMSE. Conversely, the large analytical cohorts resulting
from FS (leading to low variance) and the consistently low
bias values associated with FS were responsible for the low
rMSE values observed for FS. Thus, overall, FS was opti-
mal among the 4 methods with respect to rMSE. Notably,
PSM was more similar to FS with respect to rMSE as IEP
increased—a result also seen in previous work (10).

The overall suboptimal performance of MDM, especially
with respect to covariate balance, might be attributed to
known issues with MDM in high-dimensional space (5, 42—
44, 52). The fact that covariate balance improvement for
MDM worsened with higher IEP in both the very small
and small covariate set scenarios was not surprising given
that no matched-set pruning was performed. Thus, overall,
with increasing IEP, the matched data set’s Mahalanobis bal-
ance value approached the original data set’s Mahalanobis
balance value. A similar logic applies to the decreasing
bias trends for MDM: Overall, because bias was already
relatively low in the original simulated data set, the bias from
MDM approached the bias from the original data set as IEP
increased. It is worth noting that MDM performed almost as
well as PSM with respect to variance, mainly because of the
lack of matched-set pruning for MDM.

Although in our analyses CEM was always optimal with
respect to covariate balance, the ultimate objective is to
obtain a valid and precise effect estimate. The high levels
of balance achieved by CEM in our study generally were
not complemented by low rMSE values because CEM pro-
duced heavy losses in study size and outcomes to achieve
this balance. If not for this problem, there would be less
motivation to pursue a dimension-reduction technique, such
as a propensity score—based method.

Therefore, in these types of pharmacoepidemiologic
analyses, or in any epidemiologic analysis based on high-
dimensional data comprising many binary covariates, CEM
might not be the optimal choice. Instead, FS or PSM might
be preferred. CEM (and MDM) might be warranted only
when the vector of important confounders is relatively
small (e.g., fewer than 10), comprises multiple continuous
covariates, or both—unusual scenarios for the typical
pharmacoepidemiologic analysis of claims (6-8). This
suggestion also is supported by recent work comparing CEM
with propensity score—based methods (12—14). CEM also
should be considered if it is of interest to ensure tight control

of balance on covariates involved in important higher-order
terms. Finally, to take advantage of the balancing properties
of CEM, stratification might be applied to a smaller set of
the most important confounders within a large vector to
ensure tight control over these confounders before applying
a propensity score—based method to balance the remaining
covariates within each stratum (2, 3, 53).

Importantly, although we covered a wide range of sce-
narios, our simulated data were based on one real cohort,
exemplifying only one type of complex exposure-covariate
structure from claims data. Also, we implemented the 4
methods in the common manner (e.g., use of a 0.025 absolute
propensity-score distance caliper for PSM), not necessarily
in an optimal manner. Future work might be warranted to fill
the gaps left by these limitations.
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