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A B S T R A C T

The world has witnessed a high morbidity and mortality caused by SARS-CoV-2, and global death toll is still
rising. Exaggerated inflammatory responses are thought to be more responsible for infiltrated immune cells
accumulation, organ damage especially lung, dyspnea, and respiratory failure rather than direct effect of viral
replication. IL-6 and NLRP3 inflammasome are the major immune components in immune responses stimulation
upon pathogen infection. It's noteworthy that the function and expression of these components are remarkably
influenced by non-coding RNAs including long non-coding RNAs. Given the potential role of these components
in organ damage and pathological manifestations of patients infected with COVID-19, their blockage might be a
hopeful and promising treatment strategy. Notably, more study on long non-coding RNAs involved in in-
flammatory responses could elevate the efficacy of anti-inflammatory therapy. In this review we discuss the
potential impact of IL-6 and NLRP3 inflammasome blocker drugs on inflammatory responses, viral clearance,
and pathological and clinical manifestations. Collectively, anti-inflammatory strategy might pave the way to
diminish clinical and pathological manifestations and thereby discharging patients infected with COVID-19 from
hospital.

1. Introduction

COVID-19 caused by severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) rapidly disseminate all around the world by 9,068,108
confirmed cases and 471,042 death until June, 22, 2020 [1]. COVID-19
is an enveloped virus that belongs to the Coronaviridae family con-
taining a positive-sense RNA genome which encodes essential structural
proteins including spike (S), envelope (E), membrane (M), and nu-
cleocapsid (N) [2]. COVID-19s' cell entry strongly depends on S protein
through interacting with angiotensin-converting enzyme (ACE) on the
target tissues such as lung, kidney, heart, and gastrointestinal (Fig. 1)
[3,4]. The inflammatory cascade is activated following sensing virus'
RNA and its structural proteins by inflammatory sensors [5,6]. It seems
that interleukin-6 (IL-6) and NOD-like receptor protein 3 (NLRP3) in-
flammasome are the major cause of inflammatory cytokine storm, and
thereby clinical and pathological manifestations of patients infected
with COVID-19 [7,8]. Correspondingly, infiltrated immune cells in-
cluding macrophages and monocytes, minimal lymphocytes including
CD4+ T cells, eosinophils and neutrophils were presented in lungs of
patients who died of SARS-CoV-2 [9]. Its noteworthy that epigenetic

modulations such as non-coding RNAs, DNA methylation, and histone
acetylation are implicated in inflammatory cytokine storm and in-
flammatory complex including IL-6, tumor necrosis factor (TNF)-α, and
NLRP3 inflammasome [10,11]. Therefore, designing anti-inflammatory
drugs to target inflammatory cytokines especially IL-6 and in-
flammatory complex including inflammasome could be a promising
strategy to deal with SARS-CoV-2 [12,13]. Patients with rheumatoid
arthritis showed down-regulation of the levels of acute-phase reactants
including prototypic C-reactive protein (CRP) upon administration of
tocilizumab [14]. Also, glyburide is a food and drug administration
(FDA) approved drug for treatment of type 2 diabetes able to block
NLRP3 inflammasome activation through inhibiting ATP sensitive K+

(KATP) channels, caspase-1, IL-1β, and apoptosis-associated speck-like
protein containing a caspase recruitment domain (ASC) assembly,
thereby halts inflammation responses and organ damage [15–18].
Furthermore, well recognition of non-coding RNAs involved in SARS-
CoV-2-induced inflammation response could serve as new prognostic
biomarkers and therapeutic targets in treatment of patients infected
with COVID-19 [10]. Collectively, co-administration of anti-IL-6 and
inflammasome blocker drugs might improve clinical manifestations of
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COVID-19 patients, and reduce morbidity and mortality through lim-
iting COVID-19-mediated inflammation responses. In this review, we
describe the mechanism of IL-6 and NLRP3 inflammasome in patho-
genesis of SARS-CoV-2, and thereby clinical and pathological manifes-
tations of the disease. Also, we review long non-coding RNAs im-
plicated in IL-6 and NLRP3 inflammasome activation. Finally, we
discuss mechanism and pharmacokinetic properties of some reported
pharmacological inhibitors targeting these most important in-
flammatory components.

2. Mechanism of IL-6 secretion and inflammatory cascade
formation mediated by SARS-CoVs' infection

SARS-CoV-induced inflammatory responses largely cause organ
damage especially lung, and thereby high mortality and morbidity
[7,19]. Inflammatory cytokines comprising IL-6, and TNF-α and in-
flammatory complexes including inflammasome were activated fol-
lowing ACE-mediated SARS-CoVs' cell entry [20,21]. Studies carried
out on human and animal models infected with SARS-CoV suggest that
SARS-CoV-mediated fatal pneumonia might be due to im-
munopathological events [22–24]. Also, human lung fibroblasts in-
fected with MERS-CoV and HCoV-229E were shown to cause a delayed,
strong increase in the levels of IL-1β, IL-6, IL-8, TNF-α, interferon (IFN)-
β, and IFN-γ-induced protein (IP)-10. However, the levels of IL-6, IL-8,
IFN- β, and IP-10 were significantly higher in HCoV-229E-infected cells

relative to MERS-CoV-infected cells [25]. Moreover, the lungs' patho-
logical study of patients who died of COVID-19 demonstrated the pre-
sence of infiltrated immune cells such as macrophages and monocytes,
minimal lymphocytes including CD4+ T cells, eosinophils and neu-
trophils, alveolar exudative inflammation as well as interstitial in-
flammation (Fig. 2) [9]. Recent studies raised the possibility that in-
flammatory cytokine storm and inflammatory events may be
responsible for the severe COVID-19 pathology [26,27].

2.1. IL-6 secretion mediated by SARS-CoVs' infection

IL-6 is a potent pro-inflammatory cytokine that plays a crucial role
in inflammatory responses, autoimmune diseases, cancers, and viral
infections [28]. Also, recently IL-6 have been identified in development
of SARS-CoV-2-induced inflammatory responses, and further affected
patient's clinical manifestations [29]. Relatively, recent studies illu-
strated the remarkable, higher levels of IL-6 in patients with COVID-19
in comparison with those in control group. Also, the levels of IL-6 were
strongly correlated with severity of patients' clinical manifestation,
serum SARS-CoV-2 viral load (RNAaemia), and mechanical ventilation
requirement [14,30–32]. Moreover, the levels of IL-6 were increased up
to 7-fold (P = 0.016) following human peripheral blood mononuclear
cells (PBMCs) treatment with SARS-CoVs' spike protein through acti-
vation of nuclear factor kappa B (NF-κB) pathway [33]. Correspond-
ingly, treatment of murine macrophages cell line (RAW264.7) with

Fig. 1. The mechanism of cell entry and life cycle of SARS-CoV-2 in host cell; SARS-CoV-2 life cycle initiation is mediated by S protein binding to the ACE2.
Conformation change in S protein following binding to ACE2 promotes its fusion with cell membrane via endosomal pathway. Viral genomic RNA is released and
translated into viral polymerase proteins that synthesize the negative (−) sense genomic RNA, and thereby produce a series of subgenomic mRNAs to translation and
residing of essential, structural viral proteins including nucleocapsid (N), spike (S), membrane (M), envelope (E) into ER and further transport to the Golgi apparatus.
Finally, viral RNA–N complex and S, M, and E proteins are assembled into virion and released out of the host cell. ACE2: angiotensin-converting enzyme 2; ER:
endoplasmic reticulum; ERGIC: ER–Golgi intermediate compartment.
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Fig. 2. Possible mechanism of cytokine release syndrome in severe COVID-19 patients. SARS-CoV-2 infects alveolar epithelial type 2 cells through ACE2 receptor,
leading to destruction and permeability of epithelial cells, and thereby virus release. Releasing of virus strongly activates innate and adaptive immune cells including
macrophages, granulocytes, lymphocytes, monocytes, dendritic cells, and also a large number of cytokines including IL-6. Furthermore, following the stimulation of
inflammatory factors, a large number of inflammatory cells and erythrocytes enter the alveoli, and cause dyspnea and respiratory failure.

Fig. 3. IL-6 is involved in inflammation
through activating different pathways.
IL-6 influences both B and T lymphocyte
cells to induce antibody production and
CTL activation, respectively. IL-6 pro-
motes HSC growth through enhancing
the differentiation of blood cells and
promoting their colony formation.
Moreover, IL-6 influences acute phase
reactive protein production such as SAA
and CRP from hepatocytes. CTL: cyto-
toxic T lymphocyte; Ab: antibody; CRP:
C-reactive protein; SAA: serum amyloid
A, HSC: hematopoietic stem cells.
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SARS-CoV spike protein led to NF-κB-induced IL-6 and TNF-α up-reg-
ulation [34]. IL-6 exerts its effects on target cells through three different
mechanisms comprising binding directly to the membrane-bound gly-
coprotein 130 (gp130), also known as classical signal transduction;
forming a complex with its receptor IL-6R and then binding to gp130;
and binding to soluble gp130 in a trans presentation manner [35,36].
IL-6 influences immune processes via activating multiple downstream
signaling pathways including janus kinase/signal transducers and ac-
tivators of transcription (JAK-STATA) (STAT1,3, and 5) [37,38], RAS-
rapidly accelerated fibrosarcoma (RAS-RAF) [37,39], SRC-yes-asso-
ciated protein(YAP) -neurogenic locus notch homolog (NOTCH) [40],
phosphatidylinositol 3-kinase (PI3K)-AKT [41,42]. IL-6 has a pivotal
role in regulating the immune system and inflammatory pathways
through several ways including promoting B lymphocytes proliferation
and differentiation to induce antibody production (Fig. 3) [43], cyto-
toxic T lymphocyte (CTL) activating [44], inducing hepatocytes-medi-
ated acute phase reactive proteins secretion [45], and hematopoietic
stem cells differentiation [46]. Moreover, IL-6 could induce T helper-17
(Th-17) cells, is a pro-inflammatory cytokine involved in pathogenesis
of several inflammatory diseases, via recruiting the transforming
growth factor beta (TGF-β) [47,48]. It's noteworthy that IL-6 is also
known as a major inducer of acute phase reactive protein that lead to
acute phase reactive proteins secretion comprising serum amyloid A
(SAA) and CRP from hepatocytes [45,49]. Recently, it was shown that
IL-6 is a core regulator of vascular endothelial growth factor (VEGF)
expression, and vessel permeability in alveolar epithelial cells [50,51].

2.2. NLRP3 inflammasome formation upon SARS-CoVs' infection

SARS-CoV-2 induces IL-1 family members including IL-1β and IL-18
through activating an inflammatory protein complex named NLRP3
inflammasome [21,52]. Activation of NLRP3 inflammasome occurs via
two signaling mechanisms (Fig. 4). The first one also called priming
signal is triggered via microbial agents sensing with toll like receptors
(TLRs) or cytokines to NF-kB-induced pro-IL-1β and NLRP3 up-reg-
ulation. The second one is triggered by pathogen associated molecular
patterns (PAMPs), and danger-associated molecular patterns (DAMPs)
resulting in ASC and pro-caspase-1 assembly, and thereby activation of
NLRP3 inflammasome [53,54]. Its noteworthy that NLRP3 inflamma-
some is also activated by ATP and K+ efflux in a P2X7 receptor and
pannexin-1 dependent manner [54]. Inflammasome is a central in-
flammatory multimeric complex including pro-caspase-1, ASC, and
NLRP3 protein [55]. Inflammasome is activated via nucleotide-binding
oligomerization domain–like receptors (NLRs) upon sensing a wide
stimuli spectrum comprising PAMPs, DAMPs, and reactive oxygen
species (ROS) [56,57]. Several types of NLRs, innate cytosolic re-
ceptors, including NLRP1–7, and NLRP12 could promote inflamma-
some assembly; nonetheless NLRP3 is more studied than other types
[58,59]. Multiple lines of evidence illustrated that NLRP3 interacts with
the pyrin domain (PYD) of ASC following sensing stimulus-mediated
oligomerization, and then ASC recruits pro-caspase-1 via a caspase re-
cruitment domain (CARD) [60]. Consequently, upon autocatalysis, ac-
tivated caspase-1 cleaves pro-interleukin (IL)-1β and pro-IL-18 into IL-
1β and IL-18 respectively, resulting in inflammatory responses [61].
Recent in vitro study have illustrated that SARS-Coronavirus open
reading frame-8b interacts with leucine-rich repeat (LRR) domain of
NLRP3 to activating NLRP3 inflammasome, leading to increasing levels
of IL-1β and IL-18 in macrophages and probably lung epithelial cells
[52]. Surprisingly, another recent study revealed that SARS-CoV open
reading frame-3a protein activates both required signaling mechanisms
to inflammasome activation independent of ion channel activity.
Therefore, open reading frame-3a either activates NF-κB and thereby IL-
1β transcription through inducing ubiquitination of p105 in a TRAF3-
dependent manner, or it interacts with TRAF3 to induce K63-linked
ubiquitination of ASC and consequently promotes caspase 1 activation
and IL-1β maturation [62]. SARS-CoV 3a protein acts as a viroporin to

NLRP3 inflammasome formation, and thereby IL-1β and IL-18 secretion
through K+ channel activity and mitochondrial ROS induction [63].
SARS-CoV E protein ion channel activity is associated to IL-1β secretion
through acting as Ca+ channel, and consequently forms NLRP3 in-
flammasome compartment [21]. Correspondingly, creation of N15A
and V25F mutations in the transmembrane domain of SARS-CoV E
protein abrogated the Ca+ flux as well as K+, Na+, and Cl− trans-
portation [21,64]. Animals infected with SARS-CoV without E protein
ion channel activity have shown decreased inflammasome-induced IL-
1β highlighting the pivotal role of E protein in inflammasome forma-
tion. Consistently, mice infected with SARS-CoV containing E protein
ion channel activity displayed swollen alveoli walls and leukocyte in-
filtration whereas those infected with SARS-CoV lacking E protein ion
channel activity presented moderate swollen lung epithelia and leu-
kocyte infiltration [64].

3. Role of LncRNAs implicated in IL-6 and NLRP3 inflammasome
signaling pathway

LncRNAs are a novel class of non-coding transcripts with longer
than 200 nucleotides length, and play a crucial role in a broad spectrum
of disorders [65–67]. A growing number of studies have indicated that
ncRNAs play a crucial role in inflammatory disease progression
[68–70]. LncRNAs have been strongly implicated in regulation of
NLRP3 inflammasome and IL-6-assocciated inflammatory signaling
[10,71,72].

3.1. LncRNAs involved in IL-6 secretion

There is some evidence about the key role of lncRNAs in both down-
and up-regulation of IL-6 [10]. As listed in Table 1, and Fig. 5 lncRNAs
may regulate IL-6 expression via several pathways like JAK/STAT, NF-
κB, HIF-1α, and MAPK. LncRNA/IL-6/STAT is one of the well-studied
pathways involved in multiple malignancies such as gastric cancer,
hepatocellular carcinoma, non-small cell lung cancer, etc. [73–75].
Correspondingly, lncRNA down-regulated in liver cancer stem cells (lnc-
DILC) suppresses IL-6 transcription and its downstream pathway, JAK2/
STAT3, and also reduces spheroid formation by binding directly to IL-6
promoter in lnc-DILC overexpressing cells. Moreover, subcutaneous
inoculation of hepatoma cells knocked down for lnc-DILC to mice re-
sulted in a greater xenograft tumor growth, size, and weight, high-
lighting the fundamental role of lnc-DILC in restraining liver cancer
stem cells and hepatocellular carcinoma progression. Also, patients
with higher levels of lnc-DILC showed a lower risk of hepatocellular
carcinoma recurrence and better survival following surgical resection
[76]. Another regulator lncRNA is tumor-suppressive lncRNA on
chromosome 8p12 (TSLNC8) that remarkably suppresses proliferation,
migration, invasion, and autophagy, and induces apoptosis in non-small
cell lung cancer through inactivating IL-6/STAT3/hypoxia-inducible
factor 1-alpha (HIF-1a) axis [77]. Contrary to lnc-DILC and TSLNC8,
lncRNA regulating IL-6 transcription (LNRRIL6) demonstrated an on-
cogenic role by promoting IL-6/STAT3 axis and its downstream mole-
cules including cell division cycle 25 A (CDC25A), cyclin D1, survivin,
and B-cell lymphoma 2 (BCL2). Relatively, injection of LNRRIL6 over-
expression cells into athymic nude mice induced tumor growth [78].
Strikingly, lncRNA metastasis associated lung adenocarcinoma tran-
script 1 (MALAT1), also known as NEAT2, has indicated a dual role
regarding inflammation responses and cytokine secretion especially IL-
6 in different signaling pathways. Increased MALAT1 levels induced by
acute kidney injury and cobalt chloride-induced hypoxia in mice sug-
gested that it might have an anti-inflammatory role in acute kidney
injury. Also, knocking down MALAT1 in HK2 cells led to NF-κB and
HIF-1α activation, and consequent increase of many inflammatory cy-
tokines such as IL-6 and TNF-a to promoting inflammatory cell in-
filtration and tissue damage [79]. Moreover, the inflammatory role of
MALAT1 has been revealed upon its overexpression, and thereby
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inflammatory cytokines (IL-6, TNF-α, and IL-1β) up-regulation in LPS-
induced acute lung injury. Correspondingly, histopathological in-
vestigation of the lung sections of MALAT1 knocked down rat demon-
strated that LPS-induced lung injury was strongly diminished in com-
parison with the control group [80]. Furthermore, IL-6 up-regulation
was shown to be tightly linked to T-cell proliferation blockage, accu-
mulation of infiltration neutrophils in ovarian cancer tissue, and
ovarian tumor growth through recruitment by lncRNA HOXA transcript
at the distal tip (HOTTIP). In view of these, NOD/SCID mice were in-
jected by HOTTIP overexpressing SKOV3 cells demonstrated a higher
tumor volume in comparison with those injected with normal SKOV3
cells [81]. Surprisingly, IL-6 was shown to be also regulated through
NF-κB signaling following HOX antisense intergenic RNA (HOTAIR)-
mediated nuclear translocation and activation of NF-κB in LPS-induced
macrophages. In the light of this result, the levels of inflammatory re-
sponse and cytokines induced by LPS potentially decreased upon HO-
TAIR knock down in RAW264.7 cells [82]. Another oncogenic lncRNA
that might be implicated in inflammatory cytokines regulation in-
cluding IL-6, IL-1β, and TNF-α, and consequently neuropathic pain de-
velopment in chronic constriction injury (CCI) rats model is lncRNA

nuclear-enriched abundant transcript 1 (NEAT1). Consistently, neuro-
pathic pain has ameliorated in NEAT1 knocked down rat upon con-
siderable down-regulation of inflammatory cytokines such as IL-6, IL-
1β, and TNF-α which suggested the crucial role of NEAT1 in regulation
of IL-6 expression [83]. Current studies regarding osteoarthritis pa-
thogenesis suggest that lncRNA cardiac autophagy inhibitory factor
(CAIF) could restrain osteoarthritis progression through blocking miR-
1246, and IL-6. Also, it was shown that the IL-6 and miR-1246 levels
were remarkably up-regulated in synovial fluid of osteoarthritis pa-
tients whereas CAIF was significantly down-regulated, highlighting the
potential role of IL-6 in osteoarthritis as an inflammatory disease [84].

3.2. LncRNAs implicated in NLRP3 inflammasome formation

Inflammasome, a multiprotein complex, is a core inflammatory
component involved in innate immunity and inflammation responses
upon induction with various stimuli [89]. Accumulating evidence has
indicated that lncRNAs are implicated in inflammasome formation
followed by severe disorders promotion (Table 2, Fig. 5) [72,90]. Nu-
clear enriched abundant transcript 1 (NEAT1) has been associated with

Fig. 4. NLRP3 inflammasome pathway is activated through signal 1 and signal 2. Signal 1 is mediated trough sensing microbial and virus ligands (PAMPs), DAMPS,
and cytokines such as TNF-α by TLR and TNFR, respectively. Activation of signal 1 leads to NF-kB pathway activation, and thereby up-regulates pro-IL-1β, pro-IL-18,
and NLRP3 protein levels. Signal 2 is primed by extracellular ATP and K+ efflux leading to the activation of NLRP3 inflammasome via the P2X7 receptor. Also,
calcium influx activates NLRP3 inflammasome by damaging mitochondria, and consequently releases the mitochondrial ROS. Different endogenous and exogenous
agents including amyloid β, asbestos, uric acid crystal, cholesterol, silica crystal cause lysosome damage and cathepsin B release from lysosome into cytosol,
promoting NLRP3 activation. Collectively, NLRP3 inflammasome activation leads to caspase 1 activation, and thereby converting pro-IL-1β and pro-IL-18 into mature
form. TNFR: tumor necrosis factor receptor; TLR: toll-like receptors; DAMPs: damage-associated molecular patterns; PAMPs: pathogen associated molecular patterns;
IκB: nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor; NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells; NLRP3:
NACHT, LRR, and PYD domains-containing protein 3; P2X7: P2X purinoceptor 7; IL: interleukin.
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malignancy in multiple types of cancer including non-small cell lung,
ovarian, cervical, and breast cancer suggesting its potential role in cell
proliferation and tumor growth [91]. Moreover, murine immortalized
bone marrow-derived macrophages (iBMDMs) induced by LPS fa-
cilitated NEAT1 translocation from nucleus to the cytoplasm to in-
flammasome assembly, and thereby caspase 1 activation and in-
flammatory cytokine release, highlighting the inflammatory role of
NEAT1. Accordingly, treatment of Neat1 knocked out mice (Neat−/−)
with LPS resulted in reduced caspase 1 activation and IL-1β secretion in
comparison with wild type mice (Neat+/+). Surprisingly, hypoxia-in-
duced iBMDMs indicated that Nlrp3, Nlrc4, and absent in melanoma 2
(Aim2) up-regulation are triggered by Hif-1α which might be mediated
by Hif-2α-induced Neat1 up-regulation [92]. Intriguingly, antisense
non-coding RNA in the INK4 locus (ANRIL) has been closely linked to
inflammation responses through acting as a competing endogenous
RNA (ceRNA). ANRIL up-regulates the BRCA1-BRCA2-containing
complex subunit 3 (BRCC3) and NLRP3 inflammasome, and conse-
quently promotes uric acid nephropathy by sponging miR-122-5p. In
this regard, histological study of kidney section of Anril knocked down
rat indicated that the inflammatory cells infiltration, collagen fibers,
and renal injury were more prominent than those in control group.
Also, HK-2 cells transfected with ANRIL showed that NLRP3, IL-1β, and
IL-18 were remarkably up-regulated whereas siRNA-medicated ANRIL
silencing in HK-2 cells showed that NLRP3, IL-1β, and IL-18 were sup-
pressed [93]. One of the tumor suppressive lncRNAs that is down-
regulated in a wide variety of cancers is lncRNA growth arrest-specific
transcript 5 (GAS5) [94]. In this context, inducing GAS5 overexpression
in nude mice with ovarian cancer led to tumor growth inhibition via
promoting ASC and caspase 3 expression to activation of inflamma-
some, and further increasing IL-1β secretion. Also, GAS5 knock down in
3AO cell line demonstrated that GAS5 exerts its antitumor activity via
inflammasome-induced inflammatory cytokine release [95]. Another
lncRNA that serves as a tumor suppressor in a NLRP3 inhibition manner
is XLOC_000647 that is implicated in pancreatic cancer pathogenesis.
Correspondingly, subcutaneous injection of pancreatic cancer cell lines
including MIA-PaCa-2 and BxPC-3 expressing XLOC_000647 into nude
mice resulted in significantly lower tumor weight in comparison with
control group [96]. Long intergenic noncoding RNA (LincRNA)-
Gm4419 is another regulatory lncRNA related to inflammation events
through NF-κB pathway. Gm4419 facilitates inflammation in diabetic
nephropathy through NF-κB-mediated NLRP3 inflammasome activation
by binding to p50 (NF-κB subunit), in a positive feedback manner. Also,
Gm4419 knock down in mesangial cells with high glucose expression
resulted in inflammation, fibrosis, and proliferation down-regulation
whereas Gm4419 overexpression with low glucose reversed these phe-
notypes [71].

4. IL-6 and NLRP3 inflammasome blocker drugs are promising
strategy to combat COVID-19

High morbidity and mortality caused by current SARS-CoV-2
pandemy created an urgent need for developing effective therapeutic
strategies to combat SARS-CoV-2 pathogenesis and thereby its outbreak
[1]. Accumulating evidence suggest that the inflammatory cytokine
storm and inflammatory responses might be responsible for the severe
COVID-19 pathology and clinical manifestation deterioration [27,99].
Accordingly, recent studies carried out on patients infected with
COVID19 showed that inflammatory cytokines including IL-1β, IL-18,
IL-6, and TNF-α were remarkably higher in comparison with subjects in
control group [30,33,100]. Also, there is some evidence about the po-
tential role of NLRP3 inflammasome in SARS-CoV-induced in-
flammatory cytokine responses modulation [21,63]. The probable role
of inflammatory cytokines especially IL-6 and NLRP3 inflammasome in
SARS-CoV-2 pathogenesis have raised the possibility that blockage of
inflammatory cytokines and NLRP3 inflammasome might be a hopeful
strategy to cope with COVID-19 [101]. Previous studies have indicatedTa
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the efficiency of several anti-NLRP3 inflammasome and anti-cytokine
small molecules in management of inflammatory, and autoin-
flammatory diseases [18,102].

4.1. IL-6 blocker drugs

Elevated plasma levels of inflammatory cytokines especially IL-6 in
patients infected by SARS-CoV-2 shed some light on efficacy of ther-
apeutic strategy of IL-6 blockers in ameliorating of severe clinical
manifestations induced by SARS-CoV-2 infectious [14,29] (Fig. 3,
Tables 3, 4). Tocilizumab, a humanized monoclonal antibody also
known as actemra, inhibited the IL-6 receptor (IL-6R), and thereby
significantly decreased serum acute phase reactants such as CRP, and
SAA in patients who were injected intravenously with 2, 4, or 8 mg/kg
biweekly for 6 weeks [103–105]. Given the indirect inhibitory me-
chanism of tocilizumab through abrogating IL-6 signaling by binding to
its receptor, unbound IL-6 serum levels are increased after initial drug
administration but are gradually down-regulated upon immune acti-
vation abrogation [105,106]. Notably, after several clinical trial studies
intravenous administration of tocilizumab was approved in Japan
(2008), Europe (2009), and USA (2010) and further subcutaneous in-
jection was also approved in USA (2013) and in Europe (2014)
[107,108]. BML-111, a lipoxin receptor agonist, has an anti-in-
flammatory effect through several mechanisms. BML-111 potentially
decreases TNF-α, inflammatory cells infiltration, NF-κB/DNA binding
activity, and P65 nuclear translocation whereas it promotes IκB-α ex-
pression and consequently suppresses inflammation in rats with hae-
morrhagic shock-induced acute lung injury [109]. It also can alleviate
inflammatory responses and inflammatory cells infiltration in acute
lung injury by blocking MAPK/AP-1 pathways and interfering with IL-
6, IL-8, AP-1/DNA interaction [110]. In this view, BML-111 was shown
to cause a significant increase in MALAT1 levels which is down-

regulated in rats with acute lung injury, and consequently MALAT1
reduces activation of NF-κB, MAPK, and expression of inflammatory
factors including monocyte chemoattractant protein-1 (MCP-1) and IL-
6 [86,109].

4.2. NLRP3 inflammasome blockers

A growing body of evidence highlit the potential role of in-
flammatory components such as NLRP3 inflammasome in inflammatory
responses mediated by SARS-CoV-2's infection. Correspondingly, it's
becoming increasingly evident that anti-NLRP3 inflammasome drugs
could diminish the inflammatory responses, and consequently alleviate
clinical manifestations of patients with inflammatory disorders
[111–113] (Fig. 6, Tables 3, 4). Glyburide, also known as glib-
enclamide, have been long used for type 2 diabetes treatment by
blocking ATP sensitive K+ (KATP) channels [16,17]. It potentially
could inhibit caspase-1 and IL-1β activation following treatment of
human trophoblasts with nigericin [15]. It also partially prevents ASC
complex from aggregation, but doesn't show any effect on NLRC4 or
NLRP1 [18]. Furthermore, glyburide impedes PAMP, DAMP, and
crystal-mediated NLRP3 inflammasome activation in bone marrow-de-
rived macrophages [114]. MCC950 is another small molecule that in-
hibits both canonical and non-canonical NLRP3 inflammasome activa-
tion through interacting with a wide spectrum of components.
Moreover, treating of bone marrow-derived macrophages with MCC950
caused inhibition of IL-1β secretion through abrogating of caspase-1
[18] or disrupting ASC oligomerization [18]. It's noteworthy that
MCC950 blocks ATP hydrolysis ability of NLRP3, an essential process to
activation of inflammasome, by direct binding to Walker B motif lo-
cated in NLRP3 NACHT domain [115]. Notably, MCC950 couldn't in-
fluence NLRC4, AIM2, and NLRP3 or TLR signaling [18]. OLT1177 is a
β-sulfonyl nitrile drug which is being investigated under phase II

Fig. 5. Different potential lncRNAs and their targets involved in IL-6 and NLRP3 inflammasome pathway. IL: interleukin; STAT: signal transducers and activators of
transcription; HIF-1α: hypoxia-inducible factor 1-alpha; IκB-α: nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha; NF-κB: nuclear
factor kappa-light-chain-enhancer of activated B cells; NLRP3: NACHT, LRR, and PYD domains-containing protein 3.
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Table 4
Three dimensional or chemical structure of most effective IL-6 and NLRP3 inflammasome blockers.

Name Chemical or 3D structure Name Chemical or 3D structure

Tocilizumab Parthenolide

Sarilumab BAY 11-7082

Siltuximab INF39

Glyburide JC-171

MCC950 16673-34-0

OLT1177 Colchicine
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clinical trial for the treatment of acute gouty arthritis [116]. In this
regard, murine macrophages cell line J774A.1 treated with OLT1177
was shown to cause 50% decrease of IL-1β secretion induced by LPS/
ATP stimulation. However, the IL-1β and IL-18 secretion were dimin-
ished by 60% and 70%, respectively following human monocyte de-
rived macrophages treatment with OLT1177. Also, it reduced IL-1β
secretion via disrupting ASC and caspase-1 recruitment by NLRP3,
thereby blocking NLRP3 inflammasome formation. However, OLT1177
doesn't have any effect on NLRC4, AIM2, TNF-α, and ion flux. It's no-
teworthy that OLT1177 also decreased IL-6 by 44% in mice with LPS-
induced systemic inflammation [117]. Taken together, anti-in-
flammatory agents raise hope for diminishing pathological and clinical
manifestations, and consequently morbidity and mortality induced by
SARA-CoV-2 through targeting the main components involved in cy-
tokine storm including IL-6 and NLRP3 inflammasome.

5. Discussion

The ongoing high morbidity and mortality caused by SARS-CoV-2s'
pandemy pose a threat to global public health. SARS-CoV-2 outbreak
has generated an urgent requirement to highly efficient with low side
effect agents to combat it [131]. Recent studies have shown that ex-
aggerated inflammatory responses and inflammatory cytokine storm
might be the main cause of COVID-19 pathogenesis, and thereby
fatality [27,99,132]. The potential role of IL-6 and NLRP3 inflamma-
some in immune response upon SARS-CoV-2 infection have emerged
the hypothesis that blocking of these components could be a hopeful
strategy to cope with it [14,20,21,133]. However, concerns have been

raised about the probable role of epigenetic modulations including DNA
methylation, histone modification, and ncRNAs such as micro RNA,
lncRNA, and circular RNA (circRNA) in controlling IL-6 and in-
flammasome expression [10,134]. Therefore, designing and adminis-
tration of potential drugs to target the wide spectrum molecules in-
volved in IL-6 and inflammasome-associated epigenetic mechanisms
along with IL-6 and inflammasome blockers may improve the efficacy
of SARS-CoV-2s' treatment [12,13]. On the other hand, some of these
ncRNAs have an anti-inflammatory effect through blocking IL-6 and
inflammasome components whereas others promote inflammatory re-
sponses [77,135]. Recently, it was reported that circRNA_100782, as an
oncogene, promotes pancreatic ductal adenocarcinoma BxPC3 cells
proliferation by counteracting inhibitory effects of miR-124 in IL6-
JAK2-STAT3 signaling pathway. Correspondingly, circRNA_100782
knocked down BxPC3 cells injected into BALB/c nude mice suppressed
cell growth and IL6/STAT3 signaling pathway [136]. Contrary, circu-
lating circ-DLGAP4 has an anti-inflammatory effect through sponging
miR-143, and consequently decreases significantly CRP as well as in-
flammation cytokines including serum TNF-α, IL-6, IL-8 and IL-22
without affecting ESR, IL-1β, and IL-17 serum levels [137]. Further-
more, down-regulated miR-149 in osteoarthritis chondrocytes, exacer-
bates osteoarthritis progression via increasing inflammatory cytokines
including TNF-α, IL-6, and IL-1β [138]. Notably, GAS5 is widely down-
regulated by epigenetic mechanisms resulting in tumor progression in
various malignancies [94]. Also, GAS5 down-regulation following
DNMT1-mediated methylation of its promoter promotes pyroptosis-re-
lated proteins caspase1 and NLRP3 up-regulation, and thereby cardiac
fibrosis progression. In this view, inducing cardiac fibrosis in rats led to

Fig. 6. Mechanism of action of most potential pharmacological inhibitors for NLRP3 inflammasome blockage. Several chemical agents have been studied with
inhibitory effects on different component of NLRP3 inflammasome pathway. OLT1177, BOT-4-one, parthenolide, BAY 11-7082, INF39, and MCC950 could inhibit
ATPase activity of NLRP3. MCC950 and 16673-34-0 are able to inhibit NLRP3 oligomerization. Colchicine, glyburide, and MCC950 block NLRP3 inflammasome
activation through disruption of ASC oligomerization. Colchicine could also halt lysosome damage and P2X7 receptor activity as well as AZD9056, consequently
prevents from NLRP3 inflammasome activation. GSK1070806 similar to Fc11a-2 suppress IL-18 secretion whereas canakinumab as well as Fc11a-2 block IL-1β.
NLRP3, NACHT, LRR, and PYD domains-containing protein 3; P2X7, P2X purinoceptor 7; IL: interleukin; ASC: apoptosis-associated speck-like protein containing a
caspase recruitment domain.
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Gas5 down-regulation and Nlrp3, caspase1, and Dnmt1 up-regulation
[11]. Besides, some anti-inflammatory agents including emodin exert
their effect via recruiting ncRNAs. Emodin, suppresses LPS-induced
murines' ATDC5 cells apoptosis and inflammation by up-regulating
lncRNA taurine-upregulated gene 1(Tug1), and thereby blocks NF-κB
signaling and inflammatory cytokines especially Il-6 [139]. Discrepant
results from several clinical trials about the efficacy of antiviral drugs
including lopinavir/ritonavir (LPV/r) or arbidol in restraining COVID-
19 infection and patients' manifestations raise the possibility that the
pathological and clinical manifestations of infected patients might be
due to virus-induced inflammatory cytokine storm and not only to virus
replication [140]. Obtained results from a clinical trial including ad-
ministration of tocilizumab for 20 patients with acute COVID-19
showed that 19 patients recovered from hospital within two weeks
[141]. Tiziana Life Sciences (TZLS-501) is another fully-human anti-
IL6R monoclonal antibody able to bind to both the membrane-bound
and soluble forms of IL-6R, and thereby reduces circulating IL-6 levels
in the blood and lung damage [142]. TJM2, a neutralizing antibody, is a
promising agent to treatment of SARS-CoV-2 patients through targeting
human granulocyte-macrophage colony stimulating factor (GM-CSF),
and consequently diminishes inflammatory cytokine storm [141]. Fur-
thermore, glyburide might be a useful drug to combat SARS-CoV-2
through blocking the wide spectrum of molecules related to in-
flammatory cascade including KATP channels, ASC oligomerization,
caspase-1 and IL-1β, and it also could inhibit PAMP, DAMP, and crystal-
mediated NLRP3 inflammasome activation [15–18]. Strikingly, lungs'
pathological postmortem examination of SARS-CoV-2 patients have
shown elevated infiltrating immune cells including macrophages and
monocytes, minimal lymphocytes including CD4+ T cells, eosinophils,
and neutrophils, highlighting the probable role of inflammatory cells in
deterioration of patients' clinical manifestations [9]. Correspondingly,
elevated IL-6 serum levels in patients infected with SARS-CoV-2 sug-
gested that the IL-6 serum levels is remarkably associated with severity
of patients' clinical manifestations, serum SARS-CoV-2 viral load
(RNAaemia), and mechanical ventilation requirement [14,30–32].
Moreover, results from recent studies shed some light on the im-
portance of IL-6 serum levels as a diagnostic and prognostic biomarker
in patients infected with SARS-CoV-2 [30,143]. Taken together, it
seems that antiviral drugs and anti-inflammatory agent's co-adminis-
tration might be more efficient to reducing SARS-CoV-2 patient's clin-
ical manifestations and inflammatory responses-induced organ damage.
Further clinical trials should be performed to evaluate the efficiency
and safety of anti-inflammatory agents targeting IL-6 and NLRP-in-
flammasome and also, identify COVID-19 patients that may benefit
from anti-inflammatory therapy.
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