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A substantial challenge in guiding elastic waves is the presence
of reflection and scattering at sharp edges, defects, and dis-
order. Recently, mechanical topological insulators have sought
to overcome this challenge by supporting back-scattering resis-
tant wave transmission. In this paper, we propose and experi-
mentally demonstrate a reconfigurable electroacoustic topolog-
ical insulator exhibiting an analog to the quantum valley Hall
effect (QVHE). Using programmable switches, this phononic struc-
ture allows for rapid reconfiguration of domain walls and thus
the ability to control back-scattering resistant wave propaga-
tion along dynamic interfaces for phonons lying in static and
finite-frequency regimes. Accordingly, a graphene-like polyac-
tic acid (PLA) layer serves as the host medium, equipped with
periodically arranged and bonded piezoelectric (PZT) patches,
resulting in two Dirac cones at the K points. The PZT patches
are then connected to negative capacitance external circuits
to break inversion symmetry and create nontrivial topologi-
cally protected bandgaps. As such, topologically protected inter-
face waves are demonstrated numerically and validated exper-
imentally for different predefined trajectories over a broad
frequency range.
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The need for lossless information carriers has generated
increased interest in topologically protected structures in the

past few years. The study of topological insulators (TIs) origi-
nated with electronic states in condensed matter physics (1–4),
and they were later studied in electromagnetic materials (5–
8). Recently, TIs have been investigated for phononic systems
(elastic waves in solids) to control statical floppy modes (9–15)
and dynamical edge waves (16, 17). These mechanical struc-
tures are induced by analogs to the quantum Hall (18), quantum
spin Hall (19), or quantum valley Hall effects (QVHEs) (20)
and inherently support topological edge states resistant to back-
scattering at sharp interfaces, discrete defects, or continuous
disorder (21, 22).

Mechanical TIs mimicking the quantum Hall effect require
active means to break time-reversal symmetry (18, 23, 24) and
have been achieved by using a weak magnetic field (25), by using
gyroscopes or rotating frames (26–28), or by varying material
properties in time and space (29–31). In contrast, mechanical
TIs mimicking the quantum spin Hall effect (QSHE) (19, 21)
may be achieved passively through breaking of spatial inversion
symmetry. These TIs have been investigated numerically and
tested experimentally for elastic waves in thin plates (22, 32, 33)
and in discrete systems composed of masses and linear springs
(15, 16, 19, 29). Compared to active TIs, they 1) do not require
external energy input, 2) feature both forward- and backward-
propagating edge modes, and 3) typically retain time-reversal
symmetry (34).

A third approach for achieving a mechanical TI results from
mimicking the QVHE, which breaks inversion symmetry in a
simpler system. The QVHE was first predicted theoretically
in graphene (35–37) and later observed in solid-state devices
(38–40), photonic crystals (41–43), and graphene bilayers (44–

46). Unlike QSHE, only one set of degenerate Dirac cones is
required, which reduces the geometrical complexity of design-
ing TIs for elastic media. Recently, QVHE has been extended
to phononic systems to exhibit valley edge states (20) by using
1) anisotropic scatterers in sonic crystals (47) and 2) arrays of
resonators or different inclusion types in thin plates (24, 48, 49).

Mechanical TIs proposed to date lack an easy means of
reconfigurabilty, which is essential for enabling important TI-
based applications. One potential means to overcome this issue,
as explored in this paper, is to employ shunted piezoelectric
(PZT) disks in which the system’s mechanical impedance can
be altered dramatically using negative capacitance circuits (50–
52). Dynamic reconfigurability of such structures can then be
obtained through simple on/off switching of these external cir-
cuits. By doing so, we propose and experimentally verify an
electroacoustic TI which exhibits topologically protected edge
states. This reconfigurable structure is composed of an elas-
tic hexagonal lattice (made from polylactic acid [PLA] plastic)
whose unit cell contains two shunted PZT disks, each con-
nected to a negative capacitance circuit by an on/off switch.
Closing one or the other circuit results in the breaking of
mirror symmetry and yields mechanical behavior analogous to
the QVHE.

Results
Graphene-Like Unit Cell. Fig. 1A displays the schematic of the
unit cell composed of an hh = 0.5 mm thick PLA layer, with
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Fig. 1. Phononic crystal band structure. (A) Schematic of the phononic crys-
tal formed by hexagonal unit cells with PLA (h0 = 0.5 mm thick) as the
host layer and attached circular PZT patches with thickness of h1 = 0.5 mm
(d1 = 7 mm in diameter) connected to external circuits. These circuits pro-
vide negative capacitance of C′ =−(R2C0)/R1. (B) Comparison between the
band structures in the absence (red dashed curves with two Dirac points
at 45 and 73 kHz) and in the presence (blue solid curves with optimal
bandgap at C′ =−1.7 nF) of completed external circuits attached to one
PZT disk.

two bonded PZT disks, used to mimic the band structure of
graphene. This unit cell is then periodically repeated in the
lattice directions to form the entire material system (see SI
Appendix, Note 1, for more details). Each of the PZT disks
employed has a diameter of 7 mm and a thickness of hp = 0.5
mm and is connected to a negative capacitance circuit through
a digital on/off switch. Red dashed lines in Fig. 1B plot the
band structure of the unit cell when both of the switches are
off (i.e., both of PZT disks experience open circuit condi-
tions), documenting two Dirac cones at the edge of the unit
cell where two distinct Lamb modes (53) meet (approximately
f1 = 45 kHz, f2 = 73 kHz). Note that these curves are com-
puted only for the frequency range of interest; hence, other
Dirac cones are not visible. SI Appendix, Note 1, provides full
discussion on the computation details for the entire frequency
spectrum (0− 90 kHz).

Breaking Inversion Symmetry. The next step in configuring the TI
requires breaking mirror symmetry and separating the folded
Dirac cones. As such, one of the switches in Fig. 1B is set to on,
thus connecting the PZT (green disk) to the external negative
capacitance circuit (Fig. 1A), which provides a significant change
in the elastic modulus of the disk (51, 52, 54); the other PZT
(blue disk) remains disconnected. This then enables breaking
C6 symmetry and creates a topological bandgap at the location
of the Dirac cone. The circuit includes two resistors (R1,R2),
one capacitor (C0), and an operational amplifier, which yields
an effective negative capacitance of C ′ =−(R2C0)/R1. Note
that the resistor R0 prevents saturation of the paralleled capaci-
tance C0, which can cause instability of the PZT disk. Blue solid
lines in Fig. 1B plot the band structure of the described unit cell
when the green PZT disk is connected in series with a negative
capacitance of C ′ =−1.7 nF , reporting two complete frequency
bandgaps at the location of the Dirac modes. The stated neg-
ative capacitance is achieved by placing R1 = 10,R2 = 17 Ω and
C0= 1nF, resulting in an optimal bandgap width. The band struc-
tures for other values of negative capacitance are provided in SI
Appendix, Note 1.

For each of the bands bounding the topological gaps in Fig. 1E,
the valley Chern numbers are computed numerically to be Cv =
±1/2 (as labeled on the graph). The computation of these num-
bers and the corresponding Berry curvatures are detailed in SI
Appendix, Note 2. According to the bulk-edge correspondence
principle (41, 55), for each of these bandgaps, the total Chern
number is equal to the summation of the Chern numbers (∆Cv )
for all of the modes below the gap. If two structures with oppo-
site total Chern numbers for bands share an interface (i.e., one
structure with green disk shunted and the other with blue disk
shunted), one U-shaped helical edge mode will be present at the
interface (|∆Cv |= 1).

Topologically Protected Edge Waves. The most intriguing prop-
erty of topological edge states is their ability to convey waves
along sharp and curved interfaces without back-scattering. For
QVHE, edge states are not present at the edge of the struc-
ture with a trivial mirror (e.g., air) since the difference in
Chern numbers is less than one (|∆Cedge |=±1/2); however,
according to the bulk-edge correspondence principle (41, 55), if
two materials with opposite Chern numbers share an interface
(|∆Cinterface|=±1), topologically protected waves travel along
this interface without losing their intensity. To verify these
states in our system, a super cell composed of 10 unit cells
in the y direction is considered (Fig. 2). This depicted strip is
then repeated in the x− direction by applying Bloch bound-
ary conditions. As depicted in Fig. 2B, all of the green disks
are electrically shunted, while the blue ones experience an open
circuit condition. For the upper half of the super cell, loca-
tions of the green disks are reversed compared to the lower
half, resulting in an interface with a Chern number difference
of |∆Cinterface|= +1. Fig. 2A documents the band structure of
the super cell, revealing the existence of a topologically pro-
tected edge state starting from near the bulk modes on top to
the bulk modes on the bottom at the location of the upper
bandgap in Fig. 1B. Furthermore, the right schematic in Fig. 2A
provides the displacement field of the strip at 73 kHz (marked
with a red star). As observed, interface wave is localized at
the interface.

Numerical Demonstration of Edge States. Next we report wave
propagation immune to back-scattering along desired trajec-
tories. For an ideal TI, data should travel along sharp and
curved trajectories without loss of intensity. For mechanical
TIs, this advantageous behavior has significant implications for
communications systems, multiplexers, and onboard mechan-
ical logic. To illustrate such a capability, a reconfigurable
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Fig. 2. Topologically protected interface state. (A) Band structure of a supercell composed of a 1-by-10 array of unit cells, periodically repeated
in the x direction computed using Floquet boundary conditions. Gray curves depict bulk bands, while the blue curve depicts the protected inter-
face mode. (B) (Left) Schematic of the supercell in which green disks are electrically shunted and blue ones are left open circuited, resulting in
the upper half and lower half subdomains experiencing opposite Chern numbers. (Right) The corresponding wave distribution at a frequency of
f = 73 kHz (marked with a red star), documenting wave localization at the interface. All displacements are normalized by the maximum deformation of
the cell.

interface is created between two subdomains with opposite
Chern numbers.

As such, we consider a plate composed of 8× 8 hexagonal unit
cells, each equipped with a pair of PZT disks. On one side of the
interface the upper disks are shunted, while for the other side
the lower ones are electrically shunted (or vice versa). Fig. 3A
depicts the displacement field of the structure with a horizontal
interface under a harmonic excitation at 73 kHz. As documented,
waves clearly travel along the desired interface from the input
(marked with the blue star) to the output (marked with the green
star). As a second example, Fig. 3B displays an interface in which
waves are guided along a triangular path from the source on
the left side to the receiver on the bottom edge, without back-
scattering or reflection at the sharp edges (again at 73 kHz).
Finally, Fig. 3C depicts the displacement field for the case with
a Z-shaped interface, documenting propagation with minimal
intensity loss for 73 kHz. As desired, for all three interfaces,
robustness of the system is guaranteed at the location of the
interface.

Experimental Realization of Edge States. We next verify the per-
formance of the proposed reconfigurable TI by carrying out a
set of experiments. The experimental setup is composed of a
5× 5 hexagonal array of unit cells incorporating 50 bonded PZT
disks (see SI Appendix, Note 4, for full details on the experi-
mental setup). Half of the PZT disks are connected to external
circuits (by simply closing the attached switch) with an effec-
tive negative capacitance of C ′ =−1.7 nF to form an interface

between two domains (marked with green line), one charac-
terized by a valley Chern number Cv = 1/2 and the other by
Cv =−1/2. Fig. 4A exhibits the experimentally measured RMS
wavefield of a system with a horizontal interface in response
to excitation at 77 kHz. This figure clearly confirms the prop-
agation of an interface wave from the source (marked with a
black star) to the receiver on the other side of the structure.
Due to the imperfectness of the experimental setup and the mass
and stiffness of the connected wires and soldering material, this
frequency is slightly above that predicted using numerical sim-
ulations. As shown in Fig. 4B, the system is easily reconfigured
to alter the interface location (at the same excitation frequency)
simply by operation of the programmable on/off switches, in this
case introducing a sharp-angled trajectory. An interface wave
travels from the input on the left side to the output on the
top edge with minimal reflections from the sharp geometry.
For both trajectories appearing in Fig. 4, time snapshots of the
interface wave traveling along the trajectories are provided in
SI Appendix, Note 4.

Discussion
In summary, this paper presents a reconfigurable electroacous-
tic TI that realizes topological edge states analogous to the
QVHE. The proposed phononic crystal is formed by period-
ically repeating a graphene-like unit cell, which is composed
of two bonded PZT circular disks attached to a hexagonal
PLA layer. In order to break inversion symmetry, one of the
two disks is connected to an external circuit with negative

Fig. 3. Numerically computed interface waves. Numerically computed RMS displacement field of the system excited by a source (marked with blue stars)
at 73 kHz, documenting back-scattering free wave propagation along (A) a horizontal interface, (B) a triangular-shaped interface, and (C) a Z-shaped
interface. All displacements are normalized by the amplitude of the input wave. For these interfaces, the location of the shunted PZT patch on either side
of the interface is reversed, providing ∆Cinterface =±1 at the boundary of the two subdomains. Green stars depict the location of the wave output.
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Fig. 4. Experimentally measured interface waves. Experimentally measured RMS displacement field of the system excited by a source (marked with black
stars) at 77 kHz, documenting wave propagation (A) along a horizontal interface and (B) along a sharp-angled interface exhibiting back-scattering free
propagation. Displacements are normalized by the amplitude of the input wave. For these interfaces, the location of the shunted PZT patch on either side
of the green line is reversed.

capacitance, while the other one is left in an open circuit
state. Dispersion relationships are computed numerically, doc-
umenting a topological bandgap at the location of the Dirac
one. Numerically computed and experimentally measured results
illustrate immune to back-scattering wave propagation along
sharp interfaces. Furthermore, by simply operating on/off the
desired circuits, reconfigurable interfaces are obtained and ver-
ified experimentally. The reconfigurable TI proposed in this
study may be a stepping-stone material platform for imple-

menting next generation acoustic-based wave filtering, multiplex-
ing/demultiplexing, and logic in communication-based devices.

Data Availability.
All data needed to evaluate the conclusions in the paper are
present in the paper and/or SI Appendix. Additional data related
to this paper may be requested from the authors.
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1. L. Lu, J. D. Joannopoulos, M. Soljačić, Topological photonics. Nat. Photon. 8, 821–829
(2014).

2. M. Z. Hasan, C. L. Kane, Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045
(2010).

3. K. Von Klitzing, The quantized hall effect. Rev. Mod. Phys. 58, 519–531 (1986).
4. C. L. Kane, E. J. Mele, Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95,

226801 (2005).
5. F. Haldane, S. Raghu, Possible realization of directional optical waveguides in pho-

tonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904
(2008).

6. Z. Wang, Y. Chong, J. D. Joannopoulos, M. Soljačić, Reflection-free one-way edge
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