Skip to main content
. 2020 May 15;62(3):273–282. doi: 10.4103/psychiatry.IndianJPsychiatry_91_20

Table 3.

Classification results using significant features

A. Experiment-1: SCZ (n=38) versus HC (n=20)

10-fold method SVM Model Hold-out method


ACC (%) SEN (%) SPE (%) AUC (%) ACC (%) SEN (%) SPE (%) AUC (%)
72.41 86.84 45.00 65.92 Linear SVM 73.68 92.31 33.33 62.82
70.69 78.95 55.00 66.97 Quadratic SVM 78.95†† 92.31 50.00 71.15
63.79 68.42 55.00 61.71 Cubic SVM 68.42 76.92 50.00 63.46
70.69 97.37 20.00 58.68 Fine Gaussian SVM 68.42 100.00 0.00 50.00
63.79 92.11 10.00 51.05 Medium Gaussian SVM 73.68 100.00 16.67 58.33
65.52 97.37 5.00 51.18 Coarse Gaussian SVM 68.42 100.00 0.00 50.00

B. Experiment-2: PS (n=18) versus NS (n=10)

10-fold method SVM Model Hold-out method


ACC (%) SEN (%) SPE (%) AUC (%) ACC (%) SEN (%) SPE (%) AUC (%)

85.71 88.89 80.00 84.44 Linear SVM 88.89 100.00 75.00 87.50
82.14 83.33 80.00 81.67 QUADRATIC SVM 88.89 100.00 75.00 87.50
82.14 83.33 80.00 81.67 Cubic SVM 88.89 100.00 75.00 87.50
64.29 100.00 0.00 50.00 Fine Gaussian SVM 55.56 100.00 0.00 50.00
89.29†† 100.00 70.00 85.00 Medium Gaussian SVM 77.78 100.00 50.00 75.00
64.29 100.00 0.00 50.00 Coarse Gaussian SVM 55.56 100.00 0.00 50.00

†† Model showing highest accuracy. SVM – Support vector machine; ACC – Accuracy; SEN – Sensitivity; SPE – Specificity; AUC – Area under receiver operating curve; SCZ –Schizophrenia patients; HC – Healthy controls; PS – Schizophrenia patients with predominant positive symptoms; NS – Schizophrenia patients with predominant negative symptoms