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Folate deprivation drives the instability of a group of rare fragile
sites (RFSs) characterized by CGG trinucleotide repeat (TNR)
sequences. Pathological expansion of the TNR within the FRAXA
locus perturbs DNA replication and is the major causative factor
for fragile X syndrome, a sex-linked disorder associated with cog-
nitive impairment. Although folate-sensitive RFSs share many fea-
tures with common fragile sites (CFSs; which are found in all
individuals), they are induced by different stresses and share no
sequence similarity. It is known that a pathway (termed MiDAS) is
employed to complete the replication of CFSs in early mitosis. This
process requires RAD52 and is implicated in generating transloca-
tions and copy number changes at CFSs in cancers. However, it is
unclear whether RFSs also utilize MiDAS and to what extent the
fragility of CFSs and RFSs arises by shared or distinct mechanisms.
Here, we demonstrate that MiDAS does occur at FRAXA following
folate deprivation but proceeds via a pathway that shows some
mechanistic differences from that at CFSs, being dependent on
RAD51, SLX1, and POLD3. A failure to complete MiDAS at FRAXA
leads to severe locus instability and missegregation in mitosis. We
propose that break-induced DNA replication is required for the
replication of FRAXA under folate stress and define a cellular func-
tion for human SLX1. These findings provide insights into how
folate deprivation drives instability in the human genome.

MiDAS | structure-specific endonucleases | chromosome fragile sites |
homologous recombination | break-induced DNA replication (BIR)

Folate is a B type vitamin that functions as a carrier for one-
carbon units, which are essential for DNA and RNA syn-

thesis. Humans cannot synthesize folate and, therefore, rely on
dietary sources of this nutrient. In human populations in which
folic acid supplementation is absent, folate deficiency is observed
frequently (1–4). Because of the requirement for folate in the
synthesis of nucleotides, folate deficiency can destabilize the
human genome through influencing the fidelity of DNA repli-
cation. In particular, it is established that a subgroup of so-called
rare fragile sites (RFSs), which are found in less than 5% of the
human population, are highly sensitive to folate deprivation.
These folate-sensitive RFSs generally encompass CGG tri-
nucleotide repeat sequences, which are prone to expand in length
via a mechanism that remains to be fully elucidated. Most in-
triguingly, when these CGG repeats expand beyond a certain length,
the locus exhibits fragility in metaphase when cells are challenged
with “folate stress” conditions, such as when cells are deprived of
folate or exposed to the thymidylate synthase inhibitor, fluo-
rodeoxyuridine (FdU) (5). It is well-established that, when the copy
number of the TNR sequences expands beyond a critical size, the
development of specific neurological diseases such as fragile X
syndrome (FXS) can be triggered (6–9). The genomic locus asso-
ciated with FXS, FRAXA, contains unstable CGG repeats located at
the 5′-untranslated region (5′-UTR) of the FMR1 gene. In the
general population, the FRAXA-associated TNR consists of less

than 55 CGG repeats, while the mutant form of this locus has over
200 repeats. Abnormal expansion of this TNR can lead to hyper-
methylation and epigenetic silencing of FMR1, which leads to the
development of FXS (10). To our knowledge, 24 folate-sensitive
RFSs have been identified (5) but only 6 of them (including
FRAXA) have been characterized for their precise genomic
location (11).
RFSs appear on metaphase chromosomes as gaps or breaks in

otherwise fully condensed chromatin (called RFS “expression”).
Much of our understanding of the underlying cause of chromo-
some fragile site expression has been derived from studies of
another class of fragile sites that exist in all individuals, known as
common fragile sites (CFSs). It is generally considered that CFS
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expression results from a localized failure to undergo adequate
compaction of the locus during early mitosis due to incomplete
DNA replication during interphase (12). CFSs are recognized as
being a key driver of genome instability in cancer cells (13, 14).
In cultured cells, the fragility of CFSs can be strongly enhanced if
the cells experience DNA replication stress, such as traversing S
phase in the presence of a low dose of the DNA polymerase
inhibitor, aphidicolin (APH). In human cancers, however, this
stress is widespread and intrinsic, because it is driven by the action of
activated oncogenes. In response to replication stress, human cells
activate a signaling pathway that leads to the localization of DNA
repair proteins, including the SLX4-associated, structure-specific
endonuclease (SSE), MUS81-EME1 to CFS loci (15–17). This, in
turn, facilitates the completion of DNA replication at CFSs only
after cells have entered early mitosis, using a form of unscheduled
DNA synthesis known as “MiDAS” (mitotic DNA synthesis) (18,
19). Mechanistically, MiDAS likely represents a form of break-
induced DNA replication (BIR), which is a subpathway of homol-
ogous recombination repair acting at sites of broken/collapsed DNA
replication forks (20). BIR has largely been characterized in budding
yeast, where it has been shown to be a conservative form of DNA
synthesis dependent on the Rad51 recombinase and Pol32 (21, 22).
At CFSs, MiDAS is apparently triggered during the onset of chro-
matin condensation in the mitotic prophase and is facilitated not
only by MUS81-EME1, but also by POLD3, the human homolog of
yeast Pol32 (18, 19). Curiously, however, MiDAS at CFSs does not
require RAD51, but instead utilizes RAD52, in a pathway that
might be analogous to a poorly characterized, Rad52-dependent,
BIR subpathway defined in yeast (21, 22). Moreover, a very similar
MiDAS process also occurs at telomeres following replication stress
(23, 24). If the MiDAS pathway is not activated or the levels of
replication stress are excessive, cells display chromosomal abnor-
malities later in mitosis, such as the formation of ultrafine anaphase
DNA bridges (UFBs) and lagging chromatin in anaphase/telophase
(18, 25).
We analyzed previously the segregation of mutant FRAXA loci

in mitosis when cells are cultured under “folate stress” condi-
tions (26). That study indicated that folate stress promotes mi-
totic abnormalities similar to those observed at CFSs, including
an increased frequency of chromatin bridges and UFBs. How-
ever, one striking difference from CFSs is that the UFBs asso-
ciated with FRAXA are almost exclusively RPA-coated (and
therefore composed of single-stranded DNA), while those arising
from CFSs under APH conditions are PICH-coated double-
stranded DNA UFBs (27). This indicates that homologous re-
combination could play a role in processing FRAXA under folate
stress conditions, since RPA-coated UFBs have been suggested to
represent unresolved HR intermediates (28). Moreover, cells
expressing mutant FRAXA show a strikingly high frequency of
missegregation. Around 50% of the FRAXA loci form lagging DNA
associated with a UFB, which represents a much higher percentage
of missegregation than is seen at any CFS locus studied thus far
(29). Based on these considerations, we postulated that folate stress
might have a different (and more detrimental) effect on mutant
FRAXA than is seen at CFSs exposed to APH-induced replication
stress. In this article, we report that MiDAS also occurs at fragile
FRAXA loci during folate stress, but that the pathway utilized differs
in some respects from that characterized previously at CFSs. Our
data demonstrate that completion of DNA replication at FRAXA in
early mitosis requires the SLX1 endonuclease and likely proceeds
via a form of RAD51-dependent and POLD3-dependent BIR.

Results
MiDAS Occurs at FRAXA under Folate Stress Conditions. To analyze
the effect of folate stress on the stability of a RFS in human cells,
we used three lymphocyte cell lines. These were GM06865 with a
normal FRAXA allele; GM06891 with a moderately expanded,
premutation allele; and GM09237 with a severely expanded, full

mutation allele. In addition, analyses requiring small interfering
RNA (siRNA)-mediated protein depletion were performed on
an hTERT-immortalized fibroblast cell line (GM05848) that has
a full mutation FRAXA allele (SI Appendix, Fig. S1).
We first analyzed whether folate stress can induce MiDAS at

the FRAXA locus or elsewhere in the human genome. For this,
we treated GM06865, GM06891, and GM09237 cells with 0.5 μM
FdU for 17 h, arrested them at the G2/M phase boundary with the
CDK1 inhibitor, RO3306, and then released the cells into mitosis in
the presence of the thymidine analog, EdU, to mark sites of new
DNA synthesis. EdU detection was then performed on metaphase
chromosome spreads (18, 30) (Fig. 1A). We observed that a small
number of EdU foci (typically up to three) could be detected in all
cell lines in the absence of folate stress, but that exposure to FdU
induced a significantly higher number of EdU foci (Fig. 1 B and C).
This suggested that several loci in the human genome can be af-
fected by folate stress. Interestingly, the vast majority (73–94% on
average depending on the cell line) of the EdU foci detected were
located on only one sister-chromatid (Fig. 1 B and D), which is a
much higher percentage than that observed at CFSs in cells treated
with APH (19). These data indicate that the majority of folate
stress-induced MiDAS events occur via a conservative form of
DNA synthesis, which has been proposed previously to be mediated
via BIR (18, 19). Of most relevance to the current study, when
combining EdU detection with fluorescence in situ hybridization
(FISH) using a probe targeting FRAXA (Fig. 1A), we confirmed
that MiDAS occurs at FRAXA in the GM09237 cell line that has a
full mutation FRAXA allele (Fig. 1 E and F). Moreover, MiDAS
was highly associated with FRAXA fragility, as all of the EdU foci
detected were localized at loci that were visibly fragile (Fig. 1G).
Nevertheless, not all fragile FRAXA loci displayed EdU in-
corporation (∼35%; Fig. 1F), a frequency that is comparable to that
observed at the CFS, FRA16D, following APH treatment in
GM05848 mutant FRAXA cell line (SI Appendix, Fig. S2). Impor-
tantly, we failed to detect EdU incorporation at a measurable fre-
quency at FRAXA in GM06891 cells that have a premutation
FRAXA allele (118 CGG repeats) (Fig. 1F).
It was shown previously that folate stress can induce the ex-

pression of some CFSs, although at a very low frequency (31, 32).
To address whether folate stress might induce MiDAS at CFSs in
GM09237 cells, we examined whether EdU incorporation could
occur at either of two widely studied CFSs, FRA16D and FRA3B
(14). We observed that folate stress did not induce EdU in-
corporation at FRA16D or FRA3B (Fig. 1H). These data are
consistent with our previous finding that folate stress does not
induce the fragility at CFSs (26). Taken together, these results
indicate that, in response to folate stress, MiDAS can occur at
the fully expanded FRAXA locus and at a small number of other
loci in human genome that remain to be identified.

SLX1/4 Plays a Role in Fragility and MiDAS at FRAXA.Next, we sought
to understand why there was a high incidence of EdU foci on
only one sister-chromatid at FRAXA. Because this pattern was
strongly suggestive of a conservative, BIR-like form of DNA
synthesis, we first analyzed known BIR/MiDAS factors for their
role in inducing fragility at FRAXA under folate stress condi-
tions. First, we analyzed the MUS81-EME1 SSE, which is known
to affect both fragility and the frequency of MiDAS at CFSs. We
depleted MUS81 using a validated short hairpin RNA (17) and
then treated cells with FdU before harvesting metaphase chro-
mosomes for analysis of fragility (SI Appendix, Fig. S3 A and B).
We observed that MUS81 depletion did not affect the frequency
of fragility at FRAXA (SI Appendix, Fig. S3 C and D). Given the
apparent lack of a role for the MUS81-EME1 endonuclease at
the locus, we considered the possibility that fragility at FRAXA
might be mediated by a pathway utilizing SSEs other than
MUS81. We therefore analyzed whether SLX4, the scaffold
protein that is known to bind to and regulate the activity of three
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Fig. 1. MiDAS occurs at FRAXA in response to folate stress. (A) Experimental workflow for the analysis of EdU incorporation in metaphase chromosomes
following FdU treatment in GM06865, GM06891, and GM09237 cells. The location of FRAXA was validated using a FISH probe. (B) Representative images of
EdU foci (magenta) on metaphase chromosomes. Zoomed images (Right) are arranged according to the numbers in the boxed areas. (C) Quantification of
EdU foci in metaphase chromosomes. (D) Quantification of EdU foci located on either a single sister-chromatid (single) or both sister-chromatids (twin) in cell
lines containing a normal FRAXA allele (N), a premutation FRAXA allele (PM), or a full mutation FRAXA allele (M). In some cases, the pattern of EdU staining
was more difficult to assign as it produced a complex pattern involving one/both sister-chromatids (complex). There were no statistically significant differ-
ences among the two patterns of EdU foci in the three cell lines analyzed. (E) Representative images of EdU foci (magenta) located at FRAXA (green) on
metaphase chromosomes. Yellow arrowheads indicate examples of fragile FRAXA loci. (F) Quantification of EdU foci colocalized with FRAXA. (G) Quanti-
fication of EdU foci that are located at fragile FRAXA. (H) Quantification of EdU foci colocalized with FRA16D and FRA3B. M, full mutation FRAXA allele; N,
normal FRAXA allele; PM, premutation FRAXA allele; Unt, untreated. (Scale bar, 5 μm.) Error bars represent SDs from at least three independent experiments.
ns, not significant; *P < 0.05; **P < 0.01; ****P < 0.0001.
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SSEs (MUS81-EME1, XPF-ERCC1, and SLX1; ref. 33), might
play a role at FRAXA. In these experiments, we used the
GM05848 fibroblast cell line to increase the efficiency of siRNA-
mediated protein depletion (SI Appendix, Fig. S1). We observed
that SLX4 depletion strongly reduced the incidence of fragility at
FRAXA (Fig. 2 A–E). We therefore investigated whether SLX4-
associated SSEs other than MUS81 might be required for
FRAXA fragility. We observed that depletion of SLX1, but not
XPF, strongly reduced the frequency of fragility at FRAXA fol-
lowing FdU treatment (Fig. 2 B–E). It is known that SLX1 needs
to be bound to SLX4 to be active as a nuclease (34) and,
therefore, to exclude the possibility that SLX1 depletion led to a
destabilization of the SLX4 protein, as has been reported by
others (35), we quantified the level of SLX4 in each experiment.
We observed that depletion of SLX1 did not significantly affect
the level of SLX4 in the GM05848 cell line (Fig. 2C). Collec-
tively, these data suggest that, although very similar in cytological
appearance, the mechanism by which fragility arises at FRAXA
and at CFSs is mechanistically different.
At CFSs, it has been proposed that fragility is a consequence

of a lack of chromatin compaction at loci still undergoing DNA
synthesis in mitosis (18). Hence, we assessed whether MiDAS at
FRAXA was affected by the depletion of SLX1 and SLX4. We
observed that depletion of either SLX1 or SLX4 led to a dra-
matic reduction in the frequency of MiDAS at FRAXA
(Fig. 2 F–L). Consistent with the data on fragility discussed
above, we confirmed that MUS81 is not required for MiDAS at
this locus (SI Appendix, Fig. S3 E–H). We conclude, therefore,
that the appearance of fragility and MiDAS at the FRAXA locus
requires the SLX1/SLX4 endonuclease.
Next, we sought to confirm that SLX1 and SLX4 were actively

recruited to FRAXA following FdU treatment in mitosis using a
protocol combining immunofluorescence and FISH (Fig. 3A).
For this, we used two cell lines with the full mutation FRAXA
allele (GM05848 and GM09237) (SI Appendix, Fig. S1). We
observed that, following FdU treatment, both SLX1 and SLX4
were recruited to the FRAXA locus (Fig. 3 B, C, E, and F). In the
GM05848 cells, a significant proportion of the fragile FRAXA
loci were marked by SLX1 (>35%) or SLX4 (>45%) (Fig. 3 D
and G). In addition, SLX4 was recruited to a higher percentage
(70%) of fragile FRAXA loci in GM09237 cells, which might
reflect the fact that the number of CGG repeats is higher in this
cell line than in the GM05848 cells (Fig. 3G). We also observed
that the recruitment of SLX4 to FRAXA was not affected by
depletion of SLX1 (SI Appendix, Fig. S4), which further dem-
onstrates that the SLX4 protein is not significantly destabilized
upon SLX1 depletion in our system.

MiDAS at FRAXA Is Promoted by RAD51. Previous studies have in-
dicated that CFS-associated MiDAS requires RAD52 and rep-
licative polymerases, but not RAD51 (18, 19). Rather, depletion
of RAD51 leads to an increase in the frequency of MiDAS at
CFSs, suggesting that RAD51 plays a role in preventing repli-
cation fork perturbation within CFSs when cells experience
replication stress (19). To investigate whether RAD52 and rep-
licative polymerases might play a role in MiDAS at FRAXA
following folate stress, we first sought to confirm that these
factors were required for CFS MiDAS under APH stress in the
mutant FRAXA cell line, GM05848. For this, we examined the
commonly observed CFS locus, FRA16D (SI Appendix, Fig. S2),
in cells treated with either a RAD52 or a RAD51 inhibitor in late
G2 phase/early mitosis, or a high dose of APH in mitosis to in-
hibit replicative DNA polymerases (36) (SI Appendix, Fig. S2A).
Consistent with previous findings, we observed that MiDAS at
FRA16D was strongly reduced in cells exposed to high-dose APH
or the RAD52 inhibitor, but not by RAD51 inhibition (SI Ap-
pendix, Fig. S2 B and D). We then analyzed the effect of FdU-
induced folate stress in this cell line (Fig. 4A). We observed that

the frequency of both fragility and MiDAS at FRAXA was
markedly reduced by high-dose APH in mitosis (Fig. 4 B and C),
as is seen at CFSs. This result was further confirmed by depletion
of POLD3, a noncatalytic subunit of DNA polymerase delta
(37), which led to a significantly reduced frequency of fragility at
FRAXA and a dramatic decrease in the frequency of MiDAS (SI
Appendix, Fig. S5 A–D). However, there was a striking difference
in the requirement for homologous recombination factors at
FRAXA compared to FRA16D, in that both fragility and MiDAS
at FRAXA required RAD51, but not RAD52 (Fig. 4 B and C).
We confirmed these findings obtained using chemical inhibitors by
conducting siRNA-mediated depletion of either RAD52 or RAD51
(SI Appendix, Fig. S5 E–J). Consistent with these results, we con-
firmed that RAD51 is recruited to a significant fraction of all
FRAXA loci following FdU treatment, and to ∼40% of the visibly
fragile FRAXA loci (Fig. 4 D–G). Taken together, these data in-
dicate that MiDAS at FRAXA occurs via a BIR-like process de-
pendent on POLD3 and RAD51 (and not RAD52 as at CFSs).

RAD51 and SLX1/4 Are Recruited Independently of FRAXA in Mitosis.
Next, we set to determine whether RAD51 and SLX1/4 are
recruited independently or not to FRAXA in mitosis under folate
stress conditions. For this, we depleted SLX1 or SLX4, treated
the cells with FdU, and then harvested metaphase cells for im-
munofluorescence (IF)-FISH analysis (SI Appendix, Fig. S6). We
observed that neither SLX1 nor SLX4 was required for RAD51
loading onto FRAXA (SI Appendix, Fig. S6 A–F). We then
addressed whether RAD51 might be required for SLX1/4 loading
onto FRAXA, but again this was not the case (SI Appendix, Fig.
S6 G–I). These data indicate that the mitotic recruitment of RAD51
and SLX1/4 to FRAXA occurs via independent mechanisms.

MiDAS Inhibition Exacerbates FRAXA Mitotic Missegregation. We
also analyzed whether inhibition of MiDAS might affect the
segregation of FRAXA following folate stress. For this, we de-
pleted either SLX1 or inhibited RAD51 in the late G2 phase/
early mitosis, before harvesting mitotic cells for anaphase/telo-
phase analysis by FISH (Fig. 5 A–C and F). We observed that
impairment of either SLX1 or RAD51 function led to a signifi-
cant increase in FRAXA missegregation (Fig. 5 D, E, and G).
These data suggest that MiDAS plays a critical role in preventing
FRAXA missegregation in mitosis.

Discussion
MiDAS is proposed to be a salvage pathway that is employed by
cells to ensure that genomic regions that remain underreplicated
at the end of the S/G2 phases are duplicated in mitosis (18, 38).
Previous studies have indicated that several fragile loci (in-
cluding CFSs and telomeres) are “hotspots” for MiDAS, par-
ticularly in cancer cells experiencing replication stress due to
oncogene activation (18, 19, 23, 24). In this study, we addressed
whether MiDAS was utilized by noncancer cells to rescue the
replication of a fully expanded FRAXA locus under folate stress
conditions. Our data revealed that MiDAS does occur in these
noncancer cells even when they are not exposed to FdU or lack
an abnormally expanded CGG repeat sequence at FRAXA.
Nevertheless, the frequency of MiDAS is strongly elevated when
these cells are treated with FdU, and MiDAS is also clearly ev-
ident at the FRAXA locus with a full mutation allele. These
observations are reminiscent of the MiDAS that occurs at CFSs,
which is also evident in noncancer cells, albeit at a very low fre-
quency, and indicate that MiDAS is a universal rescue pathway used
by cells experiencing different forms of replication stress.
A second similarity to the MiDAS occurring at CFSs is that

most of the FdU-induced DNA synthesis detected is confined to
only one of the two sister-chromatids, reflecting the fact that
MiDAS frequently occurs via a conservative form of DNA syn-
thesis. However, we found no evidence for a role RAD52 at
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FRAXA. Instead, we have shown that the RAD51 recombinase
promotes FRAXA-associated MiDAS. In addition, it was intriguing
to see that MUS81-EME1 is also not required for FdU-induced
fragility or MiDAS at FRAXA (Fig. 2 and SI Appendix, Fig. S3),
although another SSE complex, SLX1/4, is required. Hence, MiDAS
at CFSs and RFSs apparently utilizes different subpathways of BIR.
Despite these differences, it would appear that the proteins

required to promote MiDAS at both CFSs and FRAXA in each
case contribute to the fragility of these loci. This begs two
questions: (i) what is the connection between fragility and Mi-
DAS? (ii) why do some CFS or FRAXA loci not show fragility
after replication perturbation? One plausible explanation for the
connection between MiDAS and fragility at CFSs or FRAXA is
that fragility is an indication of delayed chromosome condensa-
tion resulting from MiDAS being ongoing during the time period
when condensation normally occurs. For the second question, we
propose that those cases where there is lack of fragility represent
loci that completed replication in interphase and, therefore, have
no requirement for MiDAS. Future research is certainly war-
ranted to test these hypotheses.
Taken together, our data suggest the following model: upon

exposure to folate stress in S phase, DNA replication forks stall
within the expanded CGG repeats at FRAXA and other loci.
These stalled replication forks are recognized and cleaved by the
SLX1/4 nuclease. The cleavage of the leading strand template
would generate a free 3′ DNA tail that could be used by RAD51
to create a D-loop, which would subsequently initiate BIR-based
DNA synthesis in early mitosis promoted by POLD3 (SI Ap-
pendix, Fig. S7). It remains to be clarified how SLX1/4 and
RAD51 are recruited to FRAXA in early mitosis, although we
provide evidence that they are recruited independently. This is
intriguing, as the recruitment of RAD51 is normally triggered by
a double-strand break (DSB) (39). It is possible that, when SLX1
is depleted under the circumstances we have analyzed, an alterna-
tive SSE is able to initiate cleavage at FRAXA, thus allowing the
recruitment of RAD51. However, judging by the fact that there is a
reduction in the frequency of fragility and MiDAS when SLX1 is
depleted (although RAD51 can still be recruited to FRAXA), we
propose that MiDAS requires the concerted action of both SLX1
and RAD51. Further investigation is required to clarify the exact
role of RAD51 in MiDAS at FRAXA. In particular, it will be im-
portant to determine whether RAD51 requires SLX1-mediated
DNA cleavage to mediate BIR at FRAXA.
If MiDAS is successful, it can facilitate the completion of

replication at FRAXA, allowing the faithful segregation of the
locus into daughter cells in anaphase. However, in those cases
where MiDAS does not occur and replication at FRAXA fails to
be completed, the FRAXA locus would not display overt fragility,
but would be missegregated in anaphase. Subsequently, this can
lead to FRAXA exclusion into micronuclei in the daughter cells,
or trigger the abortion of cytokinesis and the formation of a
tetraploid progeny, as described previously (26). It remains un-
clear why some of the fragile FRAXA loci seemingly fail to ac-
tivate MiDAS at all. There are two possible explanations for this.
First, that MiDAS cannot be adequately initiated or completed
because key components of the pathway fail to be recruited ef-
fectively in prophase at some loci. Second, that this reflects a
failure to detect MiDAS at FRAXA loci where the tract of in-
corporated EdU is very short.
It is known that the three SLX4-associated SSEs (MUS81-EME1,

XPF-ERCC1, and SLX1) play an important role in cleaving a variety
of branched DNA structures including stalled replication forks, and
three- and four-way recombination intermediates (e.g., Holliday

junctions; HJs). While XPF-ERCC1 and MUS81-EME1 function as
heterodimers and have quite specific requirements for substrate
binding, SLX1 is thought to be a more promiscuous nuclease able to
cleave various DNA structures, including nicked and intact HJs,
DNA flaps, and replication forks (16, 34). Indeed, it has been pro-
posed previously that SLX1 acts as a “first-responder” that can nick
branched DNA structures and convert them into a suitable substrate
for processing by other enzymes, including other SLX4-associated
SSEs (33). Based on the findings of our study, it is probable that
SLX1/SLX4 is able to cut a nonconventional stalled replication fork
structure at FRAXA, which cannot be recognized by MUS81-EME1.
We propose that this atypical replication fork structure might arise
because of a DNA secondary structure that forms within the long
CGG repeats (40, 41). Therefore, the differences in the specific en-
zymatic requirements for MiDAS to be promoted at FRAXA and
CFSs might be explained by the distinct structural features of the
template DNA at these loci. CFSs are known to be associated in
many cases with loci harboring long and transcriptionally active genes,
which could lead to conflicts between replication and transcription
machineries (42). In contrast, the mutant FRAXA locus is epigenet-
ically silenced (10) and, therefore, it is highly unlikely to experience
replication-transcription conflicts.
The findings reported here further our understanding of the

repair mechanisms that human cells employ to counteract dif-
ferent forms of replication stress. We propose that the pathway
identified here might be one of the mechanisms by which repeat
expansion or contraction occurs at FRAXA. Consistent with this,
a recent study using a selectable cassette carrying the HyTK gene
under the control of a CGG repeat-containing FMR1 promoter
in mouse cells showed that CGG repeat instability is reduced
upon depletion of proteins involved in BIR, including POLD3
and RAD51 (43). Furthermore, it is clear that, in addition to
FRAXA, folate stress induces MiDAS at several undefined loci in
the human genome. This, in turn, might be one of the underlying
causes of the wide range of pathological conditions associated
with folate deficiency, including anemia, fetal neural tube de-
fects, and cancer (44–48). Indeed, it is very unlikely that RFSs
(which are present only in 5% of the population) are responsible
for the range of health problems associated with folate depri-
vation. In the future, it will be important to identify these ad-
ditional genomic loci that are sensitive to folate stress.

Materials and Methods
The full details of cell lines, cell culture, cell synchronization, and treatment
are described in SI Appendix. The procedures or methods for FISH, FISH
combined with EdU detection or IF, flow cytometry, RNA interference,
Western blot analysis, and statistical analysis are also described in
SI Appendix.

Data and Materials Availability. All additional data and information are in-
cluded in SI Appendix as supplementary figures, additional legends, and
references.
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