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Letter to Editors

Can neuromodulation support the fight against the COVID19 pandemic? Transcutaneous non-
invasive vagal nerve stimulation as a potential targeted treatment of fulminant acute respiratory
distress syndrome

A B S T R A C T

The COVID-19 pandemic has rapidly spread all over the world and caused a major health care crisis. About 20% of patients develop severe disease and require
hospitalisation, which is associated with a high mortality rate of up to 97% in those being ventilated and respiratory failure being the leading cause of death. Despite
many therapeutic agents being under current investigation there is yet no panacea available. With increasing rates of infection throughout the world, there is an
urgent need for new therapeutic approaches to counteract the infection.

As the nervous system has shown to be a strong modulator of respiratory function and the immune response, we want to highlight pathways involved in regulation
of respiratory function, the neuro-immune axis as well as the rationale for a potential targeted treatment of fulminant acute respiratory distress syndrome via
transcutaneous non-invasive vagal nerve stimulation in critically-ill COVID-19 patients.

The COVID-19 pandemic has rapidly spread all over the world. As of
May 11th there were 4.1 million confirmed cases COVID-19 worldwide
and more than 285,000 fatalities with an overall mortality rate of 7%
[1]. Whilst 80% of infected people have mild symptoms, about 20%
develop severe disease [2]. Patients requiring hospitalization have a
fatality rate of 28%, which reaches up to 97% of those being ventilated
[3]. Respiratory failure is the leading cause of death (97%) followed by
septic shock (84.2%) and myocardial damage (80.5%) [4].

Currently, neither specific therapeutic agents nor vaccines are
available for COVID-19. The management of patients mainly focuses on
the provision of supportive care, such as oxygenation, intubation and
mechanical ventilation [5], followed by supportive treatment of low-
dose systematic corticosteroids as well as inhalation of interferon in
critical ill COVID-19 patients [6].

Several therapies for COVID-19 are under investigation. Anti-ret-
roviral regimens such as remdesivir and favipiravir have been discussed
as a potential therapy [7]. So has the anti-HIV protease inhibitor lopi-
navir in combination with ritonavir. The anti-malarial agent Chlor-
oquine has shown some effectiveness in inhibiting the exacerbation of
COVID-19 associated pneumonia due to its anti-viral and anti-in-
flammatory activities [8]. However, the specific capacity against corona
virus of these agents and their clinical effects are still unknown. Other
therapies under investigation are passive immunization via transfusion
of convalescent plasma [9].

Accumulating evidence suggests that a subgroup of patients with
severe COVID-19 might suffer from a cytokine storm syndrome (CSS).
CSS is triggered by viral infection, often under-recognized and often
associated with multi-organ failure, in particular, respiratory failure
[10]. Predictors of fatality from a retrospective, multi-center study of
confirmed COVID-19 patients suggested that mortality might be due to
virally driven hyper-inflammation [11]. In this state immunosuppres-
sion is likely to be beneficial.

With no panacea available and increasing rates of infection
throughout the world, there is an urgent need for new therapeutic ap-
proaches.

As the nervous system has shown to be a strong modulator of lung

function and the immune response, we want to highlight pathways
involved in regulation of respiratory function, the neuro-immune axis
as well as the rationale for possible neuromodulatory interventions in
critically-ill COVID-19 patients.

Regulation of respiratory function by the autonomous nervous
system

The lung is innervated by both the sympathetic and the para-
sympathetic nervous system, which regulate both contraction and re-
laxation of airway smooth muscle, providing the dominant control of
smooth muscle tone and thus airway caliber, airway glands and mi-
crovasculature in the respiratory tract.

Regulation of the neuro-immune axis

Afferent fibers towards the hypothalamus can sense inflammatory
processes and activate the cholinergic anti-inflammatory pathway in
the presence of inflammation. The neuro-inflammatory pathway with
efferent vagus nerve fibers inhibits the release of pro-inflammatory
cytokines which reduces inflammation [12]. Nerve endings of the vagus
nerve innervate the distal pathways of the lungs and the alveoli [13].
When these nerve endings are disconnected from the targeting pul-
monary structure, such as in vagotomy, increase in pro-inflammatory
cytokine levels and worsening of lung infection can be observed [14].
Vice versa, vagus nerves stimulation improves pulmonary function
[15]. These findings suggest that the neuro-inflammatory reflex may
limit the magnitude of lung infections and inflammation.

Of further importance is the cholinergic anti-inflammatory
pathway: Vagal nerve fibers innervate the reticuloendothelial system
and macrophages within the reticular connective tissue, lymph nodes,
spleen and liver [16]. Released acetylcholine deactivates macrophage
function and the production of pro-inflammatory cytokines (TNF, IL-1,
IL-18) [17]. Interestingly, the release of anti-inflammatory cytokines
(such as IL-10) is not inhibited. In models of endotoxemia electrical
vagal nerve stimulation has shown to decrease serum concentrations of
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TNF which is thought to reduce the systemic lethal effects of endotoxin
with hypotension and cardiovascular shock.

Clinical evidence for vagal nerve stimulation

Various clinical studies have shown the modulation of the immune
response with alteration of pro- and anti-inflammatory cytokines fol-
lowing vagal nerve stimulation (VNS) [18]. A study on epilepsy patients
who had been implanted with a vagus nerve stimulator and were co-
morbid for rheumatoid arthritis showed inhibition of TNF-alpha, IL-
1beta, IL-6 in peripheral blood samples as well as improvement of
clinical rheumatoid arthritis severity [19]. Another study, based on
patients who had undergone successful vagal neuromodulation for the
treatment of epilepsy and depression showed significantly attenuated
histamine-induced increases in peak inspiratory pressure upon elec-
trical stimulation. Additional VNS studies showed improvements in
bronchoconstriction and peak inspiratory pressure in patients with ex-
acerbated asthma [20,21].

Rationale for VNS

The nervous system interacts with the immune-system via the
neuro-inflammatory pathway as well as the cholinergic anti-in-
flammatory pathway, and controls respiratory function. Vagal nerve
stimulation has shown to modulate these functions.

As COVID-19 leads both to a condition of acute respiratory failure as
well as a hyperactive immune-system with the development of a cyto-
kine storm, electrical stimulation of the vagus nerve could be a sup-
porting treatment in the therapy continuum of COVID-19 patients by
combined modulation of respiratory function as well as the neuro-im-
mune axis. Given the rapid onset of neuronal modulation, it might
counteract the often-described rapid deterioration of patients and sta-
bilize respiratory and immunological function until slow acting medi-
cation develop their effect.

Given the transient nature of the disease with a duration of several
weeks, we propose the use of non-invasive transcutaneous electrical
vagal nerve stimulation over invasive methods such as surgical im-
plantation of cuff electrodes or transcutaneous leads. In upcoming
clinical studies, we want to investigate the feasibility and effectiveness
of this method in critically-ill patients as well as the potential protective
effects on non-intubated patients.
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