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Nature has inspired the design of robots in which soft actuators
enable tasks such as handling of fragile objects and adapting to
unstructured environments. Those tasks are difficult for traditional
robots, which predominantly consist of hard components. Electro-
hydraulic soft actuators are liquid-filled shells that deform upon
the application of electric fields; they excel among soft actuators
with muscle-like force outputs and actuation strains, and with
actuation frequencies above 100 Hz. However, the fundamental
physics that governs the dynamics of electrohydraulic soft actua-
tors is unexplored. Here, we study the dynamics of electrohydrau-
lic soft actuators using the Peano-HASEL (hydraulically amplified
self-healing electrostatic) actuator as a model system. Using exper-
iments and a scaling analysis, we discover two dynamic regimes: a
regime in which viscous dissipation reduces the actuation speed
and a regime governed by inertial effects in which high-speed
actuation is possible. For each regime, we derive a timescale that
describes the influence of geometry, materials system, and applied
external loads on the actuation speed. We also derive a model to
study the dynamic behavior of Peano-HASEL actuators in both
regimes. Although this analysis focuses on the Peano-HASEL actu-
ator, the presented results may readily be generalized to other
electrohydraulic actuators. When designed to operate in the in-
ertial regime, electrohydraulic actuators will enable bio-inspired
robots with unprecedented speeds of motion.
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Organisms in nature make use of soft tissue, such as muscle
and skin, to change shape and to adapt to new tasks and

environments (1). Traditionally, human-built machines pre-
dominantly rely on hard materials and components, such as
metals and gears, and outperform natural organisms in force and
precision. However, these hard machines often struggle in un-
structured environments that require adaptability. Therefore, the
designs found in nature have served as inspiration for the de-
velopment of machines and robots in which soft materials enable
unique functionalities. In particular, soft actuators (2–4) have
emerged as key building blocks for robots that can navigate in
unstructured environments (5, 6), handle delicate objects (3, 4),
and safely interact with humans (7–9). Electrohydraulic soft ac-
tuators are composed of deformable, liquid-filled shells that
deform under electric fields (4, 10, 11). They have drawn at-
tention as high-performance actuators (4, 11–14), as they achieve
large actuation strains (>100%) and stresses (>0.3 MPa), and
high specific powers (>600 W/kg) and frequencies (>100 Hz)
(12). We (15, 16) and others (17–19) have investigated the
quasistatic behavior of electrohydraulic soft actuators, but the
fundamental physics that governs their dynamic behavior is
unexplored.
Electrohydraulic soft actuators combine the working principles

of dielectric elastomer actuators (DEAs) (2) and fluid-driven
soft actuators (9), but their dynamic behavior is different from
both technologies. Electrohydraulic soft actuators and DEAs
both use electrostatic forces for activation (4, 20, 21). However,
the dynamics of DEAs is governed by elastic effects (22–27),
whereas elasticity only plays a minor role in many designs of
electrohydraulic soft actuators (11, 12, 15). A working fluid

drives the shape change of both electrohydraulic and fluid-driven
soft actuators (4, 9). However, for fluid-driven soft actuators,
external pumps regulate the fluid flow (3, 9) and flow resistance
of the channels between the pumps and the actuators typically
governs their actuation speed (28–30), thereby limiting their
actuation frequencies to ∼1 Hz when the working fluid is liquid
(29). In contrast, liquid is only redistributed locally in electro-
hydraulic soft actuators; to date, it is not understood what
governs their actuation speed.
Here, we investigate the fundamental physical principles that

govern the dynamic behavior of electrohydraulic soft actuators
using the Peano-HASEL (hydraulically amplified self-healing
electrostatic) actuator as a model system (11). Using scaling
laws, we identify a viscous timescale and an inertial timescale
that depend on the materials system and geometry of the actu-
ators and the operating conditions. Depending on the ratio of
these timescales, regimes with distinctly different dynamic be-
havior emerge: 1) a regime in which viscous effects govern the
actuation speed; 2) a regime in which inertial effects govern the
actuation speed. We experimentally confirm the existence of
these regimes over a range of parameters that span multiple
orders of magnitude. We also derive a model to calculate the
actuation speed of Peano-HASEL actuators in the entire ex-
perimentally investigated range of parameters and to investigate
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the influence of applied voltages and loads. Even though the
analysis is focused on the Peano-HASEL actuator, the presented
results and principles can readily be applied to other electro-
hydraulically activated soft systems.

Results
Experimental Design. A HASEL actuator consists of a flexible
polymer shell that is coated with flexible electrodes and filled
with a liquid dielectric (Fig. 1A). When connected to a voltage
supply, charges flow onto the electrodes. The electrostatic at-
traction between the electrodes causes “zipping” of the shell,
thereby displacing the liquid dielectric against viscous resistance.
The actuator deforms and lifts a weight. When the voltage is
turned off, the weight exerts a force on the actuator that causes
the electrodes to unzip and the liquid dielectric to flow back
between the electrodes (Fig. 1B). The Peano-HASEL actuator
(11) (Fig. 1C) is a specific design of HASEL actuator in which
two inextensible but flexible polymer films are bonded to form a
rectangular shell. The top half of the shell is covered on both
sides over the entire width with flexible electrodes. Rigid frames
on the top and bottom of the actuator are used for load in-
troduction. When a voltage is applied to the actuator, the elec-
trodes zip together from the top of the actuator, and the actuator
contracts in length (Fig. 1D). We use the Peano-HASEL actu-
ator as a model system for electrohydraulic soft actuators, as its
rectangular geometry simplifies modeling and interpretation of
experimental results.
To study the dynamic behavior of Peano-HASEL actuators,

we suspended them from the top frame and attached weights of
mass M to the bottom frame (Fig. 2A; see Materials and Methods
for details of experimental setup). We applied square wave
voltage signals of voltage Φ to the actuators and measured their
deformation as a function of time by tracking a marker on the
bottom frame with a high-speed camera. In our experiments, we
not only variedM and Φ, but we also used actuators with shells of
different length L and width w, shell materials of different
thickness h and relative permittivity «r, and liquid dielectrics of
different viscosity μ (Fig. 2 A and B; see Materials and Methods
for details of fabrication and materials). Varying these parame-
ters changed the time in which the actuators contracted (Fig. 2C)
and elongated (Fig. 2E). To capture the entire process of con-
traction and elongation, we adjusted the frequency of the voltage
signal so that all actuators could contract to a zipped equilibrium
(Fig. 2D) when the voltage turned on, and fully relax (Fig. 2B)
when the voltage turned off. To compare the recorded data from
actuators of different lengths, we calculated the actuation strain
e = x/l0, where x is the measured stroke, and l0 is the unzipped
length of the actuators (Fig. 2 B and C).
Depending on geometry and materials system, we observed

two qualitatively different types of dynamic behavior (Movie S1):
1) The actuators gradually converged to the zipped equilibrium
(e = eeq) and the unzipped equilibrium (e = 0) (Fig. 3A). In this
case, the area of the zipped region of the electrodes increased
continuously with time when the actuator contracted (Fig. 3B
and Movie S2). 2) The actuators transitioned rapidly between
the equilibria (Fig. 3C). When the voltage turned on, the actu-
ation strain overshot and subsequently exhibited small oscilla-
tions around the equilibrium strain (Fig. 3C). For these
actuators, high-speed videos show that the electrodes “over-
zipped” and unzipped while the actuation strain overshot
(Fig. 3D and Movie S3). Subsequently, while the actuation strain
oscillated around the equilibrium strain, we did not observe
noticeable oscillations of the zipping front (Movie S3). We
therefore attribute the oscillations around the equilibrium strain
to out-of-plane oscillations of the actuators (Movie S1). As a
quantitative measure for the actuation speed, we used the rise
time tR in which the actuators contracted to e = 0.9eeq and the

fall time tF in which the actuators elongated to e = 0.1eeq during
the cycle (Fig. 3 A and C).

Scaling Analysis of the Rise and Fall Times. As the first step of our
investigation into the dynamic behavior, we perform a scaling
analysis (more details of the analysis may be found in Scaling
analysis in SI Appendix). Fig. 2 A and B defines all relevant
geometrical and material parameters that we use in our analysis.
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Fig. 1. Dynamics of zipping in electrohydraulic HASEL actuators. (A) When a
voltage Φ is applied to the actuator, charges flow (I) onto its electrodes. The
electric field between the charges causes the electrodes to zip together. The
liquid dielectric in the shell is displaced against viscous resistance, the actu-
ator contracts, and the attached weight is lifted. (B) When the voltage is
turned off, the attached weight exerts a tensile force on the shell. The
electrodes unzip, and the liquid dielectric flows back between the electrodes
against viscous resistance. (C) Front view of a zipped Peano-HASEL actuator.
(D) Skewed view of a Peano-HASEL actuator in different stages of an actu-
ation cycle. (Scale bars, 1 cm.)
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At the investigated loads, the elastic strain in the shell is negli-
gible compared to the overall deformation of the actuator. We
therefore treat the shell as inextensible. All geometries fulfilled
w > L >> h, so we can also neglect the bending stiffness of the
shells and the mechanical constraints at the sides of the shells
(15). In the experiments, we used weights M that were at least
10 times larger than the mass of the actuator; therefore, the
effects of the mass of the actuator itself on the dynamics were
negligible. However, the weights M were chosen to be small
enough to avoid an instability that causes inhomogeneous zip-
ping of the electrodes under high loads (16). Consequently, the
electrodes zipped approximately homogenously from the top
edge of the shell, and we approximate the flow of the liquid
dielectric as planar. We also neglect the electric field in the
unzipped region of the shell, as it rapidly decays away from the
zipping front (15–17). The time to charge or discharge the
electrodes (∼1 μs; see Estimation of the RC time constant of the
actuators in SI Appendix) does not influence the actuator dy-
namics, as it is much smaller than the observed rise and fall times
(tR, tF > 1 ms).
Based on the scaling analysis, we introduce a dimensionless

voltage:

φ = Φ2«0«rw
Mgh

, [1]

where «0 is the vacuum permittivity and g is the gravitational
acceleration. This parameter describes the ratio between the
electrostatic forces in the zipped region of the electrodes
(∼Φ2«0«rw/h) and the weight of the load (Mg). We have previ-
ously shown that this parameter governs the equilibrium strain of
Peano-HASEL actuators (15). In the scaling analysis, we look at
two limiting cases: μ → 0 and μ → ∞. In the limit μ → 0, viscous
effects can be neglected and the inertia of the weight dominates
the dynamics. Performing the scaling analysis under this assump-
tion leads to the following:

tn = fn(φ)(Lg)
1=2

, [2]

where fn(φ) is an unknown dimensionless function of the dimen-
sionless voltage, and n stands for R or F (rise or fall). For a
constant value of φ, we therefore expect tR and tF to be linearly
proportional to the inertial timescale τi = (L/g)1/2. In the limit
μ → ∞, viscous effects dominate the dynamic behavior and

inertial effects can be neglected. Performing the scaling analysis
under this assumption leads to the following:

tn = jn(φ) μwLMg
, [3]

where jn(φ) is an unknown dimensionless function of the dimen-
sionless voltage, and n stands for R or F (rise or fall). In this case,
we expect tR and tF to be linearly proportional to the viscous
timescale τv = μwL/Mg when φ is constant.
We confirmed the scaling predicted by Eqs. 2 and 3 experi-

mentally. We measured tR and tF for actuators with different
geometries and materials systems at different voltages and
weights for a wide range of parameters, so that in combination
the dimensionless voltage had the constant value φ = 1.13. When
normalized by τi = (L/g)1/2 and plotted as a function of the ratio
of the two timescales τv/τi = μwL1/2/Mg1/2, the measured values of
tR and tF collapsed to single curves (Fig. 4 A and B). The nor-
malized data show two distinctly different regions. At values τv/τi
K 4·10−4, the normalized transition times were constant (inertial
regime, scaling predicted by Eq. 2), whereas they were pro-
portional to τv/τi for values τv/τi J 4·10−4 (viscous regime, scaling
predicted by Eq. 3), confirming the results of the scaling analysis.
The two regimes of different scaling behavior also coincide with
the two types of observed zipping behavior. 1) In the viscous
regime, the actuators gradually converged to the equilibrium
strain (Fig. 2A and Movie S2). 2) In the inertial regime, the
measured actuation strains overshot when the voltage was ap-
plied (Fig. 2C and Movie S3).

Physical Interpretation of the Inertial and Viscous Timescales. Next,
we use simple arguments to derive estimates for the fall time in
both regimes in order to explain the origin of the inertial and the
viscous timescales and thus to obtain a better understanding of
the physics that governs the dynamic behavior of the actuators.
In the limit μ → 0, viscous dissipation due to the liquid dielectric
can be neglected. Consequently, the actuator does not resist the
fall of the weight after the voltage is turned off. The time in
which the mass falls by a distance xeq = eeqL (Fig. 2D) in free fall
can be calculated as follows:

tFi ≈ (2eeqLg)
1=2

≈ 0.24(L
g
)
1=2

, [4]

where we used eeq(φ = 1.13) ∼ 3%. This estimate agrees very
well with the measured data for τv/τi K 4·10−4 (dashed line in
Fig. 4B). Eq. 4 shows that the inertial timescale τi = (L/g)1/2 is a

A B C D E

Fig. 2. Experiment to characterize the dynamics of Peano-HASEL actuators. (A and B) Peano-HASEL actuators were subject to hanging weightsM and excited
with square-wave signals of voltage Φ. The deformation of the actuator as a function of time was measured with a high-speed camera. We investigated the
influence of the shell geometry (length L; width w), the shell material (thickness h; relative permittivity «r), and the viscosity μ of the liquid dielectric on the
dynamic behavior of the actuator. (C) When the voltage turns on, the electrodes zip ( _z) and the actuator contracts ( _x). In the model, we parameterize the
shape of the actuator with the angle α. The variable x denotes the contraction of the actuator. (D) In the zipped equilibrium, the electrodes are zipped over a
length zeq, and the actuator is contracted by xeq. (E) When the voltage turns off, the electrodes unzip, and the actuator elongates until it returns to the
unzipped equilibrium (B). In the model, we approximate the fluid flow in the shell as the Poiseuille flow between two parallel plates. Length l and spacing
d of the plates are equal to the length and the average thickness of the liquid-filled region of the pouch, respectively.
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measure for the free-fall time; the numerical prefactor is an
estimate for fF(φ = 1.13) in Eq. 2.
In the limit μ → ∞, we assume that the weight drops in a

quasistatic motion (i.e., the inertia of the weight can be neglec-
ted). The weight exerts a tensile force on the actuator, which
forces the liquid dielectric to flow back between the electrode
against viscous resistance; the actuator acts as a damper that
dissipates the potential energy of the weight. The average rate of
change of the potential energy is Mgxeq/tF. Because the aspect
ratio of the unzipped region of the shell is large (l/d ∼10, where l
and d are its length and average thickness; Fig. 2E), we ap-
proximate the flow of the liquid dielectric as the Poiseuille flow
(32) between two parallel plates of distance d with average flow
velocity equal to the average speed zeq/tF at which the electrodes

unzip (zeq is the zipped length of the electrodes in equilibrium;
Fig. 2D). For the Poiseuille flow, the rate of energy dissipation
over a plate section of length l and width w is 12μw(zeq/tF)

2l/d. By
equating Mgxeq/tF ∼ 12μwzeq

2l/tF
2d, we obtain an estimate for tF:

tFv ≈ 12
l
d

z2eq
eeqL

μw
Mg

≈ 360
μwL
Mg

, [5]

where we used eeq(φ = 1.13) ∼ 3% and zeq(φ = 1.13) ∼ 0.3L. This
estimate agrees very well with the measured data for τv/τi J 4·10−4

(dotted line in Fig. 4B). Eq. 5 shows that the viscous timescale
τv = μwL/Mg is a measure for the time in which the weight
causes the liquid dielectric to flow back between the electrodes
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against viscous resistance; the numerical prefactor is an estimate
for jF(φ = 1.13) in Eq. 3.
Eqs. 4 and 5 also explain the transition between inertial and

viscous behavior. When tFi > tFv, the free-fall time of the weight
governs tF as it is larger than the time for the liquid dielectric to
flow back between the electrodes; the actuator lies in the inertial
regime (Fig. 4B). The transition from inertial to viscous behavior
occurs at tFi ∼ tFv (Fig. 4B). When tFi < tFv, the time for the liquid
dielectric to flow back between the electrodes becomes the
limiting factor for the actuation speed; the actuator lies in the
viscous regime (Fig. 4B). For the contraction of the actuator, the
same principle holds true. However, in this case, the electrostatic
forces drive the deformation.

Numerical Investigation of the Dynamic Behavior. The scaling
analysis presented above explains the behavior of the actuators
for μ → ∞ and μ → ∞, but it is not valid in the transition region
between the two regimes, and it cannot predict the transition
times for different values of φ without experiments. We use the
insights gained from the above estimates to derive a dynamic
model for Peano-HASEL actuators to analyze the dependence
of tR and tF on φ in the inertial and the viscous regimes and in the
transition region between the two regimes (see Dynamic equa-
tions of motion in SI Appendix for a step-by-step derivation). In
the model, we approximate the shape of the liquid-filled region
of the shell with cylinder sections that intersect with an angle 2α
(Fig. 2C) and treat the liquid dielectric as incompressible (15,
17). Using α as the generalized coordinate, we calculate the
equation of motion of the actuator using Lagrange’s equations of
the second kind (33):

d
dt

∂A
∂ _α

( ) − ∂A
∂α

= q, [6]

where A is the Lagrangian of the system and q is the generalized
force due to viscous dissipation. The Lagrangian can be calcu-
lated as follows:

A = 1
2
M _x2 −Mgx + 1

4
«0«rwz

h
Φ2, [7]

where the first two terms on the right-hand side are the kinetic
and potential energies of the weight, and the third term com-
bines the electrical energy of the voltage source and the electrical
energy stored in the zipped region of the electrodes. As above,
we approximate the fluid flow as the Poiseuille flow between two
parallel plates. As the length and the spacing of the plates, we
use the length and the average thickness of the liquid-filled re-
gion of the shell as a function of α (Fig. 2E). As the width of the
plates, we use w, and as average flow velocity, we use the zipping
speed _z (Fig. 2 C and E). These assumptions lead to a general-
ized dissipative force:

q = −24ημw sin(α)2
α − 0.5 sin(2α) (

∂z
∂α

)
2

_α, [8]

where η is a fitting factor, which accounts for any errors due to
the simplification of the fluid flow used for the derivation of q.
Combining Eqs. 6–8 leads to the equation of motion of the
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Fig. 4. Measured and calculated rise times tR and fall times tF for a wide
range of parameters. (A) Normalized rise times tR/τi = tR(g/L)

1/2 as function of
the timescale ratio τv/τi = μwL1/2/Mg1/2 measured at the same dimensionless
voltage φ = Φ2«0«rw/Mgh = 1.13 for shells of different geometries and ma-
terials (marker colors) and liquid dielectrics of different viscosities (marker
shapes). All data collapse to a single curve. The curve shows two distinct
regimes in which the slope of the curve agrees with inertial scaling (dashed
line) and viscous scaling (dotted line), respectively. The blue line is calculated
with the model (η = 2.85). (B) Comparison of the corresponding normalized
values of the fall times tF/τi = tF(g/L)

1/2 with estimated values in the inertial
(dashed line) and viscous (dotted line) regimes and the model (blue line, η =

2.85). (C) Comparison of the measured normalized rise times (blue) and fall
times (yellow) as functions of φ for an actuator in the viscous regime (dia-
monds) and an actuator in the inertial regime (triangles) with model pre-
dictions (solid lines, η = 2.85). Experimental parameters in C: w = 6 cm, L = 2
cm, h = 20.3 μm, «r = 3.5, and Φ = 6 kV. Data shown in this figure and the
code for the numerical model is included in ref. 31.
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actuator (the full equation may be found in Dynamic equations of
motion in SI Appendix), which we solved numerically in Matlab
to obtain numerical values for tR and tF (see code in ref. 31).
At φ = 1.13, the calculated values of tF agree well with the

experimental results (blue line in Fig. 4B) when η = 2.85. The
model also predicts tR well in the viscous regime (Fig. 4A).
However, it underestimates tR in the inertial regime by ∼50%. In
this regime, applying a voltage excites waves in the liquid di-
electric (Movie S3). Exciting those waves requires additional
energy. Additionally, the waves lead to inhomogeneous de-
formation of the shell. Both these effects are neglected in the
model; we hypothesize that they explain the deviation of the
model from the measured data. To test whether the model can
also predict the transition times for other values of φ, we mea-
sured them as a function of φ for one actuator in the inertial
regime and one actuator in the viscous regime (Fig. 4C). In these
experiments, the equilibrium strains ranged between ∼1% and
∼7%. Using the same fitting factor (η = 2.85), the model con-
sistently overestimates tF, and underestimates tR in the viscous
regime. A reason for this behavior is the nonlinearity of the
viscous flow and the deformation of the shell, which is not fully
covered by a single fitting factor (choosing η separately for tF and
tR gives very good agreement between model and experiment; SI
Appendix, Fig. S3). In the inertial regime, the model predicts tF
very well, but, like above, tR is consistently underestimated by
∼50%. However, the model correctly predicts the trends of the
measured transition times, so it may be used for a qualitative
analysis of the dependence of tR and tF on φ and τv/τi in the
entire experimentally investigated range.
Fig. 5 shows the values of tR and tF normalized by τi = (L/g)1/2

as a function of τv/τi = μwL1/2/Mg1/2 and φ = Φ2«0«rw/Mgh cal-
culated in the experimentally investigated range of parameters
(black squares). The white curves separate the planes spanned by
Φ2«0«rw/Mgh and μwL1/2/Mg1/2 into the regions governed by in-
ertia and by viscosity (see Transition between viscous and inertial
regime in SI Appendix). Increasing Φ2«0«rw/Mgh increases the
electrostatic forces compared to the weight of the attached
weights and increases the equilibrium strain (i.e., the distance by
which the weight is lifted). In the region dominated by inertia,
the net effect is a decrease of tR with Φ2«0«rw/Mgh. In contrast, tF
increases with Φ2«0«rw/Mgh due to the increased fall distance of
the weight. In the region dominated by viscosity, the behavior
can be explained by analyzing the shape of the shell. In general,
with increasing strain, the viscous resistance due to the liquid
decreases because the liquid-filled region of the shell shortens
and its average thickness increases (Eq. 8). Therefore, the value
of tR is predominantly influenced by the viscous resistance at
small strains. Increasing Φ2«0«rw/Mgh provides a larger electrical
force to overcome this initial resistance and thus decreases tR.
The value of tF is predominantly influenced by the viscous re-
sistance near the zipped equilibrium, which decreases with in-
creasing equilibrium strain. However, tR only weakly depends on
Φ2«0«rw/Mgh because the increased fall distance at higher values
of Φ2«0«rw/Mgh counteracts the decrease in viscous resistance.

Discussion
This paper revealed that there are two dynamic regimes in which
the dynamic behavior of Peano-HASEL actuators is entirely
different. 1) In the inertial regime, the rise and fall times of the
actuators are independent of the viscosity of the liquid dielectric.
Consequently, the actuation is governed by the inertia of the
attached weight. In this regime, the actuation strain may over-
shoot before reaching equilibrium and shows an oscillating be-
havior before equilibrating. In practical applications, the
overshoot and the oscillations may be addressed by designing an
appropriate control strategy (34). 2) In the viscous regime, vis-
cous resistance of the flow of the liquid dielectric within the shell
of the actuator limits the actuation speed. In each regime, we

identified a timescale that governs the dynamic behavior. Here,
we investigated the rise and fall times of the actuator for rect-
angular voltage signals that are slow enough for the actuators to
equilibrate (i.e., the excitation frequency did not matter). How-
ever, the discovered timescales also govern the frequency de-
pendence of the actuation strain for periodic excitation signals,
and thus they govern important dynamic characteristics of the
actuators, such as resonance and roll-off frequencies (see Fre-
quency dependence of the actuation strain for a periodic excitation
signal in SI Appendix).
Our analysis showed how geometry and materials system of

the actuator, and applied load and voltage influence the actua-
tion speed. In particular, Fig. 5 may be used to determine in
which dynamic regime Peano-HASEL actuators with specific
sets of parameters lie and to estimate their characteristic tran-
sition times. For actuators that lie in the viscous regime, the
transition times may drastically be reduced by using liquid di-
electrics with lower viscosities μ, and by reducing the shell length
L (tn ∼ μL, Eq. 3) until the actuators enter the inertial regime
where the transition times become independent of viscosity; in
the inertial regime, the transition times can only be decreased by
reducing L (tn ∼ L1/2, Eq. 2). The theoretical model presented in
this paper simplified the geometry of the actuators as well as the
flow of the liquid dielectric in the shell; it enabled a qualitative
analysis of how single parameters influence the dynamics of
Peano-HASEL actuators. More accurate theoretical predictions
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Fig. 5. Calculated rise times tR and fall times tF in the range of experi-
mentally investigated parameters. (A and B) The color contours indicate the
normalized rise times (A) and the normalized fall times (B) calculated with
the dynamic model (η = 2.85) as function of the normalized voltage φ =
Φ2«0«rw/Mgh and the timescale ratio τv/τi = μwL1/2/Mg1/2. The black squares
indicate the experimentally investigated range of parameters. The white
curves separate the inertial and the viscous regimes.
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of the dynamic behavior of Peano-HASEL actuators may be
obtained by performing a dynamic multiphysics simulation that
simulates the electric field, the deformation of the shell, the flow
of the liquid dielectric, and the motion of the mass (e.g., finite-
element simulation).
We believe that many types of electrohydraulic soft actuators

exhibit an inertial and a viscous dynamic regime. Several types of
electrohydraulic actuators exist whose shells consist of thin,
inextensible films (12, 35, 36). For these actuators, the presented
scaling analysis may readily be modified to identify the governing
timescales to account for differences in geometry (12, 35) and
modes of electrohydraulic zipping (35, 36). Additionally, the
conclusions of this work may be applied to other types of elec-
trohydraulic actuators (12, 13, 37), pumps (38–40), and genera-
tors (41) in which elastic deformations play an important role.
Elastic strains complicate the theoretical analysis of these
transducers, but we also expect them to exhibit an inertial and a
viscous regime so that similar strategies can be applied to in-
crease their actuation speed. In general, a reduction of their size
may increase the actuation speed of these electrohydraulic
transducers; when the viscosity of the working fluid limits the
actuation speed, it may be increased substantially by using
working fluids with lower viscosity. When designed to operate in
the inertial regime, electrohydraulic soft actuators may achieve
higher actuation speeds than typically possible with other types
of soft actuators. High-speed electrohydraulic soft actuators may
enable bio-inspired robots for applications that require fast ac-
tuation such as running, jumping, and flying.

Materials and Methods
We fabricated actuators from two types of polymer films: 1) L0WS
(Multi-Plastics; thickness h = 20.3 μm, relative permittivity «r = 3.5) and 2)
Mylar 850H/48 (DuPont Teijin Films; h = 12.0 μm, «r = 3.7). With a CNC heat
sealer (12), we bonded the polymer films into rectangular shells of different
widths w and lengths L (Fig. 2 A and B): 1) w = 12 cm, L = 4 cm; 2) w = 6 cm,
L = 2 cm; and 3) w = 6 cm, L = 1.5 cm. Then, we screen-printed electrodes (CI-
2051; Engineered Materials Systems) onto the top half of both sides of the
shells. We filled the shells with silicone oils (viscosities μ ranging from 4.6
mPa·s to 9.5 Pa·s, purchased from Sigma-Aldrich) selecting a volume (V =
wL2/4π) for which the liquid-filled portion of the shell theoretically forms a
cylinder when the electrodes are completely zipped (15). Acrylic frames were
attached to the top and the bottom of the shells for load introduction.

In the experiments, we suspended the actuators from the top frame and
attached brass weights to the bottom frame (Fig. 2A). Rectangular square
wave voltages signals of voltage Φ were applied to the actuators with a
high-voltage amplifier (Trek Model 50/12; controlled from a computer using
LabView). The frequency of the voltage signal was adjusted for each actu-
ator, so it could reach the zipped and unzipped equilibria during a cycle. For
each cycle, we reversed the polarity of Φ to reduce charge buildup in the
shell (11). We measured the deformation of the actuators by tracking a
marker on the bottom frame with a high-speed camera (camera: Vision
Research, Phantom v710; tracking software: Tracker).

All data shown in the manuscript and the Matlab code to calculate the
transition times are available at Figshare, https://doi.org/10.6084/m9.
figshare.c.4965041.v1.
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