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Background. There is plenty of evidence showing that immune-related genes (IRGs) and epigenetic modifications play important
roles in the biological process of cancer. The purpose of this study is to establish novel IRG prognostic markers by integrating
mRNA expression and methylation in lung adenocarcinoma (LUAD). Methods and Results. The transcriptome profiling data
and the RNA-seq data of LUAD with the corresponding clinical information of 543 LUAD cases were downloaded from The
Cancer Genome Atlas (TCGA) database, which were analyzed by univariate Cox proportional regression and multivariate Cox
proportional regression to develop an independent prognostic signature. On the basis of this signature, we could divide LUAD
patients into the high-risk, medium-risk, and low-risk groups. Further survival analyses demonstrated that high-risk patients
had significantly shorter overall survival (OS) than low-risk patients. The signature, which contains 8 IRGs (S100A16, FGF2,
IGKV4-1, CX3CR1, INHA, ANGPTL4, TNFRSF11A, and VIPR1), was also validated by data from the Gene Expression
Omnibus (GEO) database. We also conducted analyses of methylation levels of the relevant IRGs and their CpG sites.
Meanwhile, their associations with prognosis were examined and validated by the GEO database, revealing that the methylation
levels of INHA, S100A16, the CpG site cg23851011, and the CpG site cg06552037 may be used as the potential regulators for
the treatment of LUAD. Conclusion. Collectively, INHA, S100A16, the CpG site cg23851011, and the CpG site cg06552037 are
promising biomarkers for monitoring the outcomes of LUAD.

1. Introduction

According to the latest statistics in 2019, lung cancer still
ranked first with regard to the different kinds of cancer mor-
tality in the United States [1]. More than half (57%) of lung
cancer patients are diagnosed at the later stages [2]. Even
patients who underwent surgical resection, chemotherapy,
radiotherapy, and targeted therapy did not have significantly
improved survival. The five-year survival varies from 4 to
17%, leading to a need to explore new therapeutic targets
[2, 3]. Lung cancer mainly has two subtypes, non-small cell
lung cancer (NSCLC) and small cell lung cancer (SCLC).
Lung adenocarcinoma (LUAD) and squamous cell carci-
noma are the two main types of NSCLC, accounting for

40% of cases [4]. Molecular targeting therapies significantly
improved prognosis in patients with LUAD. Tyrosine kinase
inhibitors (TKIs) targeting the epidermal growth factor
receptor (EGFR) served as a first-line treatment option for
advanced LUAD with sensitizing EGFR mutation [5]. ROS
protooncogene 1 (ROS1) and anaplastic lymphoma kinase
(ALK) gene rearrangements are also common therapeutic
targets for LUAD [6]. However, there are still a large number
of mutation-negative patients, for which cancer immuno-
therapy has attracted considerable attention in recent years
because the immune response in the tumor microenviron-
ment is now recognized as a significant factor that deter-
mines tumor aggressiveness and progression. The
development of immune checkpoint blockade therapy has
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been proven to achieve durable, long-term responses in lung
cancers [7, 8].

Under regular conditions, tumor cells produce specific
antigens, which are identified by antigen-presenting cells
(APCs) to process tumor antigens and are combined with
major histocompatibility complexes (MHC) 1 and 2 to
express antigens on the surface of APCs. Presenting them
to T cells and activating them to produce effector T cells con-
duct normal immune surveillance and avoid tumor produc-
tion. However, tumor cells can escape immune surveillance
and immune clearance through various factors. By loss of
tumor antigenicity, possibly due to antigen processing pre-
sentation defects or MHC subunit presentation antigen
defects, tumor immunogenicity is reduced. Besides, muta-
tions in oncogenes and tumor suppressor genes lead to
malignant cell transformation while recruiting inflammatory
cells to induce a special immune response to create an immu-
nosuppressive microenvironment to help escape immune
clearance [9]. Antibodies against immune checkpoints like
programmed death 1 (PD-1) and cytotoxic T lymphocyte-
associated antigen-4 (CTLA-4) could be an effective potential
treatment and demonstrate a remarkable, durable response
in NSCLC [10, 11]. But the molecular characteristics describ-
ing tumor-immune interaction remain to be comprehen-
sively explored regarding their prognostic potential in
NSCLC.

Our efforts concentrated on developing an immune sig-
nature with prognostic ability based on the comprehensive
list of IRGs downloaded from the Immunology Database
and Analysis Portal (ImmPort) database. The RNA sequenc-
ing (RNA-seq) data and the microarray data from TCGA
database and the GEO database were used for analysis. By
multivariate Cox regression analysis, we obtained indepen-
dent IRGs associated with the prognosis of LUAD. Then,
we evaluated whether this signature was associated with the
survival outcome of subgroups of LUAD patients and clini-
copathological factors. The methylation levels of the relevant
IRGs and their CpG sites were also analyzed, and their asso-
ciations with prognosis were examined. We further validated
our results in the GEO database, thus revealing that the
methylation levels of IRGs and their CpG sites also signifi-
cantly affected LUAD prognosis.

2. Materials and Methods

2.1. Samples and Data Extraction. Level 3 raw counts of the
transcriptome profiling data and RNA-seq data of LUAD
with corresponding clinical information of 479 cases were
downloaded from TCGA database. Accordingly, the methyl-
ation data (beta values) of 543 cases with LUAD, which
include lung tumor tissues and matched nontumor tissues,
were collected on 8 December 2019. The GSE37745 was
another transcriptome profiling data of 196 LUAD patients
downloaded from the GEO database (https://www.ncbi.nlm
.nih.gov/geo), which was used as the testing set for the prog-
nostic IRG model. In addition, the GSE63384 dataset and the
GSE83845 dataset were profiled using the Illumina Human
Methylation 450 platform and used to validate the differen-
tial methylation levels of IRGs. The comprehensive list of

IRGs containing a total of 2499 genes was downloaded from
the ImmPort database (https://immport.niaid.nih.gov),
including antigen processing and presentation pathways,
cytokines, cytokine receptors, T-cell receptor signaling path-
way, B-cell antigen receptor signaling pathway, and natural
killer cell cytotoxicity. For genes with multiple probes, the
average value was used as their expression values.

2.2. Statistical Analysis. Differentially expressed genes were
screened using the package limma in the R program 3.6.3.
The survival analysis was performed by the package survival.
A risk scoring system was established via univariate Cox
regression and multivariate Cox regression through the R
program. After classifying LUAD patients into subtypes of
low-risk, medium-risk, and high-risk, principal component
analysis (PCA) was used to evaluate the effectiveness of clas-
sification. To predict survival by the Kaplan-Meier method
with hazard ratios (HR) calculated, the package survival
and the package survminer were performed in the R program
and GraphPad software (Prism 8). Univariate Cox regression
was also used to analyze the clinical features and the risk
score for association with overall survival (OS). Multivariate
Cox regression analysis indicated its independent prognostic
value. The prediction accuracy of the risk system was deter-
mined by time-dependent Receiver Operating Characteristic
(ROC) analysis. We carried out a series of gene functional
enrichment analyses to determine the major biological attri-
butes, including the GO and KEGG analyses. The GOplot
package was employed to visualize the enrichment terms.
Chi-square test for parametric distributions or the Wilcoxon
test for nonparametric distributions was used. We consid-
ered P < :05 significant for all comparisons.

2.3. Identification of Differentially Expressed mRNAs (DEGs)
and IRG Model in LUAD and Adjacent Normal Tissues. To
identify DEGs between tumor tissues and adjacent normal
tissues, we performed differential expression analysis using
the limma package of R software. The thresholds for
screening DEGs were log 2FC ðfold changeÞ > 1 and P <
:05. The cases from TCGA database were used as the
training set. First, we matched the IRG list with the results
of DEGs, thus obtaining the differentially expressed IRGs.
Then, we performed univariate Cox regression analysis to
determine the relationship between patient survival and
IRG expression. IRGs with P < :05 were selected for multi-
variate Cox regression analysis, by which a model was
built to predict the risk score of each patient. An optimal
cutoff was elaborated by the slope variation of the risk
score curve. More specifically, the cutoff point with the
most obvious slope change in the risk score curve was
used as the threshold for classification. Based on the char-
acteristics of its asymmetric distribution, all patients could
be divided into the high-risk, medium-risk, and low-risk
groups. We conducted multivariate Cox analysis to test
whether the IRG model was independent of clinical char-
acteristics, including age, gender, and pathologic stages.
Meanwhile, the area under the curve (AUC) of the ROC
curve showed the prognostic ability of the IRG model.
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2.4. The Relationship between the Methylation Level and the
mRNA Expression Level of Prognostic IRGs. Based on the
methylation file and the RNA-seq data acquired from
TCGA database, we conducted an analysis of the correla-
tion between the methylation and mRNA expression by
the cor function of R software. The Kaplan-Meier curves
were generated to graphically demonstrate OS difference
between the hypermethylation and hypomethylation levels
of IRGs. An optimal cutoff was elaborated by an iterative
approach (68.2%), stratifying patients into mPITX3 hyper-
methylated (mPITX3 high) and hypomethylated (pPITX3
low) cases.

3. Results

3.1. Differentially Expressed mRNAs and IRGs in Patients
with LUAD. Analyses of mRNA expression profiles between
adjacent normal tissues and LUAD tissues identified 6729
DEGs in total. Compared with normal lung samples, 1639
mRNAs were downregulated and 5090 were upregulated in
LUAD samples. After matching with 2499 IRGs obtained
from the ImmPort database, we got 488 differential IRGs,
which included 325 downregulated genes and 163 upregu-
lated genes (Figures 1(a) and 1(b)).

3.2. Functional Annotation of the IRGs. Enrichment analysis
of the differential IRGs offered a biological understanding
and identified 10 overrepresented biological processes in
gene GO term functional enrichment (Figure 1(c)). Most bio-
logical processes were leukocyte migration, regulation of
acute inflammatory response, and complement activation.
In molecular function, these genes were shown to be notably
associated with antigen binding, receptor ligand activity, and
receptor regulator activity.

3.3. Evaluation of the Prognostic IRGs with TCGADataset. To
identify prognosis-specific IRGs that were related to the sur-
vival of LUAD patients, univariate Cox regression analysis of
488 differential IRGs was performed. We selected a candidate
IRG pool at a P < :05 significance threshold. Then, a total of
25 candidate IRGs were subjected to multivariate Cox regres-
sion analysis to screen the independent prognostic IRGs
(Figure 2(a)). Finally, we obtained the expression coefficients
of 8 independent IRGs by multivariate Cox regression analy-
sis. A formula of risk score was generated as follows:

risk value = 0:0016 × S100A16 expressionð Þ
+ 0:2570 × FGF2 expressionð Þ
+ ‐0:0003 × IGKV4‐1 expressionð Þ
+ ‐0:0984 × CX3CR1 expressionð Þ
+ 0:0079 × INHA expressionð Þ
+ 0:0057 × ANGPTL4 expressionð Þ
+ 0:1793 × TNFRSF11A expressionð Þ
+ ‐0:1091 × VIPR1 expressionð Þ:

The risk score for each patient was calculated, and all
patients were divided into the low-risk, medium-risk, and

high-risk groups according to the changes in the slope of
the risk score curve. We choose the cutoff point when the
curve slope changes the most. Specifically, the risk score less
than 0.7 is considered as low risk. Patients with the risk score
between 0.7 and 2.4 were grouped as medium risk, and
patients with the risk score greater than 2.4 were divided into
the high-risk group (Figures 2(f) and 2(g)). Low-risk patients
had a longer OS than medium-risk and high-risk patients
(P < :001; Figure 2(b)). The five-year and three-year ROC
curves showed that the AUC of the IRG prognostic model
are 0.826 and 0.755 (Figures 2(d) and 2(e)), indicating that
the model has high sensitivity and specificity to predict the
prognosis of LUAD patients.

3.4. Confirmation of IRGs Expression Patterns via Principal
Component Analysis (PCA). First, we conducted PCA
depending on all genes from the TCGA cohort, revealing
ambiguous distribution patterns between different groups
(Figure 3(n)). Then, PCA depending on the IRG model
showed significantly different distribution patterns from
three directions (Figures 3(o)–3(q)), suggesting that our
IRG model can distinguish LUAD patients effectively.

3.5. The Relationships of Risk Score with Immune Cells. To
comprehensively investigate tumor-immune interactions
and to explore which immune cells (including B cells, CD4
T cells, CD8 T cells, neutrophil cells, macrophage cells, and
dendritic cells) are associated with the risk score [12], corre-
lation analyses between immune cells and the risk core were
performed. The tumor-infiltrating immune subsets for
TCGA cohort were downloaded from the Tumor Immune
Estimation Resource (TIMER; http://cistrome.shinyapps.io/
timer) database. The immune cells with P values <.05 were
considered to be associated with the investigated genes. As
a result, B cells and CD4 T cells were correlated with the risk
score (Figures 3(a) and 3(b)). Specifically, the contents of B
cells and CD4 T cells in tumor tissues decreased with the rise
of the risk score. Since the absolute value of the correlation
coefficient is less than 0.5, we consider the correlation
between the risk score and B cells or CD4 T cells to also con-
found other factors. Based on the result of the GO analysis,
the complement system is also involved in the action of
immune genes.

3.6. Relationship between IRG Model and Clinical
Parameters. To further understand the relationship between
the IRG model and other clinical data, chi-square test and
Wilcoxon test analyses were performed to explore the associ-
ations between clinical parameters and the risk scores. The
results showed that the risk score was significantly associated
with pathological stages (P = :002), T stages (P < :001), N
stages (P < :001), and survival outcome (P = :036)
(Figures 3(c)–3(f)). Analysis of variance (ANOVA) also
showed statistical differences in the risk scores between the
four groups of pathological stages (P = :0012), T stages
(P < :0001), and N stages (P = :0009), showing statistically
significant differences in each boxplots. From Figure 3(d), it
can be seen that the risk score increases with the increase in
staging, suggesting that patients with an advanced
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pathological stage have a higher risk score. But the median
risk scores of T4 and N3 patients do not reach the highest
as expected, based on Figures 3(e) and 3(f). We consider that
it is due to the limited number of samples in T4 and N3
patients, especially since there is only one patient in N3. On
the other hand, it may also suggest that our risk assessment
system is more effective in early stage LUAD patients. There-
fore, we performed survival analysis of patients in patholog-
ical stages 1 and 2 alone, and the results suggest that our
scoring system is valid in the early stage LUAD patients
(Figure 2(c)). Of the eight IRGs, IGKV4-1, CX3CR1, INHA,
ANGPTL4, S100A16, VIPR1, and FGF2 showed differential
expression levels in the high-risk, medium-risk, and low-
risk groups (Figures 3(g)–3(m)).

3.7. The Methylation Levels of INHA and S100A16 Impact Its
mRNA Expressions and Patient Survival. Among the eight
independent IRGs screened by multivariate Cox regression
analysis, the mRNA expressions of INHA and S100A16 were
negatively correlated with its methylation levels (Figures 4(a)
and 4(b)). Patients with hypermethylation levels of INHA
and S100A16 tended to have a better OS (Figures 5(a) and
5(b)). For the exploration of significant CpG sites in LUAD
cancer tissues, we analyzed TCGA samples that were
profiled using the Illumina Human Methylation 450
platform including 485,577 CpG sites. 9 CpG sites
(cg04990202, cg06213626, cg07910075, cg11820824,
cg12274898, cg18859033, cg19255608, cg23499956, and
cg23851011) of S100A16 showed a negative correlation
between methylation and expression level (Figures 4(c)–
4(k)), and 6 CpG sites (cg02767960, cg06552037,
cg08201311, cg08493959, cg13858106, and cg22472148)
of INHA indicated a similar negative correlation
(Figures 4(l)–4(q)). But only the absolute value of the cor-
relation coefficient between cg23851011 and S100A16 is
greater than 0.5, which may indicate that mRNA expres-
sion of IRG is controlled by more complex patterns of

the CpG site. Further Kaplan-Meier analysis pointed out
that cg23851011 of S100A16 and cg06552037 of INHA
were negatively related to survival, which means that
higher methylation levels at cg23851011 and cg06552037
lead to better OS (Figures 5(c) and 5(d)). Given that our
previous analysis suggested that the methylation levels of
these two sites were negatively correlated with the methyl-
ation levels of S100A16 and INHA, the results seemed to
be contradictory. But considering that the methylation
level of each gene is simultaneously influenced by multiple
CpG sites, these results also seem to indicate that CpG
sites are involved in affecting the prognosis in LUAD
through more complex cooperative approaches.

3.8. The Validation of the IRG Model via an Independent
Cohort. The independent external dataset was utilized for
further validation analysis to confirm the robustness of the
IRG prognostic model. We calculated the risk score of each
patient in GEO dataset GSE37745 (n = 196) by the same
IRG formula. The patients were also divided into the high-
risk, medium-risk, and low-risk groups by the cutoff point
depending on the changes in the curve slope (Figure 6(a)).
The Kaplan-Meier analysis confirmed the prognostic ability
of the IRG model, which showed that patients with lower
risk scores had markedly longer OS than medium-risk and
high-risk patients (P < :0001; Figure 6(b)). The five-year
and three-year ROC curves showed that the AUC of the
IRG prognostic model are 0.746 and 0.714, respectively
(Figures 6(c) and 6(d)). In addition, we further analyzed
the survival impact of INHA and S100A16. A better sur-
vival rate in the patients with lower mRNA expressions
of INHA and S100A16 (Figures 6(e) and 6(f)) was
observed, which is consistent with results from TCGA
cohort (Figures 5(e) and 5(f)).

3.9. The Validation of the Relationship between CpG Sites and
Survival via Independent Cohorts. To validate that the

BP
CC

M
F

0 30 60 90

Humoral immune response mediated by circulating immunoglobulin
Regulation of inflammatory response

Regulation of protein activation cascade
Complement activation

Regulation of complement activation
Acute inflammatory response

Humoral immune response
Complement activation, classical pathway

Regulation of acute inflammatory response
Leukocyte migration

Membrane raft
Collagen-containing extracellular matrix

Extracellular matrix
Secretory granule lumen

Vesicle lumen
Cytoplasmic vesicle lumen

Side of membrane
Receptor complex

External side of plasma membrane
Blood microparticle

Chemokine receptor binding
Cytokine receptor activity
Cytokine receptor binding

G protein-coupled receptor binding
Hormone activity

Growth factor activity
Cytokine activity

Receptor regulator activity
Receptor ligand activity

Antigen binding

0.0025

0.0020

0.0015

0.0010

0.0005

P.adjust

(c)

Figure 1: (a) Heatmap of 488 differentially expressed IRGs. The red color indicated the higher gene expression values while the green color
indicated the lower gene expression values. N indicated nontumor tissues. T indicated tumor tissues. (b) Volcano plot of 488 differentially
expressed IRGs. (c) Bar plot of functional enrichment analyses. BP: biological process; CC: cellular component; MF: molecular function.

5International Journal of Genomics



HLA–DRB5
S100P
S100A16
SFTPA2
FURIN
FGF2
F2RL1
ARRB1
BIRC5
BTK
NFATC1
IGKV4–1
SEMA4B
CX3CR1
CAT
GPI
IL11
INHA
INSL4
ADRB2
ANGPTL4
IL3RA
LGR4
TNFRSF11A
VIPR1

0.008
0.001

<0.001
0.007
0.004

<0.001
<0.001
0.006
0.006
0.002
0.009
0.007
0.009
0.009
0.008
0.007
0.002

<0.001
0.006
0.003

<0.001
0.006
0.002
0.001
0.002

P value
0.999 (0.998–1.000)
1.001 (1.000–1.001)
1.003 (1.002–1.004)
1.000 (1.000–1.000)
1.001 (1.000–1.002)
1.298 (1.144–1.472)
1.020 (1.009–1.031)
0.959 (0.931–0.988)
1.019 (1.005–1.033)
0.881 (0.813–0.954)
0.806 (0.686–0.947)
1.000 (0.999–1.000)
1.006 (1.002–1.011)
0.851 (0.754–0.960)
0.986 (0.976–0.996)
1.007 (1.002–1.013)
1.140 (1.050–1.238)
1.009 (1.004–1.013)
1.017 (1.005–1.030)
0.805 (0.699–0.928)
1.008 (1.004–1.011)
0.940 (0.900–0.982)
1.026 (1.009–1.042)
1.173 (1.065–1.291)
0.855 (0.775–0.943)

Hazard ratio

Hazard ratio
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

(a)

0 5 10 15 20
0

50

100

Survival time (year)

Su
rv

iv
al

 ra
te

P < 0.001

Low risk
Medium risk
High risk

(b)

0

50

100

Su
rv

iv
al

 ra
te

0 5 10 15 20
Survival time (year)

Low risk
Medium risk
High risk

P = 0.0015

(c)

Figure 2: Continued.

6 International Journal of Genomics



0 20 40 60 80 100
0

20

40

60

80

100
ROC curve (AUC = 0.826)

Specificity

Se
ns

iti
vi

ty

(d)

0 20 40 60 80 100
Specificity

0

20

40

60

80

100

Se
ns

iti
vi

ty

ROC curve ( AUC = 0.755 )

(e)

INHA

FGF2

VIPR1

CX3CR1

TNFRSF11A

ANGPTL4

S100A16

IGKV4–1

Type

–5

0

5

10

Type

High

Low

Medium

(f)

0 100 200 300 400
0

2

4

6

8

10

Patients (increasing risk score)

Ri
sk

 sc
or

e

High risk
Medium risk
Low risk

(g)

Figure 2: (a) Univariate Cox regression analysis indicated 25 prognostic IRGs. (b) The Kaplan-Meier plot demonstrated that low-risk
patients had a longer OS than medium-risk and high-risk patients. (c) Survival analysis of patients in pathological stages 1 and 2 suggests
that the IRG model is effective in the early stage LUAD patients. (d, e) The five-year and three-year ROC curves showed that the AUC of
the IRG prognostic model are 0.826 and 0.755. (f) Heatmap of eight prognostic IRGs. (g) Patients with LUAD were divided into the high-
risk, medium-risk, and low-risk groups depending on the IRG model.

7International Journal of Genomics



0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

Risk score

B 
ce

ll

Cor = –0.134 (P = 0.003)

(a)

0 2 4 6 8 10
0.0

0.2

0.4

0.6

Risk score

CD
4 

T 
ce

ll

Cor = –0.117 (P = 0.011)

(b)

0 1
0

1

2

3

Risk score (P = 0.036)

Fustat

Ri
sk

 sc
or

e

(c)

1 2 3 4
0

1

2

3

4

5
Risk score (P = 0.002)

Stage

Ri
sk

 sc
or

e

(d)

1 2 3 4
T

0

1

2

3

4

5

Ri
sk

 sc
or

e

Risk score (P = 1.916e–05)

(e)

0 1 2 3
0.0

1.0

2.0

3.0

N

Ri
sk

 sc
or

e

Risk score (P = 8.833e–04)

(f)

0 1 2
0

1000

3000

5000

Risk

G
en

e e
xp

re
ss

io
n

IGKV4–1 (P = 1.025e–09)

(g)

0 1 2
Risk

0

2

4

6

G
en

e e
xp

re
ss

io
n

CX3CR1 (P = 1.148e–12)

(h)

Figure 3: Continued.

8 International Journal of Genomics



0 1 2
Risk

0

50

100

150

INHA (P = 0.004)

G
en

e e
xp

re
ss

io
n

(i)

0 1 2
Risk

0

50

100
150
200
250

G
en

e e
xp

re
ss

io
n

ANGPTL4 (P = 3.62e–12)

(j)

0 1 2
Risk

0

200

400

600

800
S100A16 (P = 4.325e–10)

G
en

e e
xp

re
ss

io
n

(k)

0 1 2
Risk

0

2

4

6

8

10

G
en

e e
xp

re
ss

io
n

VIPR1 (P = 1.755e–11)

(l)

0 1 2
0

1

2

3

4

5
FGF2 (P = 0.006)

Risk

G
en

e e
xp

re
ss

io
n

(m)

–500 –400 –300 –200 –100 0  100
–150

–100

–50

0

50

 100

–100
–50

0
50

 100
 150

PC1

PC
3

PC2

Low risk
Medium risk
High risk

(n)

Figure 3: Continued.

9International Journal of Genomics



differential methylation at the two CpG sites (cg23851011
and cg06552037) would affect clinical outcome, we also per-
formed validation cohorts of 74 LUAD samples and 35 adja-
cent samples from the GSE63384 dataset and the GSE83845
dataset. The two CpG sites of INHA and S100A16 showed
survival differences between high methylation and low meth-
ylation levels significantly (Figures 6(g) and 6(h)).

3.10. The IRG Model Is an Independent Prognostic Factor for
LUAD Patients. Univariate Cox regression analysis and mul-
tivariate Cox regression analysis were chosen to verify the
independent predictive value of the IRG model
(Figures 7(a) and 7(b)). Univariate Cox analysis showed that
the IRG model, pathological stages, T stages, and N stages

were all correlated with OS of LUAD patients. Then, those
factors were included in the multivariate Cox analysis, which
showed that the IRG model serves as an independent predic-
tive factor.

4. Discussion

LUAD, which constitutes approximately 30%-40% of
NSCLC, is a global public health problem and the most com-
mon cause of cancer-related death [13]. Even after complete
surgical resection and chemotherapy, patients with LUAD
are still at high risk for recurrence and death. Research
and improvement of treatment have shown that the
immune system and immune destruction are determining
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Figure 3: (a, b) The correlation analyses between immune cells and the risk score showed that the contents of B cells and CD4 T cells in tumor
tissues decreased with the rise of risk value. (c) The risk score was associated with survival outcome. “fustat = 0” represents “alive,” “fustat = 1”
represents “dead.” (d–f) The risk score was significantly associated with pathological stages, T stages, and N stages. (g–m) IGKV4-1, CX3CR1,
INHA, ANGPTL4, S100A16, VIPR1, and FGF2 showed different expression levels in the high-risk, medium-risk, and low-risk groups.
“risk = 0” represents low risk. “risk = 1” represents medium risk. “risk = 2” represents high risk. (n) PCA depending on all genes from
TCGA cohort. (o–q) PCA depending on the IRG model.
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Figure 4: Continued.
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factors during cancer initiation and progression [14, 15].
Recent immunotherapies which target immune check-
points such as PD-1 have been an alternative treatment
and achieved remarkable response in NSCLC [10, 11].
Intratumoral infiltration by immune cells like the cytotoxic

lymphocyte has been proven to be related to prognosis in
NSCLC [16–18], which is consistent with our result in the
GO term. Enrichment analyses of IRGs revealed that
LUAD was related to immune processes like leukocyte
migration or cytokine interaction.
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Figure 4: (a, b) The expressions of INHA and S100A16 were negatively correlated with its methylation levels. (c–k) There were 9 CpG sites
(cg04990202, cg06213626, cg07910075, cg11820824, cg12274898, cg18859033, cg19255608, cg23499956, and cg23851011) of S100A16 that
showed a negative correlation between methylation level and expression level. (l–q) There were 6 CpG sites (cg02767960, cg06552037,
cg08201311, cg08493959, cg13858106, and cg22472148) of INHA that showed a negative correlation between methylation level and
expression level.
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Figure 5: (a, b) The Kaplan-Meier curves showed that patients with hypermethylation levels of INHA and S100A16 tended to have a better OS.
(c, d) The Kaplan-Meier analysis pointed out that cg23851011 of S100A16 and cg06552037 of INHA were positively related to survival in the
TCGA dataset. (e, f) A better survival rate was shown in the patients with lower mRNA expressions of INHA and S100A16 in the TCGA dataset.
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Figure 6: Continued.
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In this study, we combined multiple gene expression
datasets to develop and validate an individualized prognostic
signature based on IRGs for LUAD. Gene set enrichment
analyses indicated that LUAD was strongly related to 8 IRGs
(S100A16, FGF2, IGKV4-1, CX3CR1, INHA, ANGPTL4,
TNFRSF11A, and VIPR1). An IRG prognostic model was
generated to predict LUAD patient prognosis accurately with
high statistical power. Among these eight IRGs, some have
been shown to be associated with lung cancer or LUAD,
and the role of some in the development of lung cancer
remains unclear. The S100 proteins are responsible for cell
growth, differentiation, and cell cycle regulation [19]. S100
calcium binding protein A16 (S100A16) is found in a wide
spectrum of adult human tissues [20]. Its abnormal expres-
sion could be found in lung cancer [21]. Specifically, high

S100A16 expression was found to be significantly associated
with a poor prognosis in lung cancer [22–24]. FGF2, also
known as a basic fibroblast growth factor (FGF), is an impor-
tant regulator of cell growth and differentiation under phys-
iological and pathological conditions [25, 26]. FGF2 is
frequently dysregulated in cancer, especially in advanced
stages of hematological and solid tumors, working as a potent
proangiogenic growth factor [27]. Immunoglobulin kappa
variable 4-1 (IGKV4-1) participates in antigen recognition.
Immunoglobulins, also known as antibodies, are
membrane-bound or secreted glycoproteins produced by B
lymphocytes [28]. In the recognition phase of humoral
immunity, the membrane-bound immunoglobulins serve as
receptors, which upon binding of a specific antigen, trigger
the clonal expansion and differentiation of B lymphocytes
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Figure 6: (a) Patients with LUAD were divided into the high-risk, medium-risk, and low-risk groups depending on the IRG model in the
GSE37745 dataset. (b) The Kaplan-Meier analysis confirmed that patients with low-risk scores had markedly longer survival rate than
high-risk and medium-risk patients in the GSE37745 dataset. (c, d) The five-year and three-year ROC curves showed that the AUC of the
IRG prognostic model are 0.746 and 0.714. (e, f) A better survival rate was shown in the patients with lower mRNA expressions of INHA
and S100A16 in the GSE37745 dataset. (g, h) The Kaplan-Meier analysis pointed out that cg23851011 of S100A16 and cg06552037 of
INHA were positively related to survival in the GSE63384 dataset and the GSE83845 dataset.
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into immunoglobulin-secreting plasma cells [29, 30]. The
chemokine, fractalkine (FKN), has been discovered and iden-
tified in the 1990s, which includes a CX3C chemokine
domain and constitutes the CX3C family, including CX3C
motif-ligand 1 (CX3CL1) and CX3C motif receptor 1
(CX3CR1) [31, 32]. Researchers have reported that the
CX3CL1 and CX3CR1 are enhanced in the pulmonary
microvascular system and trigger angiogenesis [33, 34].
INHA catalyzes the NADH-dependent reduction of enoyl-
ACP in the biosynthesis of fatty and mycolic acids, which
form an essential component of the membrane and cell wall
of M. tuberculosis, respectively [35, 36]. Most studies focus
on its pathway in antituberculosis. Little has been revealed
on its affection in tumors. Angiopoietin-like 4 protein
(ANGPTL4) is part of the angiopoietin (ANG) superfamily
that modulates angiogenesis and is mainly expressed in the
liver and adipose tissue [37]. The roles of ANGPTL4 in can-
cer are still controversial. It is reported to inhibit cell growth,
angiogenesis, and metastasis in lung cancer [38]. But studies

also showed an opposite function in some other types of can-
cer [39]. The tumor necrosis factor receptor superfamily
member 11a (TNFRSF11A) is the receptor for RANK ligand
(RANKL) and part of the RANK/RANKL/OPG signaling
pathway that regulates osteoclast differentiation and activa-
tion [40]. The vasoactive intestinal peptide receptor-1
(VIPR1) has an important neuropeptide that controls lung
physiology and main functions. VIP antagonist in vitro
inhibits the proliferation of NSCLC and reduces the growth
of NSCLC tumors transplanted into nude mice [41, 42].

DNA methylation represents the most common molec-
ular mechanism of epigenetic modification when genes
undergo changes such as cell proliferation or differentia-
tion, alternative splicing, and genetic imprinting [43–45].
Studies have shown that DNA methylation can be closely
related to the development of different tumors, thus making
methylated genes potential biomarkers for the diagnosis
and prognosis of lung cancer [24, 46–48]. A previous study
has indicated that the expression level of S100A16 might be
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Figure 7: (a) Univariate Cox regression analysis verified the independent predictive value of the IRG model. (b) Multivariate Cox regression
analysis verified the independent predictive value of the IRG model.
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modulated by its DNA hypomethylation and serves as an
independent prognostic indicator of unfavorable OS and
RFS in LUAD [48]. There are studies of methylation levels
in other genes that demonstrate the effect of methylation
on the prognosis of LUAD. Hypermethylation-mediated
downregulation of runt-related transcription factor 3
(RUNX3) could induce docetaxel chemoresistance in
LUAD [49]. CDH13 promoter is hypermethylated in
LUAD and might be a potential diagnostic biomarker for
diagnosis [50].

Among eight prognostic IRGs, INHA and S100A16
showed a correlation between methylation and mRNA
expression levels, or methylation levels and survival times.
Further detection of CpG sites indicated that higher methyl-
ation levels at cg23851011 and cg06552037 led to better OS.
At the same time, the verification test in the GEO database
also proved the expression levels of INHA and S100A16;
methylation levels at cg23851011 and cg06552037 could
affect the prognosis of patients with LUAD.

These pieces of evidence support the notion that hyper-
methylation of INHA and S100A16 leads to gene expression
inhibition and better OS, suggesting that INHA and S100A16
could be used as a potential biomarker for prognosis associ-
ated with LUAD. The CpG sites cg23851011 and
cg06552037 may affect the expression of INHA and
S100A16 in a multiple pattern and would be potential
markers for treatment. In addition, we established a risk
assessment formula for LUAD patients, which is confirmed
by an external database. As gene testing is increasingly widely
used in clinical practice, this will be another option for clini-
cians to assess risk.

In summary, molecular mechanisms play an important
role in the relationship between IRGs and LUAD. Our results
are expected to be applied to clinical practice, which means it
may suggest potential targeted therapies for LUAD patients.
Further investigations will provide more information of
internal mechanisms. Our study reveals that the IRG pattern
may affect the prognosis of patients with LUAD. INHA,
S100A16, the CpG site cg23851011, and the CpG site
cg06552037 may be used as the potential regulators for the
treatment of LUAD.

Abbreviations

ALK: Anaplastic lymphoma kinase
ANG: Angiopoietin
ANGPTL4: Angiopoietin-like 4 protein
APCs: Antigen-presenting cells
CX3CL1: CX3C motif-ligand 1
CX3CR1: CX3C motif receptor 1
CTLA-4: Cytotoxic T lymphocyte-associated antigen-4
DEGs: Differentially expressed mRNAs
EGFR: Epidermal growth factor receptor
FGF: Fibroblast growth factor
FKN: Fractalkine
GEO: Gene Expression Omnibus
IRGs: Immune-related genes
ImmPort: Immunology Database and Analysis Portal
IGKV4-1: Immunoglobulin kappa variable 4-1

LUAD: Lung adenocarcinoma
MHC: Major histocompatibility complexes
NSCLC: Non-small cell lung cancer
OS: Overall survival
PCA: Principal component analysis
PD-1: Programmed death 1
RANKL: RANK ligand
RNA-seq: RNA sequencing
ROS1: ROS protooncogene 1
RUNX3: Runt-related transcription factor 3
TCGA: The Cancer Genome Atlas
TIMER: Tumor Immune Estimation Resource
TNFRSF11A: Tumor necrosis factor receptor superfamily

member 11a
TKIs: Tyrosine kinase inhibitors
VIPR1: Vasoactive intestinal peptide receptor-1.

Data Availability

The datasets supporting the conclusions of this article are
available in TCGA database and the GEO database. All of
those studies were approved previously by their respective
institutional review boards.

Conflicts of Interest

The authors declare no conflict of interest.

Authors’ Contributions

J.Z, M.W, and D.X.H handled the conceptualization and
methodology; J.Z and M.W handled the software; M.W and
D.X.H handled the validation; J.Z was in charge of the origi-
nal draft preparation; and M.W and D.X.H were responsible
for the review and editing. The first authors of this manu-
script are J.Z and M.W; these authors contributed equally
to this work.

References

[1] R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics,
2019,” CA: A Cancer Journal for Clinicians, vol. 69, pp. 7–34,
2018.

[2] M. E. Gray, J. Meehan, P. Sullivan et al., “Ovine pulmonary
adenocarcinoma: a unique model to improve lung cancer
research,” Frontiers in Oncology, vol. 9, p. 335, 2019.

[3] F. R. Hirsch, G. V. Scagliotti, J. L. Mulshine, et al., “Lung can-
cer: current therapies and new targeted treatments,” The Lan-
cet, vol. 389, no. 10066, pp. 299–311, 2017.

[4] J. F. Shi, L. Wang, N. Wu et al., “Clinical characteristics and
medical service utilization of lung cancer in China, 2005-
2014: Overall design and results from a multicenter retrospec-
tive epidemiologic survey,” Lung Cancer, vol. 128, pp. 91–100,
2019.

[5] C. Zhou and L. D. Yao, “Strategies to improve outcomes of
patients with EGRF-mutant non-small cell lung cancer: review
of the literature,” Journal of Thoracic Oncology, vol. 11, no. 2,
pp. 174–186, 2016.

[6] N. Hanna, D. Johnson, S. Temin, and G. Masters, “Systemic
therapy for stage IV non-small-cell lung cancer: American

18 International Journal of Genomics



Society of Clinical Oncology clinical practice guideline update
summary,” Journal of Oncology Practice/American Society of
Clinical Oncology, vol. 13, no. 12, pp. 832–837, 2017.

[7] J. Brahmer, K. L. Reckamp, P. Baas et al., “Nivolumab versus
docetaxel in advanced squamous-cell non-small-cell lung can-
cer,” The New England Journal of Medicine, vol. 373, no. 2,
pp. 123–135, 2015.

[8] M. D. Hellmann, L. Paz-Ares, R. Bernabe Caro et al., “Nivolu-
mab plus ipilimumab in advanced non-small-cell lung cancer,”
The New England Journal of Medicine, vol. 381, no. 21,
pp. 2020–2031, 2019.

[9] G. L. Beatty and W. L. Gladney, “Immune escape mechanisms
as a guide for cancer immunotherapy,” Clinical Cancer
Research, vol. 21, no. 4, pp. 687–692, 2015.

[10] X. Xu, Z. Huang, L. Zheng, and Y. Fan, “The efficacy and safety
of anti-PD-1/PD-L1 antibodies combined with chemotherapy
or CTLA4 antibody as a first-line treatment for advanced lung
cancer,” International Journal of Cancer, vol. 142, no. 11,
pp. 2344–2354, 2018.

[11] S. L. Topalian, F. S. Hodi, J. R. Brahmer et al., “Safety, activity,
and immune correlates of anti-PD-1 antibody in cancer,” The
New England Journal of Medicine, vol. 366, no. 26, pp. 2443–
2454, 2012.

[12] T. Li, J. Fan, B. Wang et al., “TIMER: a web server for compre-
hensive analysis of tumor-infiltrating immune cells,” Cancer
Research, vol. 77, no. 21, pp. e108–e110, 2017.

[13] J. Ferlay, H. R. Shin, F. Bray, D. Forman, C. Mathers, and D.M.
Parkin, “Estimates of worldwide burden of cancer in 2008:
GLOBOCAN 2008,” International Journal of Cancer,
vol. 127, no. 12, pp. 2893–2917, 2010.

[14] H. Angell and J. Galon, “From the immune contexture to the
Immunoscore: the role of prognostic and predictive immune
markers in cancer,” Current Opinion in Immunology, vol. 25,
no. 2, pp. 261–267, 2013.

[15] A. J. Gentles, A. M. Newman, C. L. Liu et al., “The prog-
nostic landscape of genes and infiltrating immune cells
across human cancers,” Nature Medicine, vol. 21, no. 8,
pp. 938–945, 2015.

[16] J. Galon, A. Costes, F. Sanchez-Cabo et al., “Type, density, and
location of immune cells within human colorectal tumors pre-
dict clinical outcome,” Science, vol. 313, no. 5795, pp. 1960–
1964, 2006.

[17] K. I. Al-Shibli, T. Donnem, S. Al-Saad, M. Persson, R. M.
Bremnes, and L. T. Busund, “Prognostic effect of epithelial
and stromal lymphocyte infiltration in non-small cell lung
cancer,” Clinical Cancer Research, vol. 14, no. 16, pp. 5220–
5227, 2008.

[18] J. Galon, F. Pagès, F. M. Marincola et al., “Cancer classification
using the Immunoscore: a worldwide task force,” Journal of
Translational Medicine, vol. 10, no. 1, p. 205, 2012.

[19] R. Donato, “Intracellular and extracellular roles of S100 pro-
teins,” Microscopy Research and Technique, vol. 60, no. 6,
pp. 540–551, 2003.

[20] E. Babini, I. Bertini, V. Borsi et al., “Structural characterization
of human S100A16, a low-affinity calcium binder,” Journal of
Biological Inorganic Chemistry, vol. 16, no. 2, pp. 243–256,
2011.

[21] I. Marenholz and C. W. Heizmann, “S100A16, a ubiquitously
expressed EF-hand protein which is up-regulated in tumors,”
Biochemical and Biophysical Research Communications,
vol. 313, no. 2, pp. 237–244, 2004.

[22] K. Saito, M. Kobayashi, R. Nagashio et al., “S100A16 is a
prognostic marker for lung adenocarcinomas,” Asian Pacific
Journal of Cancer Prevention, vol. 16, no. 16, pp. 7039–
7044, 2015.

[23] K. Katono, Y. Sato, M. Kobayashi et al., “S100A16, a promising
candidate as a prognostic marker for platinum-based adjuvant
chemotherapy in resected lung adenocarcinoma,”OncoTargets
and Therapy, vol. 10, pp. 5273–5279, 2017.

[24] M. Kobayashi, R. Nagashio, K. Saito et al., “Prognostic signifi-
cance of S100A16 subcellular localization in lung adenocarci-
noma,” Human Pathology, vol. 74, pp. 148–155, 2018.

[25] M. Korc and R. E. Friesel, “The role of fibroblast growth factors
in tumor growth,” Current Cancer Drug Targets, vol. 9, no. 5,
pp. 639–651, 2009.

[26] A. Beenken and M. Mohammadi, “The FGF family: biology,
pathophysiology and therapy,” Nature Reviews Drug Discov-
ery, vol. 8, no. 3, pp. 235–253, 2009.

[27] A. Gualandris, M. Rusnati, M. Belleri et al., “Basic fibroblast
growth factor overexpression in endothelial cells: an autocrine
mechanism for angiogenesis and angioproliferative diseases,”
Cell Growth & Differentiation, vol. 7, no. 2, pp. 147–160, 1996.

[28] M. P. Lefranc, “Immunoglobulin and T cell receptor genes:
IMGT® and the birth and rise of immunoinformatics,” Fron-
tiers in Immunology, vol. 5, p. 22, 2014.

[29] M. McHeyzer-Williams, S. Okitsu, N. Wang, and
L. McHeyzer-Williams, “Molecular programming of B cell
memory,” Nature Reviews Immunology, vol. 12, no. 1,
pp. 24–34, 2011.

[30] H.W. Schroeder Jr. and L. Cavacini, “Structure and function of
immunoglobulins,” The Journal of Allergy and Clinical Immu-
nology, vol. 125, no. 2, pp. S41–S52, 2010.

[31] J. F. Bazan, K. B. Bacon, G. Hardiman et al., “A new class of
membrane-bound chemokine with a CX3C motif,” Nature,
vol. 385, no. 6617, pp. 640–644, 1997.

[32] S. Jung, J. Aliberti, P. Graemmel et al., “Analysis of fractalkine
receptor CX(3)CR1 function by targeted deletion and green
fluorescent protein reporter gene insertion,” Molecular and
Cellular Biology, vol. 20, no. 11, pp. 4106–4114, 2000.

[33] J. Zhang, W. Yang, B. Luo, B. Hu, A. Maheshwari, and M. B.
Fallon, “The role of CX3CL1/CX3CR1 in pulmonary angio-
genesis and intravascular monocyte accumulation in rat exper-
imental hepatopulmonary syndrome,” Journal of Hepatology,
vol. 57, no. 4, pp. 752–758, 2012.

[34] S. J. Lee, S. Namkoong, Y. M. Kim et al., “Fractalkine stimu-
lates angiogenesis by activating the Raf-1/MEK/ERK- and
PI3K/Akt/eNOS-dependent signal pathways,” American Jour-
nal of Physiology. Heart and Circulatory Physiology, vol. 291,
no. 6, pp. H2836–H2846, 2006.

[35] A. Quemard, S. Mazeres, A. Sut, G. Laneelle, and C. Lacave,
“Certain properties of isoniazid inhibition of mycolic acid syn-
thesis in cell-free systems of M. aurum and M. avium,” Biochi-
mica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism,
vol. 1254, no. 1, pp. 98–104, 1995.

[36] A. Quemard, J. C. Sacchettini, A. Dessen et al., “Enzymic char-
acterization of the target for isoniazid in Mycobacterium
tuberculosis,” Biochemistry, vol. 34, no. 26, pp. 8235–8241,
2002.

[37] L. La Paglia, A. Listì, S. Caruso et al., “Potential role of
ANGPTL4 in the cross talk between metabolism and cancer
through PPAR signaling pathway,” PPAR Research,
vol. 2017, Article ID 8187235, 15 pages, 2017.

19International Journal of Genomics



[38] E. Okochi-Takada, N. Hattori, T. Tsukamoto et al.,
“ANGPTL4 is a secreted tumor suppressor that inhibits
angiogenesis,” Oncogene, vol. 33, no. 17, pp. 2273–2278,
2014.

[39] Y. H. Liao, K. H. Chiang, J. M. Shieh et al., “Epidermal growth
factor-induced ANGPTL4 enhances anoikis resistance and
tumour metastasis in head and neck squamous cell carci-
noma,” Oncogene, vol. 36, no. 16, pp. 2228–2242, 2017.

[40] L. Guo, N. H. Elcioglu, O. K. Karalar et al., “Dysosteosclerosis
is also caused by TNFRSF11A mutation,” Journal of Human
Genetics, vol. 63, no. 6, pp. 769–774, 2018.

[41] T. W. Moody, F. Zia, M. Draoui et al., “A vasoactive intestinal
peptide antagonist inhibits non-small cell lung cancer growth,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 90, no. 10, pp. 4345–4349, 1993.

[42] M. Szilasi, A. Buglyo, A. Treszl, L. Kiss, A. V. Schally, and
G. Halmos, “Gene expression of vasoactive intestinal peptide
receptors in human lung cancer,” International Journal of
Oncology, vol. 39, no. 4, pp. 1019–1024, 2011.

[43] C. L. Wilson, D. A. Mann, and L. A. Borthwick, “Epigenetic
reprogramming in liver fibrosis and cancer,” Advanced Drug
Delivery Reviews, vol. 121, pp. 124–132, 2017.

[44] G. Lev Maor, A. Yearim, and G. Ast, “The alternative role of
DNA methylation in splicing regulation,” Trends in Genetics,
vol. 31, no. 5, pp. 274–280, 2015.

[45] T. H. Bestor, J. R. Edwards, and M. Boulard, “Notes on the role
of dynamic DNA methylation in mammalian development,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 112, no. 22, pp. 6796–6799, 2015.

[46] H. Harada, K. Miyamaoto, M. Kimura, T. Ishigami,
K. Taniyama, and M. Okada, “Lung cancer risk stratification
using methylation profile in the oral epithelium,” Asian Car-
diovascular & Thoracic Annals, vol. 27, no. 2, pp. 87–92, 2019.

[47] K. Kemp Jacobsen, J. S. Johansen, A. Mellemgaard, and S. E.
Bojesen, “AHRR (cg05575921) methylation extent of leuko-
cyte DNA and lung cancer survival,” PLoS One, vol. 14,
no. 2, article e0211745, 2019.

[48] D. Chen, L. Luo, and C. Liang, “Aberrant S100A16 expression
might be an independent prognostic indicator of unfavorable
survival in non-small cell lung adenocarcinoma,” PLoS One,
vol. 13, no. 5, article e0197402, 2018.

[49] Y. Zheng, R. Wang, H. Z. Song, B. Z. Pan, Y. W. Zhang, and
L. B. Chen, “Epigenetic downregulation of RUNX3 by DNA
methylation induces docetaxel chemoresistance in human
lung adenocarcinoma cells by activation of the AKT pathway,”
The International Journal of Biochemistry & Cell Biology,
vol. 45, no. 11, pp. 2369–2378, 2013.

[50] W. Pu, X. Geng, S. Chen et al., “Aberrant methylation of
CDH13 can be a diagnostic biomarker for lung adenocarci-
noma,” Journal of Cancer, vol. 7, no. 15, pp. 2280–2289, 2016.

20 International Journal of Genomics


	Identification of Prognostic Immune-Related Genes by Integrating mRNA Expression and Methylation in Lung Adenocarcinoma
	1. Introduction
	2. Materials and Methods
	2.1. Samples and Data Extraction
	2.2. Statistical Analysis
	2.3. Identification of Differentially Expressed mRNAs (DEGs) and IRG Model in LUAD and Adjacent Normal Tissues
	2.4. The Relationship between the Methylation Level and the mRNA Expression Level of Prognostic IRGs

	3. Results
	3.1. Differentially Expressed mRNAs and IRGs in Patients with LUAD
	3.2. Functional Annotation of the IRGs
	3.3. Evaluation of the Prognostic IRGs with TCGA Dataset
	3.4. Confirmation of IRGs Expression Patterns via Principal Component Analysis (PCA)
	3.5. The Relationships of Risk Score with Immune Cells
	3.6. Relationship between IRG Model and Clinical Parameters
	3.7. The Methylation Levels of INHA and S100A16 Impact Its mRNA Expressions and Patient Survival
	3.8. The Validation of the IRG Model via an Independent Cohort
	3.9. The Validation of the Relationship between CpG Sites and Survival via Independent Cohorts
	3.10. The IRG Model Is an Independent Prognostic Factor for LUAD Patients

	4. Discussion
	Abbreviations
	Data Availability
	Conflicts of Interest
	Authors’ Contributions

