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Abstract

Modern lower limb prostheses have the capability to replace missing body parts and improve the patients’ quality of
life. However, missing environmental information often makes a seamless adaptation to transitions between different
forms of locomotion challenging. The aim of this review is to identify the progress made in this area over the last
decade, addressing two main questions: which types of novel sensors for environmental awareness are used in lower
limb prostheses, and how do they enhance device control towards more comfort and safety. A literature search was
conducted on two Internet databases, PubMed and IEEE Xplore. Based on the criteria for inclusion and exclusion, 32
papers were selected for the review analysis, 18 of those are related to explicit environmental sensing and 14 to
implicit environmental sensing. Characteristics were discussed with a focus on update rate and resolution as well as
on computing power and energy consumption. Our analysis identified numerous state-of-the-art sensors, some of
which are able to “look through” clothing or cosmetic covers. Five control categories were identified, how “next
generation prostheses” could be extended. There is a clear tendency towards more upcoming object or terrain
prediction concepts using all types of distance and depth-based sensors. Other advanced strategies, such as bilateral
gait segmentation from unilateral sensors, could also play an important role in movement-dependent control
applications. The studies demonstrated promising accuracy in well-controlled laboratory settings, but it is unclear
how the systems will perform in real-world environments, both indoors and outdoors. At the moment the main
limitation proves to be the necessity of having an unobstructed field of view.

Keywords: Prosthesis control, Artificial limb, Locomotion mode estimation, Terrain, Environment, Contralateral,
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Background
The amputation of a limb is an irreversible intervention
into the physiological integrity of a human being. Limb-
loss is often caused by cardiovascular complications or
diabetes; increasing obesity and aging population are the
main contributing factors [1, 2]. Recent projections indi-
cate that the number of major limb amputations will
increase substantially [1].
Passive prostheses can replace the missing body parts

to a high degree and improve patients’ independence
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and mobility. However, these devices lack the capabil-
ity of generating power and therefore result in higher
metabolic expenditure, increased stress to other joints and
an asymmetric gait [3]. An unphysiological gait, espe-
cially reduced toe clearance, increases the risk of falling.
Modern active powered prostheses have the capability
to overcome this issue by providing net positive work
required in daily activities [4]. But the question arises: do
we already have the best sensor and control concepts to
integrate such devices seamlessly into the patients’ lives
and autonomously adapt to their needs?
Focusing on lower limb prostheses, many state-of-the-

art devices use finite-state controllers, decomposing the
gait into a series of distinct phases with a discrete set
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of parameters [5]. In 2015, Tucker et al. [6] conducted
a comprehensive review on control strategies for lower
extremity prosthetics and orthotics. The ideas by Varol et
al. 2010 [7] were extended to a generalized control frame-
work consisting of four major sub-blocks: the Controller,
the Device, the User and the Environment, as depicted
in Fig. 1. The Controller can be represented as a three
level hierarchy. At the highest level, the system is respon-
sible for correctly estimating the patient’s intent. Different
terrains like level ground, stairs or ramps are related to
different locomotion modes. The proper identification of
transitions between different forms of locomotion is the
most challenging task. The mid-level layer maps the esti-
mated locomotion mode to the desired state outputs of
the device. Finally, at a low-level, feedforward and feed-
back controllers minimize the error between the current
state and the reference. The Device itself contains the
mechanical and actuation structure for restoring or assist-
ing the human functional morphology. The User and the
device should work together in an intuitive and synergis-
tic way, in which the device supports the patient’s motion
intentions. From the perspective of the device every-
thing else is Environment. Tucker categorizes the environ-
ment interaction into implicit environmental sensing and
explicit environmental sensing. Implicit Environmental
Sensing (IES) creates an understanding of the locomotion
mode by measuring the state of the residual patient’s body
Explicit Environmental Sensing (EES), on the other hand,
tries to directly estimate terrain features.
In order to guarantee a safe and comfortable control, a

seamless estimation of IES and EES is required. In recent

years, the automotive and robotic industry have driven
innovation and development mainly in the fields of TOF
(time of flight) cameras, LIDAR (light detection and rang-
ing) systems or RADAR (radio direction and ranging)
solutions. This resulted in reduced prices for evaluation
kits with powerful computer vision tools.
For the first time, the progress made in this area over the

last ten years will be identified, focusing on the modalities
of the sensors used in lower limb prostheses and on the
strategies for enhancing device control. From this novel
perspective, we conclude by outlining the most promis-
ing approaches and improvements that could make “next
generation prostheses” more user-friendly, functional and
safe.

Methods
The selection process for this review combined three
different search strategies.
Firstly, the comprehensive review from Tucker et al. in

2015 [6] was used as starting point for the snowballing
approach [8], going backward from Tuckers paper by
reviewing the reference list as well as going forward by
identifying articles citing this publication.
Secondly, a systematic literature review, based on the

PRISMA [9] guidelines was conducted. Therefore, a
search string was defined for retrieving publications of
interest from two different databases (i.e. IEEE Xplore and
PubMed.gov). In order to find relevant articles, the first
term was either “prosthe*”, “extremity” or “limb”. It was
connected via a logical AND with either “radar”, “lidar”,
“time-of-flight” or “depth” for focusing on dedicated

Fig. 1 Control framework. Dynamics between a prosthetic device, a user, and his environment. The hierarchical controller estimates the patient’s
intent at the high-level, translates it into device states at the mid-level and finally executes these commands at the lower level. Environmental
awareness is achieved by observing the user (IES) or the environment (EES). Adapted from Tucker et al. 2015 [6]
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sensor expressions as well as with “terrain”, “environment”
or “locomotion” for more holistic synonyms. Duplicates
were removed, title, abstract and full publication were
screened, and the following inclusion and exclusion crite-
ria were applied to select or reject publications:
Criteria for inclusion: Strategies for estimating envi-

ronmental information to improve existing prosthesis
control as well as all types of locomotion modes were
included. Only portable prototypes were considered. The
application for enhancing “prosthesis control” must be
mentioned. Only articles published in “English” during the
last 10 years (i.e. 2009 – 2019, final update: 12 November
2019) were included.
Criteria for exclusion: Systematic reviews and liter-

ature reviews, any kind of upper extremity solution,
exoskeletons or orthotics-related papers were excluded.
Systems based on inertial measurement units (IMU), for
analyzing human motion (gait) without any link to pros-
thesis control are not in the focus of this review. Also
not includedwere studies focusing only on neuromuscular
or mechanical signals from the device itself or the resid-
ual ipsilateral limb. Computer vision publications without
association to enhancing prosthesis control were excluded
as well.
Finally, the selected publications of the outlined search

strategies were used for an author cross-check. The pub-
lication lists of all referred authors retrieved from Google
Scholar, ORCID or institutional and private websites
were rechecked to see if individual publications meet
the inclusion criteria. For example, if an earlier confer-
ence paper was discovered in the database search, but
the same author had also published a journal paper cov-
ering the topic of interest, which was not caught by the
first two search methods, it was also included in this
review.

Results
An overview of the selection process is shown in the
flow diagram in Fig. 2. Twenty four out of the 6739 arti-
cles identified with the search strategies met the inclusion
criteria. Another 8 were added through the final author
cross-check, resulting in 32 publications included in this
review.

Overview
The retrieved 32 publications were categorized by the
two types of environment. The majority (18) of those are
related to EES, the remaining (14) to IES. Table 1 provides
a summary of all included records. The main character-
istics of the publications are structured in the following
columns:
Study: In this column, the first author as well as the

publication year and the reference are mentioned. If more
than one reference is given, the year indicates the most

Fig. 2 Search process. Flow diagram of database search and paper
selection based on inclusion and exclusion criteria throughout the
different phases of the literature review process

recent publication. If research groups have performed
tests with amputees, this is indicated by (P). If they have
evaluated their system only with healthy subjects, it is
marked with (H). (T) implies that it is a theoretical con-
cept, eventually tested in an experimental setup, but not
tried in interaction with human beings.
Type / Group: Type serves as an indicator, to show

if the record is more related to implicit or to explicit
environmental sensing. Group assigns each publication
a particular control strategy out of five main categories
retrieved within this review – a detailed explanation is
given in “Discussion” section. The overview table is sorted
by this column.
Sensor selection: This column describes the type of

sensors used in the study.
Sensor placement: This column gives an overview,

where the respective sensors are placed on the human
body. The lower part of the human body is segmented into
foot, shank, thigh and trunk. The connecting joints are
ankle, knee and hip. Bilateral (B) means “on both sides of
the body”. Ipsilateral (I) means “located on the same side
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Table 1 Overview of records reviewed

Study Type / Group Sensor selection Sensor placement Concept description

Vallery et al. IES / 1 2 x angle & angular C: hip & knee Mapping function for control of knee prototype

(P, 2011) [10] velocity sensors with estimated contralateral limb motion data.

Bernal-Torres et al. IES / 1 1 x IMU C: thigh Active biomimic polycentric knee prototype with

(H, 2018) [11, 12] contralateral echo-control strategy.

Su et al. IES / 1 3 x IMUs C: thigh, shank & Intent recognition system based on

(P, 2019)[13] ankle convolutional neural network classification.

CYBERLEGs IES / 1 2 x pressure insoles B: shoes inlays Finite-state control of a powered ankle-knee

project series1 7 x IMUs B: thighs, shanks, coupled prototype using whole-body aware

(P, 2017) [15–18] feet & 1 x trunk noninvasive, distributed wireless sensor control.

Hu et at. IES / 2 4 x IMUs B: thighs & shank Classification error reduction through fusion of

(P, 2018) [19–21] 4 x GONIOs B: knee & ankle bilateral lower-limb neuromechanical signals,

Extended by: 14 x EMGs B: leg muscles providing feasibility & benchmark datasets.

Krausz et al. EES / 2 1 x IMU On the waist in Adding vision features to the prior

(H, 2019) [22] 1 x depth camera a belt construction concept improving the classification.

Hu et al. IES / 3 1 x IMU I: thigh Bilateral gait segmentation from ipsilateral depth

(H, 2018)[23] 1 x depth camera sensor with the contralateral leg in field of view.

Zhang et al. IES / 3 1 x depth camera On the waist Depth signal from legs as input to an

(H, 2018) [25] with tilt angle oscillator-based gait phase estimator.

Scandaroli et al. EES / 4 2 x gyroscopes Built into a Infrared distance sensor setup for estimation

(T, 2010) [27] 4 x infrared sensors foot prototype of foot orientation with respect to ground.

Ishikawa et al. EES / 4 2 x infrared sensors Left & right on Infrared distance sensor setup for estimation

(H, 2018) [28] 1 x IMU one normal shoe of foot clearance with respect to ground.

Kleiner et al. EES / 5 1 x motion tracking I: between artificial Concept and prototype of a foresighted

(T, 2011) [29] 1 x laser scanner ankle & knee joint control system using a 2D laser scanner.

Huang’s group2 EES / 5 1 x IMU I: lateral side Terrain recognition based on laser distance,

(P, 2016) [30–33] 1 x laser sensor of the trunk motion estimation and geometric constrains.

Carvalho et al. EES / 5 1 x laser sensor On the waist Terrain recognition based on laser distance

(H, 2019) [36] with 45° tilt angle information and geometric constrains.

Sahoo et al. EES / 5 3/4 x range sensors I: On the shank & Array of distance sensors for geometry-based

(H, 2019) [37] 1 x force resistor on the heel of the foot obstacle recognition in front of the user.

Varol et al. and EES / 5 1 x depth camera I: shank Intent recognition framework using a single

Massalin et al. depth camera and a cubic kernel support

(H, 2018) [38, 39] vector machine for real-time classification.

Laschowski et al. EES / 5 1 x color camera Wearable Terrain identification based on color images

(H, 2019) [40] chest-mounting and deep convolutional network classification.

Yan et al. EES / 5 1 x depth camera On the trunk Locomotion mode estimation based on depth

(H, 2018) [41] in 1.06m height feature extraction and finite-state classification.

Diaz et al. EES / 5 1 x IMU I: foot & shin Terrain context identification and inclination

(H, 2018) [43] 1 x color camera estimation based on color image classification.

Krausz et al. EES / 5 1 x depth camera Fixed in 1.5m height Stair segmentation strategy from depth

(H, 2015) [45] 1 x accelerometer with -50° tilt angle sensing information of the environment.

Kleiner et al. EES / 5 1 x IMU I: thigh Stair detection algorithm through fusion of

(P, 2018) [46] 1 x radar sensor motion trajectory and radar distance data.

Zhang et al. EES / 5 1 x IMU I: knee lateral Environmental feature extraction based on

(P, 2019) [47, 48] 1 x depth camera neural network depth scene classification.

1Publications through CYBERLEG: Amrozic et al. [15, 16], Gorsic et al. [17] and through CYBERLEG++: Parri et al. [18]
2Research group from Huang: F. Zhang et al. [30], X. Zhang et al. [31], Wang et at. [32] and Liu et al. [33]
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of the body part” or respectively on the same side as the
device. The opposite is contralateral (C) which signifies
“located on the opposite part”.
Concept description: This field shortly summarizes

how environmental information is used for enhancing
prosthesis control in each record.
Within the publications, 11 different types of sensors

were used. It was possible to divide those sensors into
three categories, as shown in Fig. 3. In particular, Dis-
tance & depth differentiating sensors based on ultrasonic
or electromagnetic waves with different frequencies and
Kinematic grouping sensors for measuring the motion
of bodies. EMG electrodes, pressure insoles and color
cameras were summarized into Other. Information was
extracted from the reviewed publications itself and, if
missing, completed with the help of the manufacture’s
datasheet. The main characteristics are the sensor update
rate, resolution and the need for an unobstructed field of
view.

Implicit environmental sensing
Vallery et al. [10] presented a complementary limbmotion
estimation strategy. In this application, a linear mapping
function outputs the state of the missing limb depen-
dent on the state of the residual sound side. The angle
and angular velocity is measured by sensors attached to

the contralateral hip and knee. So far, only results from
one above-knee amputee were presented. The patient
was almost able to achieve a physiological gait pattern.
However, detailed technical information was not given.
Instead of using a monocentric knee prototype, Bernal-

Torres et al. [11, 12] proposed a concept of an active poly-
centric knee prosthesis using the echo-control schema.
An inertial measurement unit fixated on the contralateral
thigh estimates the trajectory of the unimpaired knee. The
average tilt angle error between the polycentric knee pro-
totype, mounted in a test workbench, and the anatomical
lower limb of one non-impaired subject was about 2°.
Three IMUs on the contralateral thigh, shank and ankle

for locomotion intent recognition, were used by Su et al.
[13]. The sensor data was taken as input into a convolu-
tional neural network, a class of computational processing
systems heavily inspired by biological neural networks. It
“learns” to perform tasks using self-optimizing weights
and biases throughout example-based learning. Filters are
used to extract hierarchical patterns in date, which makes
them particularly interesting for (image) recognition sys-
tems [14]. Ten able-bodied subjects and one above-knee
amputee participated in the study. Different strategies for
user-independent and user-dependent classification with
varying amount of test and training data were analyzed.
The highest accuracy was reported with 94.2% for the

Fig. 3 Sensor comparison. Different sensors used within the retrieved publications were divided into the three categories: Distance & depth,
Kinematic and Other. Update rate describes the number of measurements per second. The rating scale: (low), (medium) and (high) is used instead of
absolute values, representing a scale from approximately 10 Hz up to 100 Hz for real-time applications. The smallest change that can still be
detected by a sensor is its Resolution. The rating scale: (low), (medium) and (high) is used instead of absolute values, representing a scale from
several centimeters down to the millimeter range. Unobstructed field of view indicates whether the sensor functionality does or does not require an
unobstructed field of view: (yes/no). If its not applicable, this is indicated by: (n/a)
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able-bodied and 89.2% for the amputees, classifying five
types of terrains and eight transitions between them.
As part of the CYBERLEGs project Ambrozic et al.

[15, 16] and Gorsic et al. [17] used the α-prototype pros-
thesis (actuated ankle and a passive knee) with a “whole-
body aware” control approach. The user intention was
measured through seven wireless IMUs, attached bilat-
erally to the feet, shanks and thighs and one on the
trunk. Additionally, two pressure insoles measured the
ground force and the center of pressure. The control
scheme combined the intent detection from the body-
worn sensors and the prosthesis control into one state
machine with unified states and transitions based on the
analysis of gait in healthy subjects. The overall intent
recognition for three unilateral transfemoral amputees
was accurate in 85.2% of the cases for level-ground
walking. Parri et al. [18] used a similar wearable sen-
sory concept and the advanced β-prototype throughout
the CYBERLEGs Plus project. In this study, four uni-
lateral transfemoral amputees participated in the study
with different activities. 100% accuracy was reported in
treadmill walking, even at a low walking speed. The
lowest score was achieved for the sit-to-stand task at
94.8%.
A systemic analysis of different signals from the con-

tralateral side for predicting the locomotion mode was
done by Hu et al. [19–21]. Ten healthy subjects partici-
pated in the study generating a public available benchmark
dataset of lower limb joint kinematic and electromyog-
raphy (EMG) data, simultaneously recorded with wear-
able sensors. Electrogoniometers (GONIO) were used to
record joint kinematic signals of knee and ankle of both
legs. IMUs were placed bilaterally on the subject’s thigh
and shank. Bipolar surface EMG electrodes were placed
on seven muscles in each leg. They analyzed different
combinations of sensors and algorithms. It was shown
that only one additional contralateral sensor could signif-
icantly reduce intent recognition error rates. Finally, an
offline analysis of one above-knee amputee walking with
a powered leg prosthesis was presented. Placing two addi-
tional IMUs on the contralateral thigh and shank could
reduce overall, steady-state and transitional error rates by
more than 60%, compared to ipsilateral sensor placement
as baseline. Parallel to this, Krausz et al. [22] extended
the system by an IMU and a single depth camera. These
sensors were worn on a belt-like construction with the
environment in front of the subject in the field of view.
The IMU was used to transform the vision information
into a global reference system. Each frame was segmented
into a grid of regions of interest before extracting three
types of vision-based features: distance and orientation,
motion information and the projected shape of the ter-
rain on them. The influence of each sensor modality
was analyzed, reporting that adding “vision information”

increases the repeatability and, at the same time, reduces
the variability across subjects and locomotion modes.
Despite the positive outcomes, the additional instru-

mentation of the non-prosthetic side is not really practical
and comfortable for amputees. Hu et al. [23] extended
their ideas and presented a novel method for bilateral
gait segmentation using only unilaterally worn sensors.
A single IMU and a depth camera were placed on one
thigh to detect bilateral gait events. RANSAC [24], an
iterative method to estimate a model in a set of data con-
taining outliers, was used to identify the ground plane in
the depth points. Vision filtering and grouping methods
were applied to correctly estimate the shank angle of the
contralateral leg. IMU data and sound side features were
fused for intent classification. The system was tested with
one healthy subject showing that it is possible to detect
bilateral gait events even from unilaterally worn sensors.
Zhang et al. [25] conducted a study, in which both legs

were within the sensor’s field of view. A depth camera
was mounted on the waist looking forward with such a
tilt angle, that the toes are just not captured when the
person is standing still. A movement led to a periodic
variation of depth values. This signal was then used as
input into an earlier published concept of an adaptive
oscillator gait phase detector [26], a method for extract-
ing features and synchronizing to periodic signals. Four
able-bodied subjects participated in a level ground walk-
ing study, reporting a maximum estimation error of 0.3
rad between the estimated gait phase and the reference
gait phase calculated out of two consecutive steps.

Explicit environmental sensing
Foot clearance is an important gait parameter and serves
as an indicator for gait quality and safety. Scandaroli et al.
[27] presented a prototype of a prosthetic foot equipped
with two gyroscopes and four infrared distance measuring
elements. The concept was to estimate foot orientation
with respect to the ground. So far, only test-bench results
estimating the inclination and height of the foot above the
ground have been presented. Ishikawa andMurakami [28]
equipped a normal shoe with two infrared distance sen-
sors and one IMU. The data gathered from one healthy
subject walking in five different terrains was analyzed.
The waveform of the sensor signal was reported to be
unique for different locomotionmodes – a dominant dou-
ble peak was the characteristic of leveled walking, but
detailed technical information was not given.
Already in 2011, Kleiner et al. [29] published a concept

of a foresighted control for a foot prosthesis. An opti-
cal measuring system consisting of a laser scanner and
an inertial navigation system was mounted between the
ankle and the knee on the side of the prosthesis. The two-
dimensional (2D) depth data from the laser scanner was
combined with the motion information from the inertial
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system to create a three-dimensional (3D) representation
of the environment. The idea was to use computer vision
methods in order to detect objects like stairs, or ramps
in the environment. So far, only “images” from a single
indoor experiment were presented without any technical
details.
Instead of using a 2D laser scanner, the research group

from Huang [30–33] used a single laser distance meter
and one IMU for terrain recognition. They extended the
concept of a locomotion mode recognition system based
on neuromuscular EMG signals from the residual limb
and mechanical load information on the device [34, 35].
The additional sensors were mounted laterally on the
trunk of the prosthetic side. A decision tree classified the
terrain in front of the user into five different categories
depending on thresholds and geometric constrains. The
system was tested on six able-bodied subjects and one
above-knee amputee. It identified the new terrain 500
ms before executing locomotion mode transition with an
accuracy of 98%.
A concept without an IMU was introduced by Car-

valho et al. [36]. The information from an infrared laser
mounted on the user’s waist was classified with a three-
layer decision tree with heuristic rules. Tested on 10
able-bodied subjects, the classification accuracy for eight
locomotion mode transitions was above 80%, achieving
100% success for identifying the transition from ramp
descent or stair descent into level ground.
An array of distance sensors was used by Sahoo et al.

[37]. In this study, a prototype with either four ultra-
sonic distance sensors or three laser distance sensors was
mounted on the shank of the participant. Reliable mea-
surements were always taken during the stance phase
triggered by a force resistor attached at the heel of the foot.
The distance signals were used to classify four types of
terrains ahead of the user. Two classification approaches,
such as quadratic discriminant analysis and rule-based
system, were explored with two able-bodied subjects. The
ultrasonic sensors achieved an accuracy above 97%, how-
ever the range within obstacles were detected was less
than 50 cm leading to the risk to “miss a transition” if the
step length of the subject was greater than the detection
range. In comparison, the laser distance sensors increased
this range up to 100 cm. By taking the most frequent pre-
diction class within a single step, the system identified the
new terrain 650 ms before executing locomotion mode
transition with an accuracy of above 98%.
Varol et al. [38] and Massalin et al. [39] attempted

to detect five different locomotion modes with a depth
sensor. In this application, a single depth camera was
mounted unilaterally on the shank with a 45° tilt angle to
the ground plane. In order to embed motion information,
so called “depth difference images” were calculated. This
was done through pixelwise subtraction of the preceding

depth frame. Twelve healthy subjects participated in the
study. Data of eight subjects was used to train different
variations of support vector machine classifiers, a super-
vised learning algorithm that sorts data into predefined
categories. The highest reported accuracy of 94.1% was
achieved with a cubic kernel and no dimension reduction
classifier on the test-data of the remaining four subjects.
The averaged computation time was reported with 14 ms.
Three different types of terrains were classified with an

overall accuracy of 94.85% in the study fromLaschowski et
al. [40]. A chest-mounted color camera with the environ-
ment in front of the subject in its field of view was used for
data acquisition. One able-bodied subject walked around,
collecting over two million sample images. Around 34,000
of them were individually labeled to train the 10-layer
deep convolutional neural network used for classification.
Yan et al. [41] presented a depth image-based loco-

motion recognition approach that does not require any
pre-training. A depth camera mounted on the waist in a
height of 1.06 m, having the terrain and a small portion
of the user’s feet in its field of view, is used in this setup.
Depth images were segmented into 12 blocks and locally
averaged. A finite-state machine with predefined thresh-
olds is then used to classify between four locomotion
modes. Additionally, stair edges were detected by using
a Hough Line Transform [42], a feature extraction tech-
nique to find a certain class of shapes by a voting proce-
dure. Nine healthy subjects participated in the study. The
accuracy for steady state locomotion tasks was reported
as 100%. However, correctly detecting the transitions was
challenging. Nevertheless, 82.4% of the terrain changes
could be detected before executing a locomotion mode
transition. In this study, there was no real-time evaluation
performed, although the computation time was only 5 ms.
Rather than classifying the locomotionmode of the user,

Diaz et al. [43] proposed a concept of estimating the soil
properties as well as the surface inclination in front of the
user’s leg. In this application, a normal color camera was
mounted on the shin and an IMU on the top of the foot of
an able-bodied subject. Comparable images were always
taken during the stance phase of the gait cycle. The images
were classified with the Bag of Words method [44], ana-
lyzing the input against a predefined bag of local image
features. The classifier was able to identify 6 types of ter-
rains (asphalt, carpet, cobblestone, grass, mulch and tile)
with an averaged accuracy of 86%. The prediction of the
terrain inclination in front of the leg was accurate to 0.76°
compared with a reference.
Krausz et al. [45] presented a method for estimating

stair parameters with a depth vision system in 2015. The
proposed algorithm used prior knowledge of a basic stair
structure and input of a single three-axis accelerometer.
One able-bodied subject held the camera in 1.5 m in
height with a -50° tilt angle from horizontal and walked
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through a hallway entering into a stairwell. This online test
resulted in 98.8% accuracy for classification if they were
either “approaching” stairs or “not approaching”.
The first and only group using a RADAR sensor for stair

detection was Kleiner et al. [46] in 2018. In this applica-
tion, a radar distance sensor and an IMU were mounted
on the thigh of the prosthetic device. Fusing both signals
created a 2D image of the sagittal plane in its virtual field
of view. For objects in a range up to 5meters in front of the
device, a mean accuracy of 1.5±0.8 cm was reported. The
mean accuracy for height estimation lies within 0.34±0.67
cm.
The most advanced environmental feature recognition

system was presented from Zhang et al. [47]. In this appli-
cation, five different environments could be distinguished.
A depth camera and an IMU mounted ipsilaterally on
the knee joint were combined to transform the captured
scene into world coordinates. The 3D scene was reduced
to a 2D binary image, which reduced total computing
time remarkably to only 23 ms. A deep convolutional neu-
ral network was used to classify the type of input scene.
Finally, after classifying the type of terrain, basic computer
vision methods were used to estimate features such as the
slope angle of a ramp or the height and width of stairs.
The proposed system was evaluated using data from sim-
ulation, indoor and outdoor experiments. Six able-bodied
subjects and three above-knee amputees participated in
the study. Data from the simulation and one healthy sub-
ject was used to train the network, the remaining data was
used for validation only. The classification accuracy for
amputees was reported with 99.3% for indoor and 98.5%
for outdoor experiments, predicting the terrain change at
least 0.6 s before switching the locomotion mode. The
latest publication from Zhang et al. [48] considered the
credibility of decisions and the relationship between states
for improving the classification even further.

Discussion
Commercially available lower limb prostheses use mainly
device-embedded sensors to “(re)act” to the patient’s
intent. However, due to the lack of contextual (environ-
mental) information, misclassifications can result in stum-
bling or even falling down. The present review describes
the progress made over the last decade towards more
“foresighted” prosthetic systems. From this novel perspec-
tive, a “control strategy landscaping” was derived, how
environmental information can enhance “next generation
prostheses”.

Control strategy landscape
New concepts for environmental sensing in “next gener-
ation prostheses” can be distinguished according to how
they improve existing control systems. As depicted in
Fig. 4, enhanced control strategies can be separated into

Fig. 4 Control landscape. Control strategy landscape overview based
on required resolution and update rate of the underlying sensor
modality

five groups, namely continuous control (1), motion classi-
fication (2), event detection (3), safety functions (4), and
upcoming object or terrain prediction (5). The required
update rate and resolution is a criterion to select the best
sensor modalities for each of them. All retrieved pub-
lications were assigned into one of these main groups,
dedicated in column 2 of Table 1.
Continuous control systems measure and adjust in real

time. Hence, sensors with high update rates as well as high
resolutions are needed. In accordance with three-level
controller hierarchy framework from Tucker, input is pro-
cessed directly at mid-level layer to control the prosthetic
device state in real time. In this category, only IES-based
residual patient’s body estimation strategies were investi-
gated. Typically, kinematic sensors like IMUs or GONIOs
are used. Using contralateral leg information seems to be a
common concept [10–13]. However, simple echo-control
strategies caused errors, especially at the beginning and
the end of an activity, when the limbs are not required
to “echo” each other. Placing sensors not only on the
contralateral leg, but rather measuring the entire (lower)
body, expands the possibilities. These concepts [15–18]
can control in real-time throughout numerous locomo-
tion modes and transitions between them. However, for
all the presented “body aware” concepts, it was necessary
to mount additional sensors on the patient’s body, which
reduced usability.
Not controlling, but rather classifying is meant by

motion classification. Signals measured from distributed
sensors are used to perceive the patient’s intent at the
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high-level layer of the controller hierarchy framework
better. Therefore, sensor update rates as well as reso-
lutions are typically lower. Unsurprisingly, fusing whole
body kinematic signals lead to higher intent recognition
rates, as was proven systematically [19–22]. Remarkably,
however, it could be shown that an additional sensor on
the unimpaired sound side can reduce misclassifications.
Instead of mounting and calibrating a large number of
additional sensors to the patient’s body, a single contralat-
eral sensor would be sufficient to enhance device control.
As depicted in Fig. 4, motion classification also overlaps
with the group of upcoming object or terrain prediction.
Although the focus of this section here lies mainly on the
correct intent recognition rather than on predicting the
upcoming terrain directly, these two are strongly related
by nature – obstacles and terrain features are in this sense
the “boundary conditions” for all movements.
Strategies extracting specific “events” from the human

gait cycle are combined into event detection. The most
prominent are the “heel strike”, initiating the stance phase,
and the “toe off”, responsible for the beginning of the
swing phase [49]. Normally, this information is used at the
mid-level control layer to trigger movement-dependent
actions. Therefore, the required sensor update rate is typ-
ically higher than for motion classification, however, the
resolution can be lower. For example, pressure insoles
are typically used for measuring ground contacts. While
timing is very important, it can often be sufficient to dif-
ferentiate, whether the foot is, or is not, in contact with
the ground. A continuous gait phase estimation was car-
ried out on the basis of a gait-related depth signal captured
from a waist-worn depth camera [25]. The approach from
Hu et al. [23] seems to be more practical, where a uni-
laterally mounted depth camera detected bilateral gait
events. However, the computation time of more than 1 s
prevented any real-time (online) application.
Safety functions summarize all concepts which con-

tribute to the safety of a prosthetic device. In terms of
environmental sensing, reliable prevention of stumbling
and falling in unexpected terrains is still an open question.
A study with able-bodied individuals found that an unrec-
ognized object with a height of 1 cm can lead to stumbling,
concluding that foot clearance is an important parame-
ter to prevent falling [50]. For measuring this parameter,
infrared distance sensors were used in two publications
[27, 28], but not evaluated in a prosthetic setup. In gen-
eral, the resolution of the sensor modality has to be high
enough to correctly detect small barriers, ideally with a
high update rate to “(re)act” in real time. While high res-
olution is mandatory, update rates can also be lower. For
instance, a leg-mounted depth or color camera, capturing
a single image during the mid-stance phase when the leg is
almost vertical, couldminimize stumbling risks during the
next step. It is also conceivable that two distance sensors,

one more toe-related and the other more heel-related,
in combination with an IMU, could estimate the correct
ground inclination. This could be especially interesting for
the further development of active ankle devices, but it was
not evaluated in any of the reviewed publications.
Half of all the reviewed studies deal with upcoming

object or terrain prediction concepts. The underlying prin-
ciple of all these publications is to observe the front
environment of the user, interpret the input and then
provide a probability for mode switching. This is mainly,
due to the fact that the correct detection of locomotion
mode transition between different terrains, e.g. switching
from level-ground walking to stair ascent mode, is often
challenging and unintuitive. For instance, in commercially
available products, the user must switch between locomo-
tion modes with substantially different characteristics by
carrying out a predefined “special movement”. This action
triggers the transition by using only sensors embedded
into the prosthesis [51]. In accordance with the con-
troller framework by Tucker, upcoming object or terrain
prediction strategies provide input for the high level of
the controller. Earlier listed safety functions on contrast,
interact mainly at the low-level layer, increasing patient
safety.
Huang et al. [35] coined the term “critical timing” for

switching mode, neither interrupting the transition nor
disturbing the balance. Concepts using 1D laser distance
meter [30–33, 36, 37] combine the sensory input with
geometric constrains to estimate upcoming terrain fea-
tures early enough and accurately. Although one group
used a RADAR sensor as an input device [46], the feature
of “looking through” materials was not evaluated in this
study.
Explicit object recognition is another approach for clas-

sifying upcoming barriers directly. The invention of low-
cost high-resolution depth and color cameras opened up
an entirely new field of vision-based object recognition
[52]. Especially for autonomous robots, the capability to
detect and classify objects correctly is critical. For exam-
ple, a self-driving wheel-chair was able to successfully
navigate through the hallways of a hospital [53]. How-
ever, in terms of lower limb device control, the final
decision “where to go” or “what to do” is made by the
user anyway. Therefore, the sensor raw data are usually
pre-processed to obtain probabilities for possible terrain
changes.
Depth cameras [38, 39, 41, 45, 47, 48] were used to

differentiate between a limited number of terrains and
whether the user is approaching stairs. The approach of
soil property estimation based on a color camera [43] was
also evaluated, but not in a prosthetic setup. Nevertheless,
all vision-based systems are computationally intensive and
require an unobstructed field of view. Concepts using
pre-trained classifiers [38–40, 43, 45, 47, 48] achieved



Tschiedel et al. Journal of NeuroEngineering and Rehabilitation           (2020) 17:99 Page 10 of 13

higher accuracies compared to finite-state machines with-
out any training [30–33, 36, 37, 41]. However, pre-trained
classifier performance depends strongly on the size of
training data.Moreover, predefined step sequences during
the acquisition of training data can lead to an undesired
bias – the system is trained with specific parameters,
but in real life step sequence and walking speed are
unpredictable.
In general, it is very difficult to compare the different

approaches, as they use non-standardized test procedures.
In summary, the research studies reported accuracies
ranging from 82% to 99%. Assuming 100 locomotion
mode changes per day and expecting only every tenthmis-
classification to cause a fall, there would still be 3 to 54
serious tumbles per month, which does not seem very
promising.

Sensor modalities
The 32 publications reviewed use 11 types of sensors, as
depicted in Fig. 3. Kinematic sensors are widely used –
24 out of 32 publications, use IMUs for motion estima-
tion. Even all five commercially available microprocessor-
controlled prosthetic knees, reviewed by Fluit et al. [5],
use a shank IMU as sensory input. However, the inte-
gration of IMU information tends to suffer from accu-
mulating errors, which can lead to drifts. Alternatively,
GONIOs are accurate and reliable, but they usually limit
the degree of freedom of complex human joints.
Distance sensors usually use the principle of time of

flight, measuring the round trip time between emitting
and receiving back a specific pulse. Ultrasonic sensors are
based on mechanical (acoustic) waves. The propagation
speed for these sensors is limited by the speed of sound,
which results in a round trip time of approximately 6 ms
for an object at 1 m distance. Thus, nature limits the
update rate of ultrasonic sensors. Nevertheless, they are
common for close proximity applications, as they are able
to detect even transparent materials like glass. By using
electromagnetic waves, the round trip time is usually neg-
ligible, because the speed of light is substantially higher.
The update rate of these sensors is, therefore, limited only
by the processing rate of the internal hardware. Infrared
sensors emit light below the visible light range. Instead,
laser sensors have operating frequencies in the visible
range (red or green light) or above (invisible ultraviolet
range). Update rate and resolution are normally lower for
ultrasonic sensors than they are for lasers. LIDAR sensors
combine laser distance meters with a complex mechanical
mirror system to generate high-resolution 2D or even 3D
scans. However, shocks or vibrations can disrupt the mov-
ing parts in such devices. Historically seen, these sensors
used to be very expensive, whereas nowadays industries
have shifted to develop low-cost solid-state LIDARs for a
broad application.

Depth perception refers to the ability to estimate the
surrounding world in 3D – nature (human eyes) has per-
fected this over millions of years. Historically, color cam-
eras, working on passive light sensors, were combined to
stereo vision systems to extract depth information from
well-known digital images. Performance depends primar-
ily on the underlying stereo correspondence algorithms
(depth calculation process), which tries to match pixels of
the two individual images. Today, depth cameras based
on the time-of-flight principle have become increasingly
more available. Similar to TOF sensors, an artificial light
impulse is emitted, while the reflection is simultaneously
captured by multiple sensitive elements. This generates a
full 3D perception at once with resolutions up to 640 x
480 pixels, small enough to be implemented into a smart-
phone [54]. The resolution of depth cameras, for time of
flight as well as for stereo vision based concepts, is in the
range of 1% of distance with update rates varying from
5 to 60 (depth) frames per second. Nevertheless, all con-
cepts based on infrared, visible or even ultraviolet light
are limited by their explicit need of an unobstructed field
of view. The additional sensors must be worn over any
type of prosthetic cosmetic or clothing and can, therefore,
not be integrated directly into the device. RADAR tech-
nology, however, is not limited by this factor. Although
radar technology was already discovered in the late 19th
century, only recent developments have made new sen-
sors with operating frequencies up to 100 GHz available.
While RADAR sensors have much lower resolutions com-
pared to optical or depth sensors, they can still operate
in harsh outdoor conditions. To which degree an object
is detectable, is expressed in its cross-section, a property
of the target’s reflectivity [55]. Due to the high-frequency
range, certain materials, such as fabrics or plastics, typ-
ically appear transparent. On one hand, this is a good
feature of RADAR sensors, as it allows an implementa-
tion directly into the prosthetic device making it possible
to “look-through” clothes or cosmetics (cover of an artifi-
cial limb to appear lifelike). However, on the other hand,
objects or barriers made out of these materials remain
undetected. Nowadays, there is a shift towards the devel-
opment of super near-field RADAR sensors which are
able to detect human extremities and gestures for a broad
application. For example, Google’s radar-based gesture
sensing technology (Project Soli) is implemented in their
Pixel 4 smartphone allowing a touchless interaction [56].
For the sake of completeness, surface EMG electrodes

as well as force resistive insoles are mentioned, although
they are not really “environmental sensors”. Conceptually,
both type of sensors require a direct contact with the
body. Surface EMG electrodes with the skin to register
muscle activity and insols with the foot to detect ground
contact. The unobstructed field of view, mandatory for
all types of cameras, has no influence on the application
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here. Nevertheless, especially for event detection, insoles
can provide valuable information, but the sensors need to
be worn either ipsilaterally, contralaterally or bilaterally in
the user’s shoe. EMG information is commonly used for
real-time hand prosthesis control [57], but barely in lower
limb devices, since movement artifact and baseline noise
contamination is more prominent there.

Computing power & energy consumption
Nowadays, commercial prostheses have very limited com-
puting power. Typically, finite-state machines with heuris-
tic rule-based approaches are used for intent recognition
and device control. In contrast, most of the reviewed stud-
ies, carried out data acquisition and analysis on powerful
computers with clock rates of 3 GHz or above and mem-
ory sizes up to 32 GB. The available computing power also
influences the calculation time for interpreting or extract-
ing usable information from the complex sensory input.
The delay frommeasuring until adapting needs to be short
enough to guarantee a safe and comfortable device opera-
tion. Typically, update rates for real-time prosthetic device
applications are in the range of 100 Hz [5]. Therefore,
the embedded system architecture of prosthetic devices
needs to be modified significantly if real-time on-board
processing should be enabled. For example, Intel’s Myriad
2 is optimized for vision processing in mobile applications
within 0.5 W of power envelope [58] and could also be
used in lower limb prostheses.
The energy consumption of advanced sensors also needs

to be considered, when designing and developing new
systems. The power consumption of Softkinetic’s DS 325
depth camera used in [38, 39] is below 2.5 W [59]. The
pmdtechnologies’s CamBoard pico flexx used in [22, 23,
47] is below 0.3 W [60]. The radar module used in [46]
has a total power consumption of 5 W [61], with almost
identical geometric dimensions to those of depth sensors.
Ongoing development will thus reduce energy consump-
tion of sensors and processors even further. In contrast,
research and commercial active (powered) knee prosthe-
ses use actuators consuming up to 200 W [4]. Therefore,
the energy consumption of additional sensors cannot be
regarded as the main reasons for exclusion.

Conclusions
In this review, we summarized both implicit and explicit
approaches of environmental sensing. For this purpose,
a systematic literature review as well as a snowballing
analysis of the survey from Tucker et al. [6] was per-
formed. From our novel perspective, five broad control
strategies were identified, how environmental information
canmake “next generation prostheses”more user-friendly,
functional and safe.

There is a clear trend towards more upcoming object or
terrain prediction concepts, providing switching probabil-
ities between different locomotion modes. In summary,
the research studies reported accuracies ranging from 82%
to 99% in well-controlled laboratory settings, but it is
unclear how the systems will perform in realistic environ-
ments, both indoor and outdoor. It was also shown that
implicit environmental sensing strategies in particular
can significantly improve control. Furthermore, informa-
tion about the contralateral leg can play a crucial role in
movement-dependent control applications.
Throughout the 32 reviewed publications, 11 types

of sensors were used. Technology differences were dis-
cussed, and aspects of computing power and energy con-
sumptionmentioned. The update rate and resolution were
found to be essential criteria to determine a suitable con-
trol category. Distance sensors and depth cameras are
widely used, but they are limited by an unobstructed field
of view. Moreover, the latter also requires higher comput-
ing power for calculating interpretable features from the
(complex) raw inputs. In almost all studies, kinematic sen-
sors are used, either to estimate movements directly or to
stabilize other inputs. However, the additional instrumen-
tation of residual body parts seems less practical.
Together with the derived “control strategy landscap-

ing”, our in-depth evaluation of the novel sensors for
environmental awareness can serve as decision guidance
for future research in this field. New high-frequency
RADAR sensors may be the best choice for upcoming
object or terrain prediction approaches, perhaps even for
event detection strategies. Thanks to their ability to “look
through” clothing or cosmetic covers, these sensors could
be embedded directly into a prosthetic device, result-
ing in numerous new possibilities. Before that, however,
researchmust prove that they are sufficiently accurate and
efficient.
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