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Abstract

Aqueous-liquid crystal (LC) interfaces offer promise as responsive interfaces at which 

biomolecular recognition events can be amplified into macroscopic signals. However, the design 

of LC interfaces that distinguish between specific and non-specific protein interactions remains an 

unresolved challenge. Herein we report the synthesis of amphiphilic monomers, dimers and 

trimers conjugated to sulfonamide ligands via triazole rings, their assembly at aqueous-LC 

interfaces, and the orientational response of LCs to the interactions of carbonic anhydrase II 

(CAII) and serum albumin with the oligomer-decorated LC interfaces. Of six oligomers 

synthesized, only dimers without amide methylation were found to assemble at aqueous interfaces 

of nematic 4-cyano-4’-pentylbiphenyl (5CB) to induce perpendicular LC orientations. At dimer-

decorated LC interfaces, we found that concentrations of CAII less than 4 μM did not measurably 

perturb the LC but prevented non-specific adsorption and penetration of serum albumin into the 

dimer-decorated interface that otherwise triggered bright, globular LC optical domains. These 

experiments and others (including competitive adsorption of CAII, BSA and lysozyme) support 
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our hypothesis that specific binding of CAII to the dimer prevents LC anchoring transitions 

triggered by non-specific adsorption of serum albumin. We illustrate the utility of the approach by 

reporting (i) the relative activity of two small molecule inhibitors (6-ethoxy-2-

benzothiazolesulfonamide and benzenesulfonamide) of binding of CAII to sulfonamide, and (ii) 

proteolytic digestion of a protein (CAII) by thermolysin. Overall, the results in this paper provide 

new insight into the interactions of proteins at aqueous-LC interfaces and fresh ideas for either 

blocking non-specific interactions of proteins at surfaces or reporting specific binding events at LC 

interfaces in the presence of non-specific proteins.
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1. INTRODUCTION

Protein-ligand binding at interfaces is important in a range of fundamental and applied 

contexts, including cell signaling pathways1–3, diagnostic assays for use in low-resource 

environments4–5, and drug discovery6–7. Accordingly, a variety of techniques have been 

developed to measure specific protein-ligand binding events, including surface plasmon 

resonance (SPR)8, fluorescence resonance energy transfer (FRET)9, fluorescence10, 

transient-induced molecular electronic spectroscopy11, and small-molecule microarrays12. 

The most successful of these techniques achieve specificity towards a targeted protein by 

combining molecular recognition with a method of amplification/transduction that 

incorporates some level of additional specificity (e.g., the use of enzymes for 

amplification)7. These techniques, however, are often less than optimal for reporting protein-

ligand binding events in low-cost or high throughput assays, due to the need for either 

complex instrumentation (e.g., SPR8) or multiple labeling/binding steps9 (typically 

involving fluorescently labelled reporter molecules).

Past studies have revealed that the long-range ordering and surface sensitivity of liquid 

crystals (LCs) can be used to amplify the presence of a range of chemical (e.g., glucose13–14 

and heavy metals15–16) and biological species (lipids17–20, proteins19, 21–27 and DNA28–29, 

and mammalian30 and bacterial31 cells) at interfaces into optical signals. Of relevance to the 

study reported in this paper, interfaces formed between thermotropic LCs and aqueous 

phases19, 32–34 are particularly promising for reporting interactions involving biological 

species because (i) they do not require the use of labels (e.g., fluorescent) to detect 

biomolecular binding events, (ii) LC interfaces are mobile, and thus permit lateral 

reorganization of species in ways that mimic biomolecular interactions at cell membranes, 

and (iii) the experimental set-up is relatively simple and thus potentially applicable to the 

development of diagnostics for use in low-resource environments17, 35–38. An additional 

useful attribute of a LC-based amplification/transduction approach is that the response of the 

LC is dependent on the structure of the adsorbate28, 32, 34, thus providing a second level of 

specificity in the response (beyond that provided by a molecular recognition step). For 

example, surface active species such as surfactants and lipids produce responses in LCs that 

are distinct from non-specific protein adsorption38–41.
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While the studies described above serve to illustrate the promise of aqueous-LC interfaces 

for reporting biological phenomena, there exist a range of unresolved issues that need to be 

addressed to realize the full potential of LC technology in the context of biomolecular 

analytics42. Specifically, general and robust approaches that permit detection of specific 

protein binding events in the presence of non-specific proteins remain to be 

developed17, 24, 35–38, 43. For example, at aqueous-LC interfaces decorated with 

phospholipids, both proteins and peptides have been reported to penetrate into the 

phospholipid monolayers, driving the reorganization of the monolayers and generating an 

optical response (domains) in the LCs19, 39, 44. Past studies have demonstrated a strong 

correlation between the shapes (fractal dimensions) of the micrometer-scale optical domains 

on the LC interface and the secondary structures of adsorbed proteins and 

peptides19, 39–40, 44.

Motivated by the challenge of sensing specific protein binding events at LC interfaces in the 

presence of proteins that bind non-specifically, herein we report a study of the binding of 

carbonic anhydrase II (CAII) to sulfonamide-functionalized oligomers45 in the presence of 

serum albumin. The amphiphilic oligomers (Figure 1) were designed and synthesized to 

incorporate three functional groups – (i) alkyl chains that penetrate into the LC and influence 

its ordering34, 46, (ii) oligoethylene glycol groups that minimize non-specific interactions 

with proteins24, 37–38, and (iii) sulfonamide moieties that specifically bind to the target 

protein, CAII47–48. These oligomers (monomers, dimers, trimers) were synthesized in a 

modular fashion through the use of triazole rings as sites for conjugation of sulfonamide 

functional groups46, 49–50.

A key result emerging from our study is that specific binding of CAII to sulfonamide-

functionalized dimers prevents LCs from responding to non-specific interactions of serum 

albumin proteins. We show how this finding can be exploited to form the basis of a new 

strategy for measuring specific binding interactions. Furthermore, we illustrate the utility of 

the strategy by detecting small molecule inhibitors (i.e. ethoxzolamide and 

benzenesulfonamide) of CAII and we show how the observation can be used to report the 

activity of a protease (i.e. thermolysin)47–48. Overall, the results presented in this paper 

provide a first step towards development of a new strategy that enables the use of LCs for 

reporting specific binding events and the activity of enzymes in the presence of proteins that 

bind non-specifically.

2. MATERIALS AND METHODS

Materials.

The nematic LC 4-cyano-4’-pentylbiphenyl (5CB), manufactured by BDH, was purchased 

from EM Industries (Hawthorne, NY). Phosphate buffer saline (PBS), bovine serum albumin 

(BSA), lysozyme from chicken egg white, carbonic anhydrase II, 6-ethoxy-2-

benzothiazolesulfonamide (ethox), and benzenesulfonamide were obtained from Sigma-

Aldrich (Milwaukee, WI). Dimethyloctadecyl-[3-(trimethoxylsilyl)propyl]-ammonium 

chloride (DMOAP) was obtained from Acros Organics. Glass microscope slides were 

Fisher’s Finest Premium Grade obtained from Fisher (Pittsburgh, PA). Gold-coated 

transmission electron microscopy (TEM) grids (18 μm in thickness, 280 μm in grid spacing 
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and 60 μm bar width) were obtained from Electron Microscopy Sciences (Fort Washington, 

PA). The synthetic procedures used to prepare the oligomers used in our study (H-monomer, 

H-dimer, H-trimer, CH3-monomer, CH3-dimer, and CH3-trimer, Figure 1) are provided in 

the Supporting Information (See Scheme S1 to S4).

Synthesis of Oligomers.

We illustrate our approach for synthesis of the oligomers employed in this study by using the 

H-dimer as an example. H-dimer (Scheme 1) was synthesized via a 12-step synthetic 

protocol from 3,5 dihydroxy benzoic acid. 8 was synthesized via reaction of 5 with 

ethylenediamine in dry DCM, TEA with a yield of 72%. 12 was synthesized via reaction of 

p-carboxy benzenesulfonamide with N-hydroxysuccinimmide in anhydrous tetrahydrofuran. 

Synthesis of the sulfonamide ligand (16) involved reacting 12 and 15 in anhydrous 

tetrahydrofuran and triethylamine. 8 and 16 were used in a copper-catalyzed click reaction in 

anhydrous tetrahydrofuran and triethylamine to produce the H-dimer in 72% yield. 

Following concentration of the H–dimer product mixture in vacuum, the product was 

dissolved in water and extracted with ethyl acetate. Characterization of H-dimer using 1H 

NMR showed the disappearance of a peak corresponding to the propargyl group at 3.08 ppm 

and the presence of a peak at 7.61 ppm corresponding to the triazole proton, indicating 

successful alkyne-azide click reaction. All oligomers and reactants used in Scheme 1 were 

characterized via 1H NMR, 13C NMR, and ESI-MS.

Preparation of DMOAP-modified Glass Slides.

A 1% v/v DMOAP solution used to modify the glass slides was prepared by adding 1.4 mL 

60% v/v DMOAP (in methanol) into 140 mL Milli-Q water. Glass microscope slides free of 

dust and other visible imperfections were then immersed in the 1% v/v DMOAP solution 

and placed into a sonicating bath for 10 minutes at room temperature. Following sonication, 

the glass slides were removed from the 1% v/v DMOAP solution and subsequently rinsed 

with Milli-Q water followed by ethanol to remove unreacted DMOAP from the surfaces of 

the slides. The DMOAP-coated glass slides were then dried under a stream of nitrogen gas. 

The quality of the DMOAP monolayer formed on the surface of the glass slides was tested 

by first pairing two DMOAP-treated glass slides, using ~15 μm-thick Saran wrap as a spacer. 

5CB was introduced between the slides and the resulting optical texture was observed 

between crossed-polarizers to confirm perpendicular alignment of LCs with respect to the 

LC-solid interface (homeotropic anchoring). Any sample not exhibiting a dark optical 

texture indicative of homeotropic anchoring was not used in subsequent experiments51.

Preparation of Amphiphilic Oligomer and Inhibitor Solutions.

Amphiphilic oligomer was dissolved in acetone to produce a stock solution with a 

concentration of 10 mg/mL. An aliquot of the stock solution was transferred to a new glass 

vial and dried for an hour under vacuum at room temperature. After measuring the weight of 

the vial containing the dried oligomer, a small volume of acetone (final composition 2% v/v 

acetone) was added to the vial to dissolve the oligomer and 10 mM PBS was added to 

achieve the target concentration. For the H-dimer, the final concentration was 20 μM. The 

solution was stirred for approximately 16 hours at room temperature to remove acetone from 
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the solution. Following the 16 hour incubation, a small population of H-dimer aggregates 

were observed in the PBS. Prior to use, the solutions were sonicated for 30 sec to disperse 

the aggregates. Aqueous solutions containing 100 μM ethox in PBS were prepared using the 

same procedure that was used to prepare the dispersion of H-dimer. Benzenesulfonamide 

was directly dissolved in PBS to a final concentration of 2 mM.

Preparation of Aqueous-LC Interface.

Gold-coated TEM grids were cleaned sequentially with acetone and ethanol, and then dried. 

The grids were then placed onto the surfaces of DMOAP treated glass slides. 0.5 μL of 5CB 

was dispensed onto each grid and the excess 5CB was removed using a micro syringe. This 

procedure led to the formation of a stable film of 5CB within each specimen grid. The gold-

coated grid filled with 5CB was then immersed into aqueous PBS and the 5CB film in 

contact with the aqueous phase was examined by optical microscopy (crossed-polarizers)19.

Response of LC Decorated with Amphiphilic Sulfonamide Oligomers to Proteins Dissolved 
in PBS.

Amphiphilic oligomers were assembled at the interfaces of nematic 5CB by incubating 

aqueous solutions of oligomers at 30 °C against the LC interface for 15 hours. We note that 

at T= 30 °C, the LC films reached their steady-state orientations more quickly as compared 

to experiments conducted at T= 25 °C The aqueous solutions containing the amphiphilic 

oligomers were then replaced by 10 mM PBS. Subsequently, a stock protein solution was 

added to the PBS to obtain the desired protein concentration. The protein solution was 

incubated against the LC at 30 °C, using a heated stage to maintain the temperature while 

observing the sample under a polarized light microscope. For experiments involving 

competitive binding of proteins, 0.4 μM CAII was introduced into the aqueous phase and 

incubated for 60 min at 30 °C. Subsequently, a mixture of BSA and inhibitor was added to 

the system and the response of the LC recorded as a function of time. Quantification of the 

optical intensity of images was performed with NIH ImageJ software.

Response of Sulfonamide Oligomer-Decorated LC Interface to Mixtures of Thermolysin, 
CAII, and BSA.

A 1 mg/mL (27.6 μM) thermolysin stock solution was prepared in 10 mM PBS. The stock 

solution of thermolysin was diluted with PBS to a concentration of 276 pM. Additionally, 

solutions containing 50 μM CAII and 50 μM BSA in PBS were prepared using the same 

method as described above for thermolysin. A PBS aqueous solution with 0.5 mM CaCl2 

was also prepared for subsequent BSA digestion experiments by thermolysin. 4.3 μL of the 

276 pM thermolysin solution was added into a 2 mL Eppendorf centrifuge tube that 

contained 562.1 μL of buffer solution (PBS and 0.5 mM CaCl2). Subsequently, 9.6 μL of 50 

μM CAII was added and the mixture was incubated in an oven at 65 °C for 1 hour. After an 

hour, the mixture was transferred to an ice bath and then 24 μL of 50 μM BSA was added 

into the mixture containing thermolysin, CAII, and PBS buffer with 0.5 mM CaCl2. The 

concentration of thermolysin was ~2 pM. 375 μL of the aqueous solution in the well 

containing the LC decorated with amphiphilic sulfonamide oligomers was removed and 

replaced with 375 μL of the solution containing thermolysin + CAII + PBS buffer with 0.5 
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mM CaCl2. The well containing 1 pM thermolysin, 0.4 μM CAII, and 1 μM BSA in PBS 

was then incubated for 1 hour prior to imaging.

3. RESULTS AND DISCUSSION

Design and Synthesis of Sulfonamide-Functionalized Oligomers.

At the outset of this study, we designed and synthesized six amphiphilic oligomers (Figure 

1). The oligomers are modular and comprise three design motifs; alkyl chains, oligoethylene 

glycol, and sulfonamide moieties incorporated via triazole rings. Each motif was introduced 

to achieve a specific function. First, the alkyl chains were used to anchor the amphiphilic 

oligomers at the LC interface. The number of alkyl chains presented by the amphiphilic 

oligomers strongly influences their stability (reversibility of adsorption) at the aqueous-LC 

interface34, 46. Second, oligoethylene glycol moieties were introduced as hydrophilic spacers 

to minimize non-specific/electrostatic interactions with proteins and promote solubility of 

the oligomers in the aqueous phase52–54. Past studies have reported that polyethylene glycol 

(PEG)-decorated interfaces exhibit low levels of non-specific adsorption of proteins relative 

to those observed at charged or hydrophobic surfaces52–54. At aqueous-LC interfaces, 

PEGylated mesogens have been shown to minimize non-specific adsorption of proteins24. 

Third, the sulfonamide moiety was introduced into oligomers to specifically bind CAII, as 

described in a previous study by Gao et al.45 The synthetic strategy, however, has been 

demonstrated to allow the introduction of binding groups for proteins other than CAII into 

the oligomers (e.g., biotin for avidin and 2,4-dinitrophenol for anti-2,4-dinitrophenol 

antibodies, see SI for details).

The six oligomers synthesized were named according to whether or not amide groups 

present in the molecules were methylated (R1=H; R2=CH3). The amphiphilic oligomers 

without methylated amide groups can participate in hydrogen-bonding in ways that are not 

possible for the methylated oligomers55. Consistent with this proposition, the critical 

aggregation concentrations (CAC) of methylated oligomers are higher than non-methylated 

oligomers (Figures S1 to S4). Additionally, Raghupathi et al. reported that the presence of 

amide bonds induces intramolecular hydrogen-bonding and conformational rigidity of the 

backbone50. This leads to amphiphilic supramolecular assemblies that exhibit temperature-

dependent organizations50.

LC Anchoring Transitions at Aqueous Interfaces Decorated with Amphiphilic Oligomers.

Our initial experiments explored the effects of oligomer (Figure 1) assembly at aqueous-LC 

interfaces on the ordering of nematic LCs (5CB). In these experiments, LCs were hosted in 

the pores of TEM grids supported on glass microscope slides that were functionalized with 

DMOAP51. The DMOAP treatment causes perpendicular alignment (homeotropic 

anchoring) of LCs at this interface (see Materials and Methods for details). Immersion of 

LC-filled specimen grids into aqueous PBS resulted in tangential alignment (planar 

anchoring) of LCs at their aqueous-LC interfaces (Figure 2a,b). Figure 2a shows an optical 

micrograph of a LC film captured using crossed-polarizers (transmission mode).

Park et al. Page 6

ACS Appl Mater Interfaces. Author manuscript; available in PMC 2021 February 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Past studies have shown that adsorption of proteins at aqueous-LC interfaces typically 

induces planar anchoring of LCs56–57. Informed by these observations, our initial studies of 

the assembly of oligomers at LC interfaces centered on whether the oligomers would 

promote homeotropic anchoring of the LCs. With homeotropic anchoring as the initial state, 

guided by the results of past studies19, 40–41, we hypothesized that protein binding would be 

reported via a change from homeotropic to planar LC anchoring. Interestingly, we found that 

the H-dimer (Figure 1b) was the only oligomer of the six studied to induce homeotropic 

anchoring upon assembly at aqueous (PBS)-LC interfaces (Figure 2c,d, Figure S5). The H-

dimer-decorated LC interfaces were found to maintain their homeotropic orientation upon 

subsequent exchange of the aqueous phase with PBS free of H-dimer (Figure S6). A 

complete set of optical micrographs obtained using each of the six synthesized oligomers is 

presented in Figure S5. We note that LC responses were measured below and above CACs 

of the oligomers, and the H-dimer only caused homeotropic anchoring. We do not yet fully 

understand why only the H-dimer causes homeotropic anchoring of LCs; ongoing studies 

are addressing this question. Below we focus on an investigation of the interactions of 

proteins (specific and non-specific) with interfaces of LCs decorated with the H-dimer.

Protein Binding Events at Aqueous-LC Interfaces Decorated with the H-Dimer.

Next, we investigated how nematic 5CB interfaces decorated with H-dimer responded to 

binding events involving CAII58–61 (Figure 3a,d,S7), bovine serum albumin (BSA, Figure 

3b,e) and lysozyme (Figure 3c,f). Prior to addition of the proteins, the aqueous solution of 

H-dimer was exchanged with PBS. As shown in Figure 3a, addition of 0.4 μM CAII results 

in a dark optical appearance indicative of homeotropic LC anchoring. Evidence of specific 

binding of CAII to sulfonamide at the LC interface is presented below (via introduction of 

different inhibitors of CAII binding).

Next, we contacted H-dimer-decorated LC interfaces with 4 μM BSA (Figure 3b) and 

observed the optical appearance of the LC films to change from dark to bright over the 

course of an hour. A similar response to that observed in Figure 3b was also recorded when 

the concentration of BSA was 1 μM. Visual inspection of the progression of interference 

colors of the LC films indicated formation of a tilted LC orientation. This observation 

suggests non-specific binding of BSA to the H-dimer decorated LC interface (Figure 3e). 

The result differs from prior observations of Brake et al.19, where D-α-dipalmitoyl 

phosphatidylcholine (D-DPPC)-laden aqueous-LC interfaces did not respond to the addition 

of 1–10 μM BSA, suggesting that D-DPPC is more resistant to non-specific adsorption of 

BSA than the H-dimer. Interestingly, incubation of 4 μM lysozyme against the dimer 

decorated aqueous-LC interface for 16.5 hours did not perturb the LC from the initial 

homeotropic anchoring (Figure 3c,f).

To understand the possible origins of the difference in LC response to the presence of either 

BSA or lysozyme, we considered the physical properties of the two proteins (Table 1). The 

isoelectric points of the proteins indicate that the net charges of BSA and lysozyme under 

our experimental conditions (PBS, pH 7.4) are negative and positive, respectively. We also 

measured the zeta-potentials of LC droplets in water, PBS, and 20 μM H-dimer (Table 2). 

These measurements revealed that the zeta potentials are negative under all conditions 
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investigated, and thus that interactions between the LC interfaces and proteins involving net 

charge would be attractive for lysozyme and repulsive for BSA (in contradiction to our 

experimental observations involving the response of the LC). However, past studies have 

revealed that the spatial distribution of charge over the surfaces of proteins (not just net 

charge) plays a key role in mediating protein interactions with interfaces62–63, and that other 

colloidal forces (e.g., hydrophobic64–65) are also typically important. BSA, in particular, 

binds hydrophobic substrates strongly65–67, and we speculate that hydrophobic interactions 

rather than charge interactions dominate the relative responses of the LC to BSA and 

lysozyme.

Specific Binding of CA II to Sulfonamide Blocks Response of LC to Non-Specific Proteins.

Inspired by our observations that H-dimer-decorated LC interfaces changed orientation upon 

binding of BSA but not of CAII, next we explored the consequences of sequential binding of 

specific and non-specific proteins. First we incubated the LC against a 20 μM H-dimer 

solution for one hour. Next, 0.4 μM CAII was introduced into the aqueous bulk and 

equilibrated for two hours. 1 μM BSA was then added and equilibrated for an additional two 

hours (Figure 4a,e). Inspection of Figure 4a,e reveals that, following equilibration with BSA, 

the LC film maintains homeotropic anchoring. This observation contrasts with results of the 

type shown in Figure 3b and led us to hypothesize that binding of CAII to the sulfonamide 

moiety at the LC interface blocked non-specific binding of BSA. We also performed an 

experiment in which 0.4 μM CAII and 1 μM BSA were introduced simultaneously into the 

aqueous bulk (Figure 4b,f). Inspection of the LC interface following a two hour incubation 

revealed that the LC interface maintained homeotropic anchoring. This result suggests that 

CAII binds to the sulfonamide moiety at the LC interface faster than BSA, thus blocking 

non-specific binding of BSA with the aqueous-LC interface. Although we explore further 

this result below in the context of reporting specific protein binding events at LC interfaces 

in the presence of non-specific proteins, we note here that the result also hints at a strategy 

for blocking non-specific interactions of proteins at surfaces.

Additionally, we introduced 1 μM lysozyme and 1 μM BSA into an aqueous bulk in contact 

with a H-dimer-decorated LC interface either sequentially (Figure 4c,g) or simultaneously 

(Figure 4d,h) and allowed the system to equilibrate for two hours. In both cases, the LC-

interface responded to the addition of BSA, showing a bright optical texture indicative of 

tilted anchoring (Figure 4c,d). These results support our hypothesis that lysozyme does not 

bind to LC interfaces decorated with H-dimers with sufficient strength to block BSA 

adsorption.

Motivated by our proposal that binding of CAII to H-dimer-decorated LC interfaces blocks 

non-specific binding of BSA, we explored the influence of CAII concentration on the LC 

response to BSA. We prepared solutions of 1 μM BSA containing either 0.1, 0.2, 0.3 or 0.4 

μM of CAII. These protein mixtures were equilibrated against H-dimer-decorated LC 

interfaces (Figure S8). For H-dimer-decorated LC interfaces equilibrated against 0.1 μM 

CAII and 1 μM BSA, a transition from homeotropic to tilted anchoring was observed. For 

H-dimer-decorated LC interfaces equilibrated against 0.4 μM CAII and 1 μM BSA, 

however, the LC film remained homeotropic, indicating that BSA did not bind to the 
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aqueous-LC interface to an extent that an anchoring transition was triggered. As detailed in 

Figure S8, the intermediate concentrations of CAII led to responses in the LC that were 

intermediate to those reported above when using 0.1 and 0.4 μM CAII. Overall, these results 

reveal that the concentration of CAII in the aqueous bulk influenced the LC response to non-

specific binding of BSA. Furthermore, these observations are in general agreement with the 

magnitude of the dissociation constant (Kd) between CAII and benzenesulfonamide 

(Kd=970 nM68). Guided by this result, we used 0.4 μM CAII in our subsequent 

investigations detailed below.

Detection of Specific Binding between CAII and Sulfonamide using Inhibitors.

The results described above support our proposal that the H-dimer-decorated interface of the 

LC can report specific binding events involving CAII in the presence of non-specific 

proteins such as BSA. In this section, we demonstrate the utility of this finding by showing 

that it is possible to report the activity of two small-molecule inhibitors of CAII 

(ethoxzolamide (Figure 5a) and benzenesulfonamide (Figure 5b)). Ethoxzolamide (ethox) 

has a dissociation constant (KD) of 0.1 nM68. In our experiments, 0.4 μM CAII was 

introduced into the aqueous bulk and incubated against the H-dimer-decorated LC interface 

for two hours. Next, a mixture of 1 μM BSA with or without 4 μM ethox was added to the 

aqueous bulk. When the H-dimer-CAII-decorated aqueous-LC interface was exposed to 

BSA and inhibitor, the optical appearance of the LC film transitioned from dark to bright, 

indicative of non-specific binding of BSA to the aqueous-LC interface (Figure 5c).

Examination of the kinetics of the LC response revealed the brightness of the aqueous-LC 

interface to increase monotonically with time (red circles, Figure 5g). In contrast, when 1 

μM BSA was added without inhibitor a near-baseline response was observed (blue squares, 

Figure 5g). Additionally, responses of H-dimer-decorated LC interfaces free of CAII (green 

triangles, Figure 5g) showed similar responses to samples containing CAII, BSA and ethox. 

This result suggests that ethox competitively displaces CAII binding to the H-dimer at the 

LC interface. Following dissociation of CAII from the H-dimer-decorated LC interface, 

BSA non-specifically binds to the LC interface, thereby triggering the observed LC 

transition away from the homeotropic orientation (Figure 5c,g).

Next, we investigated the effect of inhibitor binding affinity on the LC response by replacing 

ethox (KD = 0.1 nM) with benzenesulfonamide (KD = 970 nM68, Figure 5b). In the presence 

of benzenesulfonamide (4 μM), BSA and CAII, the LC film maintained homeotropic 

anchoring after equilibration for two hours (Figure 5d). This result suggests that the addition 

of 4 μM benzenesulfonamide did not inhibit binding of CAII to the H-dimer (Figure 5h). 

Upon increasing the concentration to 40 μM, we observed an optical response corresponding 

to ~30% of that of samples containing BSA and benzenesulfonamide in the absence of CAII 

(Figure S9). Overall, these observations indicate that the optical response of LC films can be 

used to determine binding affinities between enzymes and their inhibitors. We note that 

quantification of binding affinity at interfaces is complex, reflecting a range of factors 

including effective local concentrations and steric interactions.
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Detection of Thermolysin Activity.

The results described above suggest that our system enables detection of analytes (e.g. 

enzyme inhibitors) that prevent CAII from binding to H-dimer-decorated interfaces. Guided 

by these observations, we hypothesized that enzymatic digestion of CAII by a proteinase 

should also lead to a measurable LC response using the strategy reported in this paper. To 

verify this hypothesis, we used thermolysin (TLN), a well-known and thermostable 

metalloproteinase69 in the experiments described below (Figure 6a,b).

First, we investigated the effect of TLN on non-specific adsorption of BSA and digested 

BSA fragments at aqueous-LC interfaces. Our analysis of the effects of TLN were aided by 

two control experiments: H-dimer-decorated LC films were equilibrated with aqueous 

solutions of either 1 μM BSA or a mixture of both 0.4 μM CAII and 1 μM BSA for 1 hour 

and the optical appearance of the films 1 hour post addition of proteins was recorded. We 

defined the optical intensity of the LC equilibrated with 1 μM BSA to be 100% and we 

defined the optical response the LC equilibrated with a mixture of 0.4 μM CAII and 1 μM 

BSA to be 0%. Next, we incubated mixtures of 1 μM BSA with either 0.1 pM, 0.5 pM, or 1 

pM TLN at 65 °C for an hour and then equilibrated the mixtures against a H-dimer-

decorated aqueous-LC interface. As shown in Figure 6a, the addition of TLN to the BSA 

resulted in no significant change in the transmission of light through the LC film (relative to 

samples not containing TLN). Corresponding micrographs are provided in Figure S10. 

These results suggest that BSA and digested BSA fragments non-specifically adsorbed to the 

aqueous-LC interface70.

Second, we investigated the effect of TLN on LC films equilibrated against CAII and BSA. 

First, an aqueous solution containing 0.4 μM CAII and either 0.1 pM, 0.5 pM, or 1 pM TLN 

was incubated at 65 °C for one hour. Following the incubation period, the sample was cooled 

on ice to quench the activity of TLN. 1 μM BSA was subsequently added to each sample and 

the aqueous mixture of CAII, TLN, and BSA was equilibrated against a H-dimer-decorated 

LC interface. As shown in Figure 6b, the optical signal from the H-dimer-decorated LC 

interface treated with the sample to which 1 pM TLN was added is indistinguishable from 

the H-dimer-decorated LC films in contact with aqueous BSA only (no TLN or CAII). Upon 

decreasing the concentration of TLN used to pretreat the CAII below 0.5 pM TLN, the LC 

optical signal decreased to a level generated by a sample containing 0.4 μM CAII and 1 μM 

BSA (Figure 6a). These results suggest that the activity of 1 pM TLN is sufficient to digest 

CAII molecules in the samples such that there is an insufficient number of molecules 

remaining in the sample that can bind to and block the H-dimer-decorated interface, thereby 

allowing BSA to non-specifically bind to the LC interface and induce a homeotropic to 

planar LC anchoring transition.

The concentration dependence of TLN activity inferred from the experiment above was 

verified using Western blots (Figure 6b inset). Band intensities corresponding to CAII were 

extracted using ImageJ and subsequently converted into a normalized band intensity 

(calculated by dividing band intensity at a given concentration of TLN by band intensity in 

the absence of TLN). Differences in band intensities for TLN concentrations between 0.1 

pM and 10 pM are shown in Table 3.
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4. CONCLUSIONS

The results in this paper reveal that specific binding of a protein at a LC interface can 

prevent non-specific proteins from generating a response in the LC, which hints at several 

potential applications. First, it suggests that specific binding of proteins to interfaces may 

offer the basis of a strategy for preventing non-specific fouling of surfaces with proteins. 

Second, and as explored in more detail in this paper, the result suggests the basis of a new 

strategy for reporting specific protein binding events at aqueous-LC interfaces in the 

presence of non-specific proteins. We found that specific binding of CAII to sulfonamide 

presented by a dimeric amphiphile at an aqueous-LC interface can be transduced optically 

by challenging the LC interface with BSA, a protein that non-specifically binds to the LC 

interface. The presence of CAII specifically bound to the H-dimer pre-adsorbed at the LC 

interfaces blocked adsorption and penetration of BSA into the dimer-decorated LC 

interfaces. We also demonstrated the utility of this new finding, by showing how it can be 

adapted to report binding of small molecule inhibitors to proteins, and the enzymatic 

digestion of a protein.

While our studies serve to illustrate the promise of aqueous-LC interfaces for reporting 

specific protein binding interactions in the presence of proteins that non-specifically bind, 

the work also generates a number of questions for future investigation. First, we reported a 

family of six oligomeric amphiphiles, but found that only one of the six caused nematic LCs 

to assume homeotropic anchoring. In particular, we found that the dimer containing 

methylated amides caused the LCs to assume planar anchoring whereas the dimer containing 

amide without methylation (H-dimer) assembled on the aqueous-LC interface to induce 

homeotropic anchoring. These results highlight the need for additional structure-property 

studies to link the molecular structure of this class of amphiphiles to their self-assembly at 

aqueous-LC interfaces and orient LCs. Second, we note that the strategy demonstrated in 

this paper, while promising, is demonstrated using CAII, dimers containing sulfonamide and 

BSA. Additional studies are needed to evaluate the approach using other ligand-protein 

interactions and proteins that can non-specifically bind to substrates. We note, however, that 

serum albumins are present in many biological samples (or could be added if absent) 

suggesting that the approach has the potential to be broadly useful. Additionally, serum 

samples can potentially be diluted to bring the concentration of albumins into the range that 

enables the strategy reported in this paper. Finally, we note that the presence of adsorbates 

that interfere with the binding of CAII to dimers containing sulfonamide would potentially 

produce false negatives. The extent to which this is a limitation to the approach reported in 

this paper is unknown and requires further investigation. Overall, the results reported in this 

paper provide initial evidence for a new approach that may find use in both fundamental 

studies of protein-ligand binding events and applied contexts such low-cost diagnostics.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Molecular structures of amphiphilic oligomers examined in this study: (a) H-monomer, (b) 

H-dimer, (c) H-trimer, (d) CH3-monomer, (e) CH3-dimer, (f) CH3-trimer.
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Figure 2. 
(a,c) Optical micrographs (crossed-polarizers) and (b,d) schematic illustrations of aqueous-

LC interfaces with (b) planar anchoring and (d) homeotropic anchoring upon incubation 

against 20 μM H-dimer. All samples were prepared with PBS.
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Figure 3. 
(a-c) Optical micrographs (crossed-polarizers) and (d-f) corresponding schematic 

illustrations of the responses of aqueous-LC interfaces decorated with the H-dimer (20 μM) 

to (a,d) CAII (0.4 μM), (b,e) BSA (4 μM), and (c,f) lysozyme (4 μM). Third row in (a-c) 

shows magnified images of second row (1 hour after the incubation of LC films). Scale bar 

is 100 μm.
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Figure 4. 
(a-d) Optical micrographs (crossed-polarizers) of anchoring transitions at aqueous-LC 

interfaces decorated with H-dimer (20 μM) that are triggered by (a) BSA (1 μM) after 

incubating first against CAII (0.4 μM), (b) CAII (0.4 μM) and BSA (1 μM) added 

simultaneously, and (c) BSA (1 μM) after incubating against lysozyme (1 μM), (d) lysozyme 

(1 μM) and BSA (1 μM) added simultaneously. (e-h) Corresponding timelines for the sample 

observation and the addition of CAII (0.4 μM), BSA (1 μM), and lysozyme (1 μM) into the 

aqueous solutions. All samples were incubated for 2 hours prior to observation.
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Figure 5. 
(a,b) Molecular structures of inhibitors (a) ethoxzolamide and (b) benzenesulfonamide. (c,d) 

Optical micrographs (crossed-polarizers) of the H-dimer-CAII-decorated interface of the LC 

after incubation in c) 0.4 μM CAII + 1 μM BSA + 4 μM ethoxzolamide and d) 0.4 μM CAII 

+ 1 μM BSA + 4 μM benzenesulfonamide. (e, f) Schematic illustrations of LC response to 

dimer and CAII e) without inhibitor depicting homeotropic LC anchoring and f) with 

inhibitor, depicting tilted LC anchoring. (g,h) Time-dependent change in intensities of light 

transmitted through the LC films following incubation with (g) ethoxzolamide and (h) 

benzenesulfonamide. Quantification of intensity of images was performed with NIH ImageJ 

software. The concentration of both inhibitors was 4 μM and the concentration of BSA in all 

cases was 1 μM. Mean ± s.d. (n = 3).
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Figure 6. 
(a) Optical response of the aqueous-LC interface of all control samples. (b) Relative 

intensity of light transmitted through the aqueous-LC interface (crossed-polarizers) as a 

function of concentration of TLN. Inset shows western blot analysis of CAII degradation 

following incubation with 10, 1, 0.5, 0.1, 0 pM thermolysin for 1 hour. Quantification of 

intensity of images was performed with NIH ImageJ software. Mean ± s.d. (n = 4)
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Scheme 1: 
Synthetic pathway for H-dimer.
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Table 1.

Properties of Proteins Used in This Study

CAII BSA Lysozyme

Origin bovine bovine chicken

M.W. [kDa] 29 66 14

pI 5.4 5.3 11.4
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Table 2.

Zeta Potential Measurements of Aqueous-LC Interfaces

Sample Zeta Potential [mV]*

5CB droplet in water −70 ± 1

5CB droplet in PBS −28 ± 326

5CB droplet in 20 μM H-dimer −40 ± 1
a

*
Mean ± s.d. (n=3)

a
zeta potential measurement performed in PBS (pH 7.4)
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Table 3.

Thermolysin Activity Measurements via Western Blot

Thermolysin
Concentration

Normalized
Band Intensity*

10 0.42 ± 0.28

1 0.66 ± 0.29

0.5 0.87 ± 0.33

0.1 0.99 ± 0.36

*
Mean ± s.d. (n = 4)
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