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ABSTRACT: Analyzing data on ART presents unique and sometimes complicated challenges related to choosing the unit(s) of analysis and

the statistical model. In this commentary, we provide examples of how these challenges arise and guidance for overcoming them. We discuss

the implications of different ways to count treatment cycles, considering the perspectives of research questions, data management and analysis
and patient counseling. We present the advantages and disadvantages of different statistical models, and finally, we discuss the definition and

calculation of the cumulative incidence of live birth, which is a key outcome of research on ART.
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Introduction

ART is an increasingly common way to help individuals and cou-
ples expand their families. Over 250000 ART cycles were initiated,
and nearly 77000 ART-conceived children were born in the USA
in 2016 (Centers for Disease Control and Prevention, 2018). The
scientific literature supporting the use of ART also has rapidly expanded
despite challenges in the field. While one pressure on the scien-
tific literature is keeping pace with emerging technologies and treat-
ment approaches (Wilkinson et al., 2019), other pressures are the
uniquely complex study design and statistical challenges inherent to
ART research. These unique factors include the presence of multiple
treatment cycles per patient, informative censoring and hierarchical
clustering. Though straightforward study designs and statistical meth-
ods sometimes are appropriate, they often are not used or are used
erroneously.

Recent work has drawn attention to other methodological challenges
in the field, including lack of consistent numerators and denominators
used in trials (Wilkinson et al., 2016), common pitfalls in study design
and analysis (Messerlian and Gaskins, 2017) and the appropriate and
inappropriate use of P values in the field of reproductive medicine
(Farland et al., 2016). Our objective is to expand on this work by
discussing issues in ART research surrounding the unit(s) of analysis,
proper modeling approaches and the definition and calculation of

cumulative incidence of live birth. While our focus is predominantly
on issues of statistical analysis in the setting of observational research,
it is crucial to note that even the most valid statistical approach cannot
salvage a study suffering from invalid design. This review will describe
common errors in ART research and best practices for future work.

Choice of Statistical Model

Unit of analysis

How many cycles contribute to the analysis?

One key issue facing ART research is the choice of the unit of analysis.
Sometimes, the number of cycles is of inherent interest and can
be incorporated into the study outcome measure. Examples include
measures of cumulative success after several cycles or measuring the
number of cycles needed to achieve a live birth. On other occasions,
we are interested in how exposures or treatments relate to outcomes
of individual cycles. In these instances, if data are available on multiple
cycles per person, an investigator has to choose between including only
| cycle per person (e.g. the first cycle) and including multiple cycles
per person. Analyzing only the first cycle can be problematic. It limits
study power due to reduced sample size and likely does not represent a
clinically accurate picture of the scientific question of interest, as many
individuals undergoing ART complete more than | cycle (Society for
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Assisted Reproductive Technology, 2019). Additionally, this method of
analysis can only examine factors associated with success in the first
cycle, which may vary across subsequent cycles (Missmer et al., 201 1).
For example, restricting analyses to only the first cycle is not particularly
useful for studying time-varying exposures, especially in response to
unsuccessful cycles, such as ovulation induction methods or patient
alcohol consumption.

Which cycles contribute to the analysis?

The investigator also has to choose how to count cycles in their anal-
ysis, which has recently been the topic of some debate (Maheshwari
etal.,2015). Some researchers choose to treat all retrieval and transfer
cycles as distinct cycles (e.g. one retrieval with a fresh or frozen embryo
transfer and three subsequent frozen embryo transfers are counted as
4 cycles), while other researchers choose to only count retrieval cycles
as distinct cycles and lump any subsequent frozen embryo transfer
cycles into the retrieval cycle from which they originated (e.g. one
retrieval with a fresh or frozen embryo transfer and three subsequent
frozen embryo transfers are counted as | cycle; sometimes referred
to as ‘complete cycles’). The choice of how to count fresh and thaw
cycles should be carefully weighed in light of the clinical question of
interest, and the implications for patient counseling should be carefully
considered (Table I). Regardless of how cycles are counted, investi-
gators need to account for correlation between the outcomes of an
individual’s cycles. For instance, if the outcome of interest is live birth,
individuals could have multiple treatment cycles (Dodge et al., 2017);
if Patient A and Patient B both undergo three IVF cycles, the outcomes
of Patient A’s 3 cycles will tend to be more similar to each other than
they will be to the outcomes of Patient B’s 3 cycles. Because of this,
cycle outcome data can be thought of as being ‘clustered’ around each
study participant and are thus not independent. Repeated measures
may also arise when there are multiple observations within a cycle,
such as an analysis of a cohort of embryos produced from a single cycle
(Eaton et al., 2009). Finally, there may be other types of dependence
between observations, such as the inclusion of oocyte donors who
contribute oocytes to multiple recipients (Humphries et al., 2019); in
this case, the outcomes of recipients who use oocytes from the same
donor are likely to be more similar to each other (clustering around
a specific oocyte donor) than the outcomes of recipients who use
different oocyte donors.

Modeling

Inclusion of multiple observations per person

Dependencies often arise in IVF data from including repeated mea-
surements (e.g. cycles, embryos) per patient, which has important
implications for what type of statistical analysis should be conducted.
Standard regression models (e.g. linear or logistic regression) assume
independence between observations; if the independence assumption
is violated, regression may give the wrong answer. Analysis of so-
called ‘clustered’ and/or repeated measures data requires appropriate
consideration of the data structure in order to yield valid P values
and Cls. When the independence assumption of standard regression
models is violated, the SE estimates of the regression coefficients
can be invalid (either too small or too large), leading to invalid infer-
ence. Mixed effects models (also known as hierarchical models) or
generalized estimating equations (GEEs) can be used to account for

clustering or repeated measures. Further information is detailed below,
broken down by outcome type, and also provided in summary form
in Table ll. Such models can be implemented in standard statistical
software packages and can examine the time to first event, such as live
birth, but they may not be appropriate for analyzing outcomes that
patients can experience across multiple cycles, such as implantation
failure or clinical pregnancy. Extensions of these methods can handle
time-varying confounding for analysis of events across multiple cycles.

Additionally, informative clustering (Yland et al., 2019) may also be
an issue if patients with more severe infertility contribute more overall
retrieval and transfer cycles or more retrieval cycles due to having
fewer high-quality embryos to freeze for subsequent thaw cycles.
While mixed effect or GEE modeling is a step in the right direction
for clustered data, additional considerations may need to be taken
into account for informative clustering if present in the data (see
Calculating cumulative incidence).

Continuous outcomes

Linear regression is one form of statistical modeling for continuous
outcomes utilized in the ART literature. However, linear regression
models require specific assumptions that, when violated, may yield
invalid results. As detailed above, one such assumption that is often
violated in published ART research is that of independent observations.
As shown recently (Yland et al., 2019), ignoring this correlation can
lead to underestimation of the SEs, and the stronger the correlation,
the worse the underestimation. This can make the Cls artificially
narrow, which subsequently could cause an association to be wrongly
interpreted as statistically significant when in fact it is not. In addition to
independence, linear regression also assumes homoscedasticity (equal
variance) and normal distribution of errors. In particular, variables with
long-tailed distributions (e.g. implantation or fertilization percentage)
may have unequal variance, and this can lead to biased coefficients and
SEs (Ramsey and Schafer, 2012).

For continuous variables that do not otherwise violate the assump-
tions of linear regression, linear mixed models or GEEs, can be used
to address dependent observations such as multiple cycles per person.
These models are extensions of simple linear models and may be used
in settings of dependent data. In ART data, there may be random vari-
ability between individual patients and also between the responses of
the same individual treated on multiple occasions, even after accounting
for other factors, in addition to the variability inherent in the sample
population itself. Mixed effects models allow for imbalance in the data,
which can occur in the ART setting because patients undergo repeated
treatment cycles and contribute a varying number of observations to
the dataset.

Dichotomous outcomes

Logistic regression, which is used for quantifying associations with
dichotomous outcomes, is another widely used model in the ART liter-
ature. Logistic regression is subject to many of the same assumptions
as linear regression, including that of independent observations. It is
important to note that investigators are not limited to logistic regres-
sion when the outcome is dichotomous. Log-binomial models are also
appropriate as they can calculate adjusted relative risks and can handle
dependent observations. In cases where log-binomial models do not
converge, modified Poisson regression with robust error variance can
be used (Zou, 2004).
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Table I Factors related to the choice of how to count ART treatment cycles in the setting of observational research.

All cycles are distinct

Only retrieval cycles are distinct

Examples of research situations e Questions where the total number of
treatment cycles matter and/or for exposures
that may differ by retrieval or transfer cycle (e.g.
cost-effectiveness of a particular treatment;
patient lifestyle behaviors that change over time)
e Desirable when patients would prioritize
minimizing the total treatment commitment
(retrievals and transfers)

Implications for data management e Simpler from a data management perspective

Implications for statistical analysis e Need to account for clustering among all cycles
within each patient

Implications for patient counseling e Gives patients a better sense of total
treatment commitment by counting each retrieval
and transfer cycle
e Assumes that patients care equally about the
experience of retrieval and transfer cycles, which
is likely not the case

e Questions looking at exposures that affect the
cohort of retrieved oocytes (e.g. ovulation
induction regimens; impact of oocyte age on
outcomes)

e Desirable when patients would prioritize
minimizing the number of necessary retrievals

e Exaggerates the issue of informative clustering,
as patients with better ovarian response will have
fewer retrieval cycles but may have a similar
number of transfers

e May have situations where a single transfer
uses embryos from different retrieval cycles

e Can be complicated from a data management
perspective, as retrieval and transfer cycles need
to be linked

e Unclear how to manage multiple retrieval
cycles (‘embryo banking’) prior to any embryo
transfers

e Need to account for clustering among retrieval
cycles within each patient

e Wil typically underestimate the total
treatment commitment by counting only a subset
of cycles (e.g. retrievals)

e Assumes that patients are not impacted by
transfer cycles, which is likely not the case

Table Il Factors involved in the choice of statistical model.

Type of analysis Data type Advantages Disadvantages

Mixed effects models Continuous (linear mixed effects e Allows for imbalanced data size e More difficult to implement and
model), categorical or count and informative missingness (i.e. the require sufficient statistical training
(non-linear mixed effects models) number of cycles a woman e Models are sometimes unstable

contributes depends on the

and may not converge

outcomes of her prior cycles)
e Models can specify multiple

correlations

Generalized estimating equations Continuous, categorical, count e Can be used as an alternative to
(GEEs) non-linear mixed models when they

do not converge

e Have a different interpretation

than mixed effects models
(population-averaged versus

individual-level effects)

Discrete survival Time-to-event (e.g. first live birth) e Easy to implement

e Can only accommodate one event

e Censors on the outcome, making  at a time, though many ART events
it appropriate for the use of first live can be experienced in multiple cycles,

birth as an outcome

such as implantation failure or live
birth

Odds ratios (OR)—the output of logistic regression models—are
often misinterpreted as risk ratios (RR) (Knol et al., 201 1), but the
two only approximate each other when the outcome is rare. When

the outcome is more common (>10% is an often-cited cutoff), the

OR provides a more extreme estimate of association than the RR.
For example, in a study where 17% of the cohort had the outcome
of interest, the calculated OR was 3.3, while using either the log-
binomial model or the modified Poisson regression model, the RR was
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2.5 (Modest et al., 2017). Because people may incorrectly interpret the
OR as a RR given the difficulty in understanding odds and ORs, the RRis
often supported as a more desirable measure of interpretation in order
to prevent the clinical or practical importance from being overstated
(Gallis et al., 2019), and thus the RR is generally the preferred measure
of association for purposes of patient counseling. However, some
analysts prefer the OR, arguing that it is not intended to be a measure
of risk and that is has other desirable properties. For example, the
significance of the relative risk can change depending on whether
one is looking at the chance of the event occurring as opposed to
not occurring, and Cls can imply impossible risks (e.g. risks > 100%)
(Senn, 1998; Cook, 2002; Francis, 2018). The choice between using
a RR or an OR should be a thoughtful one, and regardless of their
choice, investigators should translate their results into a comparison of
absolute risk in the groups of interest.

Count outcomes

In the setting of ART, count outcomes, such as the number of oocytes
retrieved or fertilized, can be of interest. Poisson regression, which
allows the response variable to assume any integer value greater than
or equal to zero, is better suited than linear regression to handle
discrete outcomes. The Poisson distribution assumes that the mean
is equal to the variance (i.e. the mean is equal to the square of the SD).
An effect known as over-dispersion occurs when the variance is larger
than the mean; for example, because it is often highly right-skewed,
the number of oocytes retrieved can have a variance that is larger than
the mean. In cases of over-dispersion, the model underestimates the
SEs and thus decreases the precision of the estimate (i.e. the Cls will
be wider than necessary). One option for dealing with over-dispersed
data is to use negative binomial regression, which is a generalization of
Poisson regression.

Calculating cumulative incidence

A method of analysis that is particularly well-suited to ART research
is that of cumulative incidence, as patients are most interested in the
likelihood of having a live birth given the possibility of completing
multiple treatment cycles. Despite this, many analyses present only the
likelihood of live birth after the first IVF cycle. Calculating cumulative
incidence can be thought of as a type of survival analysis where the
estimate rises with each additional time point instead of decreasing
as in traditional survival analysis. However, cumulative incidence of
live birth following IVF requires several special considerations, and the
way it has been defined and calculated in the literature has evolved.
Definitions include the cumulative incidence of first live birth resulting
from: up to some limit of fresh and frozen cycles, regardless of number
of retrievals (Malizia et al., 2009); all initiated cycles from a single
cohort of retrieved oocytes (Zegers-Hochschild et al., 2017); or all
initiated cycles within | year of a single egg retrieval (Society for
Assisted Reproductive Technology, 2019). Despite a recent call for
consensus (Maheshwari et al., 2015), none has emerged. To analyze
cumulative incidence data, Kaplan—Meier survival analysis is one option
that has been used. Kaplan—Meier is a non-parametric method that
allows the calculation of time-to-event in the presence of censoring,
which is an important consideration in the setting of ART research.
For the calculation of cumulative incidence of live birth, the Kaplan—
Meier estimate censors individuals at the time of their last [VF cycle and

assumes that they have the same chance of having a live birth as those
who remain in the analysis. This assumption led to this approach being
termed an ‘optimistic’ method (Malizia et al., 2009). A ‘conservative’
Kaplan—Meier approach was proposed in the same paper that assumed
that those who were censored had no chance of having a live birth
after being censored; this approach retains those who are censored
in the denominator, whereas the optimistic Kaplan—Meier approach
does not. The ‘optimistic’ method estimated a cumulative incidence of
live birth of 72% after up to six IVF cycles, whereas the ‘conservative’
method estimated a cumulative incidence of live birth of only 51%,
illustrating the large impact that choice of analysis method can have on
the outcome.

Neither of these approaches can deal with the issue of informative
censoring, in which patients who leave treatment and are thus censored
from the analysis may do so for reasons that are not random. For exam-
ple, younger women are more likely than older women to stop treat-
ment due to spontaneous conception (Domar et al., 2018). Recent
work has focused on inverse probability weighting (IPW), a technique
that can be used for a variety of applications, including controlling for
confounding. This work has shown that IPW can provide a more valid
estimate of the cumulative incidence of live birth and, interestingly,
has demonstrated that the IPW-corrected estimates for cumulative
incidence of live birth among the youngest women were actually higher
than the optimistic Kaplan—Meier estimates. This suggests that the
women who are censored are more likely to have a live birth than those
who remain in the dataset and thus confirming the presence of infor-
mative censoring in the setting of ART research (Modest et al., 2018).
Other recent work has shown that 17% of women who underwent
unsuccessful IVF had a spontaneous live birth within 5 years of follow-
up, with younger age associated with greater likelihood of spontaneous
live birth (EIMokhallalati et al., 2019). While IPW can provide a more
accurate estimate of treatment success, it is limited by the range and
quality of the covariates available to construct the weights.

In addition to the issue of informative censoring, which can be
addressed using IPW, control of confounders must be considered
when calculating cumulative incidence. The issue of confounder selec-
tion is of great interest in the ART population and has been discussed
previously/is forthcoming (Correia et al., 2020). With regards to
the estimation of cumulative incidence of live birth, while Kaplan—
Meier estimates can be adjusted for covariates (Hernan et al., 2010),
the process is more difficult than incorporating covariates into Cox
proportional hazards models, and thus Cox models may be a more
appropriate technique. Like the Kaplan—Meier approach, Cox models
assume random censoring, which is often violated in ART research,
and thus IPW should be incorporated into Cox models to account
for informative censoring. Another assumption of Cox models is that
of proportional hazards, meaning that the hazard function for two
levels of a covariate is proportional over time. One way to check this
assumption is to use graphical methods and look at the survival curves.
In general, one can conclude that the assumption of proportional
hazards holds unless a distinct pattern or crossing of the curves is seen;
overlapping lines with no clear pattern may indicate that there is no
difference between groups.

All of the tests mentioned yield a P value, and P values are often
used as the basis for making conclusions about associative analy-
ses. However, The American Statistician recently devoted an entire
issue to moving to a world beyond reliance on a P value <0.05
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(Statistical inference in the 21st Century. A world beyond p < 0.05,
2019), and most peer-reviewed epidemiology journals stress that the P
value should not be used as the primary test in these analyses because it
does not reveal the direction or magnitude of effect nor the same level
of detail that one receives from the use of Cls (Farland et al., 2016);
instead, the P value should be used as one piece of information among
others (McShane et al., 2019). Investigators may find both the The
Strengthening the Reporting of Observational Studies in Epidemiology
(STROBE) (von Elm et al, 2007) and Consolidated Standards of
Reporting Trials (CONSORT) (Schulz et al., 2010) guidelines useful
when planning and presenting their research.

Concluding Remarks

Poor data analysis can lead to misinterpretation of results and erro-
neous conclusions. For the field of ART to advance, and to ensure
that clinical decisions and practice guidelines are based on the best
possible evidence, it is critical that the appropriate statistical methods
are applied and that readers correctly interpret these findings. Thus,
we make the following conclusions and recommendations:

(i) Research on ART presents unique and often complicated issues
for data analysis

(i) Investigators should think carefully about the most appropri-
ate unit of analysis for their study and design their data analysis
accordingly

(iii) P values alone should not be used to make conclusions about
whether results are scientifically or clinically important

(iv) Linear mixed models or GEEs should be used to properly
account for the correlation between multiple observations per patient
when modeling continuous outcomes

(v) When modeling dichotomous outcomes, the assumptions of
logistic regression are often violated in the setting of ART research, and
log-binomial or modified Poisson regression with robust error variance
should be used to calculate a relative risk and properly account for the
correlation between multiple treatment cycles per patient

(vi) When modeling count data, the assumptions of Poisson regres-
sion are often violated in the setting of ART research, and nonlinear
mixed effects or GEEs should be used to properly account for the
correlation between multiple treatment cycles per patient

(vi) Cumulative incidence of live birth is an important outcome of
interest in ART research, and its definition and methods of estimation
have evolved over time; we recommend using Cox proportional haz-
ards models that adjust for necessary covariates and address informa-
tive censoring using IPW

(vii) Researchers should consider utilizing multidisciplinary teams that
include investigators with expertise in study design and statistics.
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