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We present a technique to construct a simplification of a feature
network which can be used for interactive data exploration, bio-
logical hypothesis generation, and the detection of communities
or modules of cofunctional features. These are modules of fea-
tures that are not necessarily correlated, but nevertheless exhibit
common function in their network context as measured by sim-
ilarity of relationships with neighboring features. In the case of
genetic networks, traditional pathway analyses tend to assume
that, ideally, all genes in a module exhibit very similar function,
independent of relationships with other genes. The proposed
technique explicitly relaxes this assumption by employing the
comparison of relational profiles. For example, two genes which
always activate a third gene are grouped together even if they
never do so concurrently. They have common, but not identical,
function. The comparison is driven by an average of a certain com-
putationally efficient comparison metric between Gaussian mix-
ture models. The method has its basis in the local connection struc-
ture of the network and the collection of joint distributions of
the data associated with nodal neighborhoods. It is benchmarked
on networks with known community structures. As the main
application, we analyzed the gene regulatory network in lung
adenocarcinoma, finding a cofunctional module of genes includ-
ing the pregnancy-specific glycoproteins (PSGs). About 20% of
patients with lung, breast, uterus, and colon cancer in The Cancer
Genome Atlas (TCGA) have an elevated PSG+ signature, with asso-
ciated poor group prognosis. In conjunction with previous results
relating PSGs to tolerance in the immune system, these findings
implicate the PSGs in a potential immune tolerance mechanism
of cancers.

complex networks | Gaussian mixture models | community detection |
optimal transport | immune tolerance

Data analysis with a large number of variables always involves
evaluating some kind of similarity between variables. This

serves the purpose of finding mechanisms of action in the sys-
tem, in which similar variables may indicate subsystems working
together to accomplish some function. It also serves the purpose
of dimensional reduction, reducing the complexity of the analysis
by allowing a member of a group of related variables to serve as
a proxy for the whole.

Practical unsupervised data analysis is often limited to simi-
larity clustering based on standard sample-wise Pearson corre-
lation, because of its ease of computation and straightforward
interpretation. Correlation measures the goodness of fit of a
linear relationship between two numerical variables. The disad-
vantage is that the comparison between variables is made without
reference to other variables that could be essential for identifying
related function.

For a higher-order approach, rather than directly comparing
the values of two variables X and Y , we compare only the func-
tion of the variables in the context of the whole system across a
cohort. The idea is that we consider the bivariate distributions
associated with each edge and then compare pairs of bivariate
distributions associated with adjacent edges X −Z and Y −Z .

Accordingly, the functional profile of a given variable X will
mean the collection of joint distributions or scatter plots (X ,Z )
of X against other variables Z (Figs. 1 and 2). To decide which
variables Z to use in the functional profile of X , we assume
that the dataset is augmented with a network topology provid-
ing abstract connections between variables/features. A variable
Z will be used in the profile of X only if there is a connec-
tion or edge between X and Z . In some contexts, such as a
well-studied molecular pathway, this network may be known a
priori and should be considered part of the dataset being ana-
lyzed (e.g., SI Appendix, Fig. S1). In other contexts, such as the
large-scale transcriptomic analysis we performed on The Cancer
Genome Atlas (TCGA) lung cancer samples, for an unbiased
analysis this network should be data driven, inferred from the
cohort data matrix itself. For network inference, we use liberal
thresholds on the absolute value of the correlation between vari-
ables X and Y to decide whether X and Y will be connected by
an edge.

One often finds by informal investigation that some variables
X and Y have common functional profiles even when X and Y
are completely uncorrelated. To promote this type of informal
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A major problem in data science is representation of data
so that the variables driving key functions can be uncov-
ered and explored. Correlation analysis is widely used to
simplify networks of feature variables by reducing redundan-
cies, but makes limited use of the network topology, relying
on comparison of direct neighbor variables. The proposed
method incorporates relational or functional profiles of neigh-
boring variables along multiple common neighbors, which are
fitted with Gaussian mixture models and compared using a
data metric based on a version of optimal mass transport
tailored to Gaussian mixtures. Hierarchical interactive visual-
ization of the result leads to effective unbiased hypothesis
generation. In a cancer gene expression study, this method
uncovered an unanticipated immunosuppressive mechanism
resembling maternal–fetal immune tolerance.
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Fig. 1. Flowchart summarizing the GMT analysis pipeline.

investigation to objective analysis, one needs a comparison met-
ric between joint distributions or scatter plots. To this end
we first fit Gaussian mixture models (GMMs) to the distribu-
tions. This has a smoothing effect, filtering out noise, as well
as making the distributions accessible to analytic formulas via
the comparatively few fitted parameters. GMMs were selected
because they are well studied and straightforward to fit. A com-
putationally efficient version of optimal mass transport (OMT)
adapted to GMMs (1) is used to measure the distance between
the fitted models. It is important to note that distances based
on OMT are (weakly) continuous as opposed to some other
commonly used measures of distributions such as Kullback–
Leibler divergence and total variation (2). Further, GMMs are
natural models for representing probability distributions (3).
Under very general conditions, probability density functions
may be approximated (e.g., in L1) by such weighted sums of
Gaussians.

The final Gaussian mixture transport (GMT) distance between
X and Y is calculated as the average GMM/OMT distance
between the functional profiles of X and Y along variables Z
that are common neighbors of X and Y . The GMT metric
may be used thereafter as the input to hierarchical clustering
algorithms. We thus employ the GMT metric to create a force-
directed graphical representation of the feature network in which
close nodes are likely to share a common function with respect
to other nearby nodes.

This analysis and visualization methodology is well suited
to hypothesis generation in biological and medical applications
with large gene-level datasets. In an investigation of mRNA
expression data of lung adenocarcinoma samples, the graphi-
cal representation strongly grouped together a module of genes
which were further singled out, among all modules found, for
their comparatively high expression in a subsample belonging
to a published unsupervised cluster with approximately 20%

Fig. 2. (A–C) An illustration of GMT comparison between two features. In this case the two features are not close because of correlation or a direct
relationship between their values, but instead because of small GMT distance incorporating the relationships with other features. This comparison metric is
an average of a Gaussian mixture model and optimal mass transport-based metric between the joint distributions (scatter plots) that are relevant according
to the network topology. The gene network is the PANTHER curated database (http://www.pantherdb.org/), with numerical data synthesized from the
network topology using the graph Laplacian described in Methods.
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frequency (Fig. 3). This module turned out to include all the
known 10 pregnancy-specific glycoproteins (PSGs) and several
other genes known for expression in the placenta. This suggested
the hypothesis that the PSG+ status is related to prognosis,
which is confirmed by Kaplan–Meier analysis in the TCGA lung
adenocarcinoma, breast, uterine corpus endometrial carcinoma,
and colon adenocarcinoma cohorts. Approximately 20% of each
cohort have PSG+ tumors, and these have an especially poor
prognosis. Together with documented findings relating PSGs to
regulation of the immune system, these results implicate the
PSGs as a potential mechanism to mediate immune tolerance
in cancers.

Methods
Overview. A central problem in the field of network science is the rep-
resentation of network data in a readily accessible format (5). Ideally
the representation should be amenable to human-in-the-loop, interactive,
exploratory data analysis. Compression methods have been used previ-
ously to reduce large networks to a desired level of resolution, mainly

toward the goal of improving the computational performance of commu-
nity detection algorithms (6). The key idea is to group nodes into modules
and consider the new network composed of the connections between
groups implied by the individual node connections. In its simplest form,
the groups may be obtained by devising an edge weighting intended to
measure similarity between neighboring nodes and successively “collaps-
ing” edges, beginning with the greatest similarity, to create a hierarchical
representation.

A natural improvement is to find approximations of a given network
“from below” with gradually expanding small node subsets, an approach
developed by Stanley et al. (7). Stanley et al. randomly distribute seed nodes
which are then expanded into “supernodes” using direct neighborhoods.
In a more global approach, Yang et al. (6) present a method of supernode
network representation involving explicit consideration of known prior con-
straints on the set of network topologies of interest for a low-complexity
approximation to the given network satisfying the constraints. For a more
detailed survey, see Besta and Hoefler (8).

Unlike the method referred to in ref. 7, our proposed approach makes
essential use of additional data beyond the network topology. Moreover,
rather than qualitative constraints as in ref. 6, we assume that the nodes of
the network are numerical feature variables, so the network is augmented

Fig. 3. (Top, A–C) A special role for pregnancy-specific glycoproteins in cancer, uncovered with the proposed functional network analysis using the GMT
metric. (B) A gene network inferred from the TCGA lung adenocarcinoma transcriptome using Pearson correlation cutoffs, analyzed with the GMT method
and represented graphically using the GMT distances between genes. The gene coloring reflects the average z-score profile for the third sample cluster
identified in the consensus clustering published at the Broad GDAC Firehose (the profiles for the other four of the five GDAC sample clusters did not
show clear patterns of expression with respect to the functional network representation). Green is high and red is low. The graph layout is force directed.
Pearson correlation alone does not account for the grouping of the PSG genes: After removing 4 outliers out of 509, the mean of the absolute value of the
Pearson correlation between the expression values for the 11 PSGs was only 0.177, with a SD of 0.201. (A) Highlight of the salient group containing highly
expressed genes. The group contains all 10 of the PSG genes, as well as the pseudogene PSG10, and placental genes LGALS13 and HSD3B1. Several of the
down-regulated genes in the group are closely related to certain cancer/testis antigens (CTAs): ADAM2 (ADAMTSL4), NLRP4 (NLRP2), SPATA19 (SPATA31D4),
TMPRSS12 (TMPRSS11D), CRISP2 (CRISP1), XAGE3, and SPANXN5. See ref. 4 for the full list of 276 CTAs. (C) Highlight on the second group containing
highly expressed genes, including genes similar to the CTAs: SSX4, DPPA2 (DPPA4), CT47A1, CT47A6, ARMC3 (ARMC9), TSPY1 (TSPYL6), and RGS22 (RGSL1).
(Bottom) Kaplan–Meier survival analysis for the TCGA breast, lung adenocarcinoma, uterine corpus endometrial carcinoma, and colon cohorts stratified by
the presence of at least one overexpressed PSG. The PSG+ phenotype confers a substantial survival disadvantage in these cancer types. In a few other cancer
types, including ovarian cancer, a subset showing the PSG+ phenotype was present but did not confer a statistically significant advantage or disadvantage.
No PSG+ cases were found in the TCGA pancreas cohort.
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with node weight data. For example, in genomics one can use RNA expres-
sion of genes across a tissue sample set. Such data can also be generated or
synthesized from the underlying network topology if the topology is the pri-
mary structure of interest. Conversely the network topology may be inferred
from the sample data if no prior network is known. The node weight-
ings may be interpreted as defining samples from the joint distribution of
random variables associated with the nodes.

A natural model for distributions is the Gaussian mixture, used in
many data processing and analysis applications (3). In general, a mix-
ture model is a weighted linear combination of distributions where
each component represents a subpopulation. In particular, the GMM is a
weighted average of Gaussians. GMMs are popular due to their versatil-
ity and overall simplicity in data representation. They are ubiquitous in
statistics, hypothesis testing, decision theory, and machine learning. The
idea is that real-world data may not be densely distributed on a high-
dimensional space and instead are concentrated in a low-dimensional
subspace. Further, in many cases of interest, the data are sparsely dis-
tributed into a number of subgroups, and so differences within a given
subgroup are not as important as those among the subgroups. Mixture
models capture these properties, and this motivated the work of Chen
et al. (1) to modify OMT theory (9, 10) into a form suitable for Gaussian
mixture models.

OMT provides the Gaussian mixture framework with a natural compar-
ison metric between mixtures, and conversely mixtures provide a natural
model with which to make the computation of OMT tractable. We use
GMMs to model the functional role played by a node with respect to the
data along its neighbors in the network. This role is quantified by the
average GMM/OMT distance between two nodes, which we call the GMT
distance. Hierarchical clustering then provides a simplified version of the
network for each given level of complexity. The simplified or compressed
network represents a projection of the prior network (rather than a sub-
network) which is most relevant according to the evidence observed in
the data.

To illustrate the construction of GMT distance-based network reductions,
we show the steps of the construction applied to a concrete example,
a network synthesized to have a known community structure. The edge
density is high within the communities and low between communities.
Node weightings are randomly generated in terms of the network topol-
ogy by neighbor averaging or the iterated graph Laplacian (11) of random
weightings. An example of such a weighting is depicted in SI Appendix,
Fig. S1. A preview of the series of network simplifications is shown
in Fig. 4.

Background on OMT for Gaussian Mixture Models. A Gaussian mixture model
is an important instance of the general mixture model structure, a struc-
ture that is commonly utilized to study properties of populations with
several subgroups (3). Formally, a GMM is a probability density consist-
ing of a weighted linear combination of several Gaussian components,
namely

µ= q1
π

1
+ q2

π
2

+ · · ·+ qP
π

P ,

where each πk is a Gaussian distribution and q = (q1, q2, . . . , qP)T is a proba-
bility vector. Here the finite number P stands for the number of components
of µ.

Let µ0,µ1 be two Gaussian mixture models of the form

µi = q1
i π

1
i + q2

i π
2
i + · · ·+ q

Pi
i π

Pi
i , i = 0, 1.

The distribution µi is equivalent to a discrete measure qi with supports
π1

i ,π2
i , . . . ,π

Pi
i for each i = 0, 1. The framework from ref. 1 is based on the

discrete OMT problem

min
π∈Π(q0,q1)

∑
i,j

c(i, j)π(i, j) [1]

for these two discrete measures, where Π(q0, q1) denotes the space of joint
distributions with marginal distributions q0 and q1. The cost c(i, j) is taken
to be the 2-Wasserstein metric:

c(i, j) = W2(πi
0,πj

1).

There is a closed formula for this metric (9, 10),

W2(π, π̃)2
= ‖m− m̃‖2 [2]

+ trace(Σ + Σ̃− 2(Σ1/2
Σ̃Σ

1/2)1/2),

where π and π̃ are Gaussian distributions with means m and m̃ and
covariances Σ and Σ̃, respectively.

The discrete OMT problem (1) always has at least one solution, and letting
π* be a minimizer, we define

GMM/OMT Distance(µ0,µ1) =

√∑
i,j

c(i, j)π*(i, j). [3]

This formula, from ref. 1, is the key formula underlying our algorithm.

Gaussian Mixture Transport Distance. A naive approach would group nodes
together based on similar properties, for example, by making comparisons
between the (univariate) distributions of the weight data associated with
each node. Comparison in this case is a classic topic, addressed, for instance,
by the Kolmogorov–Smirnov test. One step beyond this is to summarize the
joint (bivariate) distribution associated with each edge–node pair by a Pear-
son correlation or related metric and then use this similarity metric for classic
clustering.

As alluded to in the Introduction, in the present work we propose a
higher-order method, in which we consider the bivariate distributions asso-
ciated with each edge (i.e., the joint distributions of the variables associated
with the two endpoint nodes) and then compare pairs of bivariate distri-
butions associated with adjacent edges X–Z and Y–Z (here the edges are
adjacent along node Z). If the distributions are similar, X and Y will be con-
sidered to have a similar function in the network locally near Z. Ultimately,
we will summarize this similarity over all Z intermediate between X and Y .
Fig. 2 shows an example of similar functional profiles. In this way we capture
local parallelism, where some closely related nodes may provide alternative
paths to similar effects.

How is the similarity between bivariate distributions quantified? The
Bhattacharyya distance (12) is one similarity measure between distributions
in higher dimensions. However, a direct calculation of this distance tends
to require rasterization of the space involved and may be prohibitively
costly to compute. The theory developed by Chen et al. (1) for Gaussian
mixture models provides a nearly closed-form alternative which is well
suited to the task, a metric we call Gaussian mixture transport similar-
ity. First, the distributions are approximated by Gaussian mixtures with
a given number of subpopulations. The mixture weights are interpreted

Fig. 4. A synthetic network with K = 3 communities containing N = 45 nodes total. The network was randomly generated to have intercommunity edge
connectivity 0.08 out of a possible maximum of 0.68 and intracommunity edge connectivity 0.28 out of a possible maximum of 0.32. Random node weightings
are generated from the network by the iterated graph Laplacian (11) applied to an initial node weighting equal to 1 on a randomly selected node and 0
on every other node. Two hundred node weightings were generated in this manner. Hierarchical clustering was performed with respect to GMT-distance
similarity edge scores. (A) The original network. (B–F) Five selected hierarchical levels from the series. Each node group is labeled by the number of nodes it
contains. (G) Heatmap showing ordinary hierarchical clustering of the synthesized samples, with the usual rectilinear representation of the hierarchy tree.
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as a probability distribution on the discrete set of subpopulations, which
are themselves compared using the optimal mass transport metric or dis-
crete earth mover’s distance (EMD). For this calculation of the EMD, the
cost function corresponding to motion from the discrete point labeling
a subpopulation of the first mixture to a discrete point labeling a sub-
population of the second mixture is taken to be the actual optimal mass
transport distance between the corresponding Gaussian distributions. The
GMT distance between two nodes (not necessarily connected by an edge)
is this GMM/OMT distance averaged over all adjacent edges with the same
free endpoints. For a detailed description, see SI Appendix, Table S2, sum-
marizing the formulas in ref. 1 and in Background on OMT for Gaussian
Mixture Models. The last step is classic hierarchical clustering using the GMT
distance sparse similarity matrix. We use the average-distance–based hierar-
chical clustering method, although the standard alternatives single-linkage,
complete-linkage, and Ward clustering, etc., may be used depending on the
application.

Node Data Synthesis. Although the GMT hierarchy is primarily designed
for reducing the feature structure of a numerical dataset, it can also be
applied to a pure network topology by synthesized node weights. For this
we use the iterated graph Laplacian ∆ (11) applied to single-node weight-
ings with randomly chosen support nodes. The resulting weightings can be
understood as random linear combinations of the ∆ eigenfunctions, with
emphasis on those eigenfunctions with large eigenvalues. The spectrum of
∆ is well studied and known to capture a lot of detailed information about
the underlying graph.

Implementation and Runtime Complexity. A naive version of our algorithm
would iterate over all edge pairs, with complexity class O(E2) where E is the
number of edges of the network. However, since only adjacent edge pairs
are used, we instead iterate over the nodes and then over the pairs of its
neighbors, with complexity class O(ND2) where N is the number of nodes
and D is the maximum degree over all nodes.

The mixture modeling and GMT distance calculations are classically par-
allelizable: the mixture modeling, because it depends only on the variable
pair distributions, and the GMT distances because they depend only on the
resulting list of mixture models. This makes our algorithm feasible for rapid
computation. The discrete earth mover’s distance is performed with the R
package emdist (13). The mixture modeling itself is performed with the R
package mclust (14). In practice, the number P of mixture model popula-
tions has little effect on the overall output and performance as long as P lies
in the approximate range from 3 to 10. If the number of node-weighting
samples M is as low as a few hundred (M≈ 100), it is not meaningful to
choose P much greater than 10 anyway, since the number of data points
per population (M/P≈ 10) should not be too low. High accuracy of the mix-
ture model as a representation of the joint distribution of two given node
variables is not essential for the purpose of inferring distances between the
distributions from distances between the models.

Visualization. Once the hierarchy is computed, it is formatted for viewing
in the Gephi graph visualization software using a custom plugin. Gephi is
used to represent weight data with node size, color, and relative position in
force-directed graph layouts. We use three different view types.

One view shows the compressed network at a user-selected level or scale,
as depicted in Fig. 4.

For larger graphs, a second, static view is used to reduce the computa-
tional burden of real-time rendering. For this we use the hierarchy itself
considered as a graph. We note that this visualization method applies to
any hierarchical clustering and could serve as a general-purpose alterna-
tive to the usual rectilinear branch representation often used to decorate
heatmaps. The graph is a tree or union of trees, with leaf nodes represent-
ing features and internal nodes representing feature groups. We choose
leaf node sizes to reflect the linkage height, or hierarchical level, of the
first internal node to which it is attached. Lower levels correspond to larger
nodes, since nodes joining the tree at a lower level do so on the basis
of stronger evidence of coordination with other nodes (smaller GMT dis-
tances), which we wish to highlight. Internal nodes are given negligible size.
A planar representation with no edge crossings is possible since the graph
consists of trees. A force-directed layout is used to arrange the nodes in a
way guided by the tree structure and node sizes.

In the third view the original network topology, modified to include
edges added between neighbors of neighbors, is visualized directly with
edge weighting equal to the GMT distance. To emphasize a particular scale
s, we use a Gaussian transformation of GMT distance with mean s and a
chosen bandwidth ε. This representation has many of the computational

advantages of a single preprocessed static view, but with some additional
flexibility for interactive refinement via s and ε.

Data Availability. The gene expression data used in this study are publicly
available from the TCGA (15) (https://www.cancer.gov/tcga) via cBioPortal
(16). Cluster analysis published via the Gene Data Analysis Center (GDAC)
Firehose (17) was used. Code for this paper is available on the public
repository https://github.com/MSK-MedPhys-DeasyLab/functional-network-
analysis.

Results
Benchmarking. GMT-based hierarchical clustering can be com-
pleted to an unsupervised community detection algorithm using
a numerical metric of modularity in the usual way, by selecting
from among the level-cutoff clusterings the one with the best
value of the metric. In the supervised setting, the level cutoff
can be selected to give the best value of a cluster similarity met-
ric, such as normalized mutual information (NMI) calculated
against a known community structure. Fig. 5 compares this GMT
community detection method with three established methods
available in the R igraph library: greedy optimization, Louvain
optimization, and label propagation.

Analysis of Gene Regulatory Networks. Gene and protein networks
are now ubiquitous in medicine and biology. Although they are
thought to be highly orchestrated, they are complex, and data-
driven validation of known pathway mechanisms is still needed.

Functional network analysis of the lung adenocarcinoma RNA
expression profiles in the TCGA database, using the GMT met-
ric, produces a module of genes/nodes that are clustered together
containing two sets of functionally related genes (Fig. 3). One
set is expressed by trophoblasts, which reside only in the pla-
centa (during pregnancy), and a second set belongs to the testis
antigen family of genes. In Fig. 3, the green-colored genes con-
tain high levels of transcription while the red-colored genes have
low or no detectable levels of transcription. The quantification
of these levels of mRNAs is from the average z -score profile
of one sample cluster from the data published by the Broad
GDAC Firehose. The genes that are labeled in green (high lev-
els) are largely from the placenta with all 11 genes of the PSG
cluster of genes scoring as actively transcribing. The genes that
are labeled largely red (little or no transcription) are enriched
for the testis-specific antigens with only a few genes being
expressed.

Thus, the GMT metric has identified a functional set of genes,
the PSG genes, which are transcribed only in normal trophoblasts
during pregnancy and whose transcripts were also detected in
about 20% of lung adenocarcinomas in the TCGA. Furthermore,
those cancers that expressed the PSG genes had the worst overall
survivals as tested in Kaplan–Meier plots with statistical signifi-
cance (Fig. 3). Similar results detecting the transcription of the
PSG genes in about 20% of cancers of the breast, uterus, and
colon were also observed. The PSG genes were not expressed
in pancreatic cancers and in ovarian cancers statistical signifi-
cance for lower overall survival was not observed. The PSG genes
are in a cluster of genes expressed in the placenta and so any of
these genes in the module shown in Fig. 3 might have some nega-
tive impact upon immune surveillance, resulting in a poor overall
survival.

Discussion and Future Research. We presented an unsupervised
methodology for relational or functional analysis of networks
based on a modification of optimal mass transport attuned to
Gaussian mixture models, applicable to general feature net-
work datasets with an intermediate-to-large number of variables.
It identified known community structures in several bench-
mark datasets and suggested intriguing biological hypotheses
in applications to cancer genomics, which we now discuss in
more detail.
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Fig. 5. Comparison of GMT community detection with greedy optimization of the modularity (18, 19), Louvain optimization (20), and label propagation
(21), with respect to NMI. The hierarchy-tree graphical representations are shown. PolBlogs and PolBooks are respectively a network of political blog
links and a copurchasing network for political books in the United States. Both are provided with manually annotated indications of political leaning for
each node (red and blue). For these smaller networks with few, well-defined communities, the established methods outperform GMT. On the larger Cora
academic paper citation network, presumably with greater real-world complexity, GMT outperforms the other methods by a factor of 3.7. The visualization
substantially reveals the manually annotated subfields and also seems to suggest an improvement where some putative subfields are divided into multiple
distinct groups and closely related to specific alternative subfields. For example, the subfield in red is divided into two tightly clustered groups, one group
very close to the subfields in orange and yellow.

There are 10 PSG genes (numbered 1 to 9 and 11) and one
pseudogene (PSG10) which are localized on a contiguous piece
of DNA on chromosome 13.1–13.3. Their DNA sequences are
related and so the transcription of one gene may cross-hybridize
to other PSG genes. Because of this it has been difficult to know
whether one or more of the PSG genes function in the same or
similar ways. It will take better antibody reagents to distinguish
between these gene products to elucidate their functions. The
PSG proteins are produced in small amounts shortly after fertil-
ization and as the placenta forms these glycoproteins are made
and secreted by the trophoblasts whose origin is the embryo. The
concentration of the PSGs in the blood stream increases to a
maximum by the third trimester. The available evidence is that
at least some of the PSGs are involved in immunosuppression of
the mother’s CD-8 T cells, preventing a rejection of the fetus
because of the allo-antigens expressed by the fetus (22). The
PSGs act upon monocytes, resulting in the secretion of TGF-β,
IL-10, and IL-6. The TGF-β and IL-10 induce FOX-P3 positive
T-reg cells, which help to mediate immunosuppression during

pregnancy and possibly some cancers (23, 24). In mice that are
pregnant the administration of antibodies directed against two
PSGs, alpha-2 and beta-1, results in spontaneous abortion of
the embryos (25). Rousseaux et al. (26) have shown that ade-
nocarcinomas of non–small-cell lung cancers that express PSGs
are commonly very aggressive and metastatic. This is consistent
with the observations in Fig. 3 demonstrating that non–small-cell
lung cancer adenocarcinomas that express the PSGs have poorer
overall survivals than those that do not express the PSGs. Very
similar results are observed with breast, colon, uterus, and lung
cancers.

Thus there is growing evidence to support the hypothesis that
the PSGs initiate the production of CD-4 T-regs containing
CTLA-4 and are utilized during pregnancy to effect an immuno-
suppressive state that prevents the fetus and embryo from being
rejected and that this same mechanism is utilized to help pre-
vent the immune system from rejecting tumors that also harbor
foreign neoantigens by virtue of the mutations found in cancers.
If these ideas are correct, the antibodies directed against the
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PSGs in some patients with cancer whose tumors secrete PSGs
may well act like CTLA-4 or PD-1 and help to reject the tumor
or at least extend the lifespan of the patient. If the mechanism
by which the PSGs function to immunosuppress patients with
cancer from attacking their tumors is solely through the produc-
tion of CTLA-4 expressing T-regs (23, 24), then anti–CTLA-4
antibodies would be expected to function to reverse immuno-
suppression in PSG-expressing tumors. Unlike anti–CTLA-4
antibodies, one might anticipate that antibodies directed against
the PSGs might not result in autoimmunity, because the PSGs
are not expressed normally, so turning them off in a tumor
should have little impact upon normal tissue. It is well known
that the pregnant mother is immunosuppressed, and if she has

an autoimmune disease (rheumatoid arthritis, lupus, multiple
sclerosis, etc.), it is often less severe during pregnancy. If that
is the case, perhaps one could treat the patient (these autoim-
mune diseases occur in females more often than males) with
soluble PSGs, which could in turn moderate the autoimmune
disease. Cancers may utilize normal physiological processes to
escape immune surveillance and repurpose the PSGs to evade
the immune system.
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