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Viruses are associated with several human diseases that infect a large number of individuals, hence directly af-
fecting global health and economy. Owing to the lack of efficient vaccines, antiviral therapy and emerging resis-
tance strains, many viruses are considered as a potential threat to public health. Therefore, researches have been
developed to identify new drug candidates for future treatments. Among them, antiviral research based on nat-
ural molecules is a promising approach. Phospholipases A2 (PLA2s) isolated from snake venom have shown sig-
nificant antiviral activity against some viruses such as Dengue virus, Human Immunodeficiency virus, Hepatitis C
virus and Yellow fever virus, and have emerged as an attractive alternative strategy for the development of novel
antiviral therapy. Thus, this review provides an overview of remarkable findings involving PLA2s from snake
venom that possess antiviral activity, anddiscusses themechanisms of actionmediated by PLA2s against different
stages of virus replication cycle. Additionally, molecular docking simulations were performed by interacting be-
tween phospholipids from Dengue virus envelope and PLA2s from Bothrops asper snake venom. Studies on snake
venomPLA2s highlight the potential use of these proteins for the development of broad-spectrumantiviral drugs.

© 2020 Published by Elsevier B.V.
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1. Viral diseases: a public health problem

Viruses are associated to several endemic diseases, including En-
terovirus [1], HPV (Human papillomavirus) [2], HIV (Human immu-
nodeficiency virus) [3] and HSV (Herpes simplex virus) [4], as well as
in outbreaks as Ebola virus, ZIKV (Zika virus), Influenza virus, YFV
(Yellow Fever virus), DENV (Dengue virus) and, currently, the
SARS-CoV-2 (Severe Acute Respiratory Coronavirus 2) [5–9]. Most
of the reported outbreaks since 1980 were related to virus infections
[10], which are still a global burden for public health and economy.
In addition, due to their genetic diversity, viruses are able to infect
a wide range of hosts that can result in host jumps after zoonotic
contacts [11,12].

Pandemics caused by viruses are usually severe and can claim up to
million lives, as shownduring the pandemic of H1N1 in 1918 [13], H1N1
‘swine flu’ in 2009 [14] and Coronavirus Disease 2019 (COVID-19) [15],
that infected 4,993,470 people and caused 327,738 deaths until May 22,
2020 in worldwide according to World Health Organization. Further-
more, the global incidence of dengue has grown dramatically in recent
decades. It is estimated that 100 to 400 million cases of dengue occur
annually worldwide [16].

Viral infection depends on the successful replication into the host
cells [17,18]. In general, the replicative cycle starts by the viral particle
attaching to specific receptors in the surface of host cells that triggers
the viral entry by endocytosis (non-enveloped or enveloped virus),
membrane fusion (enveloped virus) and direct penetration [19–21].
After internalization, the capsid is released into the cytoplasm, allowing
viral genome uncoating [22], which is replicated to produce copies of
the genome and translated to viral proteins. In the endoplasmic reticu-
lum (ER) and Golgi complex, the viral structure is assembled, matured
and then forwarded to host cell membrane, where the progeny of
virus particles is released [23].

Currently, specific antiviral drugs and vaccines are not sufficient
to control emerging and reemerging viral diseases [24,25]. Thus, the
discovery of novel antiviral drugs is mandatory. In general, antiviral
therapy is the only approach to specifically treat viral infections, ab-
rogating viral replicative cycle [26]. However, due to the high ge-
netic variability, viruses can rapidly acquire resistance to antiviral
treatment, especially RNA viruses [27–29]. Furthermore, antiviral
therapy and the prolonged treatment can cause several adverse ef-
fects, including gastrointestinal effects, fatigue, headache, neuropa-
thy and liver toxicity [30–32]. In addition, there are no antivirals
to all diseases and the only course is supportive therapy and,
thereby, numerous innovative drugs have been developed from nat-
ural prototypes such as aspirin (anti-inflammatory) and morphine
(analgesic) [33].

In this way, a diversity of compounds isolated from natural sources
has set grounds for further advances in drug development against vari-
ous diseases [34]. Among them, many drugs based on snake venoms
were approved by the FDA or are involved in preclinical or clinical trials
for a variety of therapeutic applications [35–39]. The development of
snake venom-derived drugs gained a significant improve since the dis-
covery of bradykinin-potentiating peptides (BPP) isolated from the
Brazilian arrowhead viper (Bothrops jararaca) venom, which allowed
the development of captopril, an inhibitor of the angiotensin-
converting enzyme that is widely used against hypertensive process
[40,41]. Besides that, other snake venom-derived drugs have been
found in clinical use, such as tirofiban and eptifibatide (antiplatelet
agents) [42,43], batroxobin, moojenin and vivostat (anticoagulant
agents) [44–47]. Other drugs which comprise molecules from
snake venom as scaffolds are also being explored in preclinical
studies [48].

Due to this therapeutic potential, snake venom toxins have been
widely explored for the discovery of new bioactive compounds and
stand out as an alternative source for therapeutics for a variety of dis-
eases, including life-threatening viral illnesses [49–52].
2. Phospholipases A2 from snake venom

Phospholipases (EC 3.1.) family is widely distributed in nature and
includes hydrolase enzymes, which are essential for phospholipid me-
tabolism and for the regulation of membrane lipids, membrane compo-
sition, signaling, digestion, and inflammation [53]. These proteins are
classified into four major families (A, B, C and D) based on the site
cleaved in the phospholipid molecule [54,55].

Among phospholipases family, the Phospholipases A2 (PLA2s) are
the most studied group [53,54]. These enzymes hydrolyze 2-acyl ester
bond to 2-sn phospholipids, releasing free fatty acid and
lysophospholipids [56,57]. The free fatty acids (arachidonic acid) can
be converted into eicosanoids (prostaglandins, thromboxanes, prosta-
cyclins and leukotrienes), which are associated to a range of physiolog-
ical and pathological effects, such as inflammation and platelet
activation. In addition, the lysophospholipids are also related to a vari-
ety of physiological roles in cell signaling [53,58].

PLA2s are classified into six groups: cytosolic (cPLA2), Ca(2+)-
independent (iPLA2), platelet-activating factor acetylhydrolase
(PAF-AH), lysosomal PLA2 (LyPLA2), adipose specific PLA2

(AdPLA2) and secretory PLA2 (sPLA2) [53]. In addition, the sPLA2s
are divided into the following groups: IA, IB, IIA, IIB, IIC, IID, IIE, IIF,
III, V, IX, X, XIA, XIB, XII, XIII and XIV [53,54]. PLA2s from snake
venom belong to the group of secreted type of enzymes (sPLA2s)
and can be classified into the structural group IB (in Elapidae snake
venoms), which exhibits homology to the mammalian pancreatic
juice PLA2, and also into the group IIA (in Viperidae snake venoms),
that is homologous to the mammalian ‘inflammatory’ PLA2 [59]. Al-
though the PLA2s family is more frequent in snake venom, recent
proteome studies have demonstrated that Phospholipases B (PLB)
can also be found in snake venom [60–62].

sPLA2s are proteins with molecular mass of about 14 kDa, pH opti-
mum at 7 and share a conserved catalytic mechanism based on a His/
Asp dyad using Ca2+ as an essential cofactor for the catalytic activity.
Group II of sPLA2s presents an extended C-terminal segment (5–7
amino acids) [63,64] and is subdivided into two main subgroups, de-
pending on the amino acid residue at position 49 in the protein primary
structure. Aspartate (Asp49 or D49) sPLA2s are enzymatically active,
while lysine (Lys49 or K49) sPLA2s present no enzymatic activity
[65–67]. However, there are further variants, as the serine (Ser49), as-
paragine (Asn49) or arginine (Arg49) [68–70].

Lys49 PLA2s are devoid of catalytic activity due to their inability
to bind Ca2+, a key cofactor for PLA2 activity. Although the lack of en-
zymatic activity, the Lys49 PLA2 homologues have shown to display
toxicity, especially myotoxicity [67]. The toxicity of Lys49 proteins
can be related to a cluster of cationic and hydrophobic/aromatic
amino acid residues located at the C-terminal region of these toxins
[71,72].

Therefore, the cytotoxicity of sPLA2 is probably mediated by the in-
teraction between the C-terminal region and the plasma membrane
[73,74]. Moreover, the PLA2 effects can be mediated through the
integrins and other receptors, such as vascular endothelial growth fac-
tor receptor-2 (VEGFR-2), and M–Type receptors [75–77]. Recently, it
was demonstrated that the cell surface nucleolin interacts with and in-
ternalizes the PLA2-like Bothrops aspermyotoxin-II, which is responsible
to mediate its toxic activity [78].

sPLA2s from snake venom can act on cell membranes of specific tis-
sues inducing several pharmacological actions such asmyotoxicity, neu-
rotoxicity, cardiotoxicity, platelet aggregation activation or inhibition,
hypotension, edema among others [57,79]. In this scenario, these
proteins have emerged as a potential therapeutic model, since nu-
merous studies have focused on their microbicidal [80], antitumor
[81–83], antiangiogenesis [84], antiparasitic [85–87] and antiviral
activities [51].

The development of efficient antiviral therapies has become a global
health emergency. In this sense, several researches have demonstrated
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the antiviral activity of sPLA2s from snake venom against human vi-
ruses, including DENV, YFV, HCV and others [88–92]. Hence, the present
review aimed to summarize the sPLA2s from snake venom that were
Table 1
sPLA2s from snake venom with antiviral effects.

Source/species Protein name EC50/used dosage

Bothrops asper Mt–I 50 μg/mL
50 μg/mL
1.5 ng/mL (EC50)

Mt–II 50 μg/mL
50 μg/mL
2768 ng/mL (EC50)

Bothrops jararacussu BthTX-I 4.8 ng/μL (EC50)
7.063 ng/μL (EC50)
57.3 ng/μL (EC50)
25.0 ng/μL (EC50)
69.0 ng/μL (EC50)
23.4 ng/μL (EC50)

Bothrops leucurus BlK-PLA2 20 μg/mL
BlD-PLA2 20 μg/mL

Crotalus durissus terrificus Crotoxin 0.001 ng/μL (EC50)
0.00045 ng/μL (EC5
0.0046 ng/μL (EC50
0.0036 ng/μL (EC50
0.0054 ng/μL (EC50
–
10 μg/mL
0.018 ng/μL (EC50)
0.0365 ng/μL (EC50
34.4 ng/μL (EC50)
13.7 ng/μL (EC50)
0.05 ng/μL (EC50)
0.04 ng/μL (EC50)
10 μg/mL

PLA2-CB (subunit of crotoxin) 0.00003 ng/μL (EC5
0.0037 ng/μL (EC50
0.021 ng/μL (EC50)
0.066 ng/μL (EC50)
0.0067 ng/μL (EC50
10 μg/mL
0.044 ng/μL (EC50)
0.01647 ng/μL (EC5
17.2 ng/μL (EC50)
3.3 ng/μL (EC50)
10 μg/mL
10 μg/mL

0.06 ng/μL (EC50)
0.26 ng/μL (EC50)
6.08 μg/mL (EC50)

PLA2-IC 0.0137 ng/μL (EC50
0.0054 ng/μL (EC50
0.133 ng/μL (EC50)
0.268 ng/μL (EC50)
21.6 ng/μL (EC50)
0.775 ng/μL (EC50)
1.30 ng/μL (EC50)

Naja mossambica mossambica CM-II-sPLA2 0.036 ng/mL (EC50
0.031 ng/mL (EC50
1.34 ng/mL (EC50)
10,000 ng/mL (EC5
N10,000 ng/mL (EC
N10,000 ng/mL (EC
N10,000 ng/mL (EC
2300 ng/mL (EC50)
5.4 ng/mL (EC50)
N10,000 ng/mL (EC
N10,000 ng/mL (EC
N10,000 ng/mL (EC

NmmCMIII 0.4 nM (EC50)
Naja nigricollis Nigexine 0.4 nM (EC50)
Oxyuranus scutellatus Taipoxin 0.8 nM (EC50)

CV-B3 (Coxsackievirus B3; Picornaviridae); DENV (Dengue virus); EMCV (Encephalomyocardit
immunodeficiency virus); HSV (Herpes simplex virus); JEV (Japanese encephalitis virus); MA
(Oropouche virus); ROCV (Rocio virus); SeV (Sendai virus); SINV (Sindbis virus); VSNJV (Vesic
previously described to possess antiviral activity, highlighting the
mechanisms of action of sPLA2s against different stages of virus replica-
tion cycle (Table 1).
Virus Proposed action mechanism (inhibition) Reference

DENV-1, 2, 3 Entry
(virucidal activity)

[92]
YFV
DENV-2
DENV-1, 2, 3
YFV
DENV-2
DENV-2 Entry

(virucidal activity)
[88]

YFV
DENV-2 Entry

(interfering in adsorption)YFV
DENV-2 Entry

(interfering in internalization)YFV
DENV-1, 2 3 Replication

(interfering in host cell components)
[91]

DENV-2 Entry
(virucidal activity)

[88–90,97]
0) YFV
) ROCV
) MAYV
) OROV

HIV-1,2
HCV
DENV-2 Entry

(interfering in adsorption)) YFV
DENV-2 Entry

(interfering in internalization)YFV
DENV-2 Replication

(interfering in host cell components)YFV
HCV Release

0) DENV-2 Entry
(virucidal activity)

[88–90]
) YFV

ROCV
MAYV

) OROV
HCV
DENV-2 Entry

(interfering in adsorption)0) YFV
DENV-2 Entry

(interfering in internalization)YFV
HCV
HCV Entry

(interfering in host cell components)
DENV-2 Replication

(interfering in host cell components)YFV
HCV

) DENV-2 Entry
(virucidal activity)

[88]
) YFV

DENV-2 Entry
(interfering in adsorption)YFV

DENV-2 Entry (interfering in internalization)
DENV-2 Replication

(interfering in host cell components)YFV
) HCV Entry

(virucidal activity)
[114]

) DENV
JEV

0) MERS-CoV
50) SINV
50) FLUAV
50) SeV

VSNJV
HIV-1

50) HSV-1
50) CV-B3
50) EMCV

HIV-1 isolates Entry
(interfering in host cell components)

[107]
HIV-1 isolates
HIV-1 isolates

is virus; Picornaviridae); FLUAV (Influenza A virus); HCV (Hepatitis C virus); HIV (Human
YV (Mayaro virus); MERS-CoV (Middle East respiratory syndrome coronavirus); OROV
ular stomatitis New Jersey virus); YFV (Yellow Fever virus).
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3. sPLA2s from snake venomwith antiviral effects

3.1. Crotoxin, PLA2-CB (basic chain of crotoxin) and PLA2-IC from Crotalus
durissus terrificus venom

The venom of Crotalus durissus terrificus (C. d. terrificus), a South
American rattlesnake, is composed by a large number of molecules
with biological activities, such as crotoxin, crotamin, PLA2 “inter-cro”
(PLA2-IC), convulxin and gyroxin [93,94]. Crotoxin,which comprehends
more than a half of the dry weight of C. d. terrificus venom, is a hetero-
dimeric compound composed by the PLA2-CB (a basic phospholipase
component) and crotapotin (an acidic nontoxic catalytically inactive
protein) [95,96]. Villarrubia and coworkers [97] reported that crotoxin
has anti-HIV (HIV-1, 2) effect by a direct interactionwith Gagp24 glyco-
protein on the viral surface, which appears to abrogate the HIV anchor-
ing to host cell.

Furthermore, Muller and colleagues [88] working with diverse
sPLA2s isolated from C. d. terrificus venomexplored different approaches
to unveil the potent antiviral activitymediated by crotoxin, PLA2-CB and
PLA2-IC against DENV-2 and YFV (enveloped virus). The authors dem-
onstrated that all investigated sPLA2s promoted a significant inhibition
of DENV-2 and YFV entry into VERO E6 cells by a direct action on the
viral particles (virucidal activity), and by interfering in the adsorption
and internalization steps (early stages of the viral replication cycle)
[88]. Besides that, cell pretreatment with three sPLA2s was able to pro-
tect host cell against flaviviruses infection after 7 days by the reduction
in the number of plaque formation. Interestingly, sPLA2s treatment after
viral infection promoted an enhancement of load viral, indicating that
antiviral effect occurs in the early stages of viral infection [88]. In addi-
tion, the researchers gained insights into the role of catalytic sites of
the tested sPLA2s, proposing the use of a sPLA2 without catalytic activity
(BthTX-I) isolated from Bothrops jararacussu [98].

BthTX-I revealed antiviral activity against YFV and DENV-2 in the vi-
rucidal, adsorption and internalization assays. Interestingly, as shown to
other catalytically-active sPLA2s at 100 ng/μL, BthTX-I at the same con-
centration was also able to inhibit YFV entry by virucidal activity
(100%), interfering in adsorption (77%) and internalization (78%) [88].
Although BthTX-I showed antiviral activity, the effective concentration
50% (EC50) values obtained for this toxin were extremely higher
when compared to the catalytically-active sPLA2s. For example, for the
half-maximum virucidal activity against YFV, this toxin required
7.063 ng/μL, while crotoxin, PLA2-CB and PLA2-IC demanded 0.00045,
0.0037 and 0.0054 ng/μL, respectively. In a similar way against DENV-
2, BthTX-I acted at 4.8 ng/μL, in contrast to the crotoxin, PLA2-CB and
PLA2-IC that required 0.001, 0.00003 and 0.0137 ng/μL, respectively.
As shown, the huge differences of EC50 values between BthTX-I and en-
zymatically active proteins reflect that the enzymatic activity is an im-
portant factor for the antiviral activity of sPLA2s [88].

In a further study, PLA2-CB and crotoxin inhibited virus entry by vi-
rucidal activity against other enveloped viruses, such as Rocio virus
(ROCV; Flaviviridae family), Oropouche virus (OROV; Bunyaviridae
family), and Mayaro virus (MAYV; Togaviridae family). However,
these compounds did not show virucidal effect against Coxsackie B5
virus (CV-B5; Picornaviridae family; non-enveloped virus), hence sug-
gesting that the possible antiviral action occurs upon the lipid bilayer
viral envelope [89]. To corroborate these findings, it was demonstrated
that preincubating DENV-2 with PLA2-CB or crotoxin resulted in an in-
crease of exposure and degradation of viral RNA [89]. Also, Russo and
collaborators [99] expressed two recombinant PLA2-CB isoforms
through a prokaryotic system and noted that both rPLA2-CB1 and
rPLA2-CB2 maintained the viral inhibitory activity against CHIKV,
DENV-2, YFV and ZIKV when compared to the native sPLA2-CB. Addi-
tionally, Muller and colleagues [88,89] suggested that the mechanism
of action of PLA2-CB isolated from C. t. terrificus against DENV can
occur through an interaction with components on the host cell surface
or mainly due to the glycerophospholipid cleavage on the virus
envelope, destabilizing viral E proteins and resulting in the viral enve-
lope disruption and RNAviral exposure before the infection of host cells.

In order to gain insights into the antiviral mechanism of sPLA2s ob-
tained from C. t. terrificus, Shimizu and colleagues [90] showed that
PLA2-CB inhibited HCVcc JFH-1 virus strain entry and replication in
Huh 7.5 cells, and crotoxin blocked virus entry and release, suggesting
that these proteins possessmultiple antiviral effects against HCV.More-
over, the authors also reported that PLA2-CB significantly decrease the
levels of lipid droplets, which are essential for the HCV replication com-
plex, and reduced the levels of HCV NS5A protein due to the replication
inhibition, evidencing that besides the action on virus entry, PLA2-CB is
able to disrupt HCV replication probably by an interference in lipid me-
tabolism of host cell [90,100,101].

3.2. BlK-PLA2 and BlD-PLA2 from Bothrops leucurus venom

Both BlK-PLA2 (Lys49 sPLA2s) and BlD-PLA2 (Asp49 sPLA2s) are two
basic sPLA2s isolated from Bothrops leucurus venom, a pit viper (white-
tailed-jararaca) commonly found in the northeast of Brazil [102]. Cecilio
and coworkers [91] showed that the pretreatment of LLC-MK2 cells
(Rhesus Monkey Kidney Epithelial cells) with each isoform of Bl-PLA2

followed by viral infection was able to inhibit DENV infectivity (sero-
types 1, 2 and 3), measured by qRT-PCR quantification of the DENV
viral load in the cell supernatants after virus infection. On the other
hand, Bl-PLA2s treatment after viral entry was not capable of inhibiting
viral replication, then suggesting that the antiviral effect occurs upon
components on the surface of the host cell membrane. The authors did
not assess the potential virucidal mechanism of Bl-PLA2s against
DENV. However, they suggested that the possible mechanism of action
of Bl-PLA2s does not depend exclusively on their catalytic site. The
Lys49-BlK-PLA2 treatmentwas able to interfere in the viral load, indicat-
ing that the functional effect mediated by Bl-PLA2s also may occur due
to the presence of pharmacological domains on the enzyme surface
that would allow the interaction with host cell proteins, as well as the
enzymatic activity [91]. The authors hypothesized that the DENV RNA
level reduction is mediated by the intracellular action of Bl-PLA2s due
to the higher penetrability capacity of basic sPLA2s, in comparison to
neutral and acidic enzymes [91,103].

3.3. Mt-I and Mt-II from Bothrops asper venom

Bothrops asper is a viperid specie found in Central America and its
venom contains significant concentrations of acid and basic sPLA2 en-
zymes [104]. The B. asper venom has both the basic enzymatically-
active sPLA2 (Mt-I) and the catalytically-inactive sPLA2-like protein
(Mt-II) [74].

Brenes and collaborators [92] investigated the antiviral potential
triggered by both Mt-I and Mt-II isoforms isolated from B. asper
venom. The authors showed that these sPLA2s at concentration of
50 μg/mL completely blocked virus entry by a virucidal action against
members of Flaviviridae family, such as DENV and YFV, while exhibited
moderate to negligible effects against other enveloped viruses (HSV-1,
HSV-2, Influenza A H3N2 and Vesicular stomatitis VSV) or non-
enveloped viruses (Sabin Poliovirus 1, 2 and 3). Interestingly, for the
half-maximum virucidal activity against DENV-2, Mt-I required
1.5 ng/mL, while Mt-II acted at 2768 ng/mL, revealing that Mt-I is ex-
tremely more potent than Mt-II [92]. Investigating the role of the enzy-
matic activity in the inhibitory effect uponDENV-2, it was promoted the
inactivation of the catalytic activity of Mt-I with p-bromophenacyl bro-
mide (pBPB). The data showed that the chemical inactivation of Mt-I re-
sulted in a reduction of the virucidal potency, indicating the relevant
role of the enzymatic action against viral infection [92]. Even without
enzymatic activity, the C-terminal region of Mt-II, which encompasses
the amino acid residues 115–129, is responsible for the membrane-
permeabilizing effect caused in many cellular types [67], as well as its
bactericidal activity [105]. Notwithstanding that, the authors
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demonstrated that, even at high concentrations, the synthetic peptide
“p115” corresponding to the C- terminal region ofMt-II (amino acid res-
idues 115–129) did not inhibit DENV-2 [92]. Thus, the authors speculate
that the weak virucidal effect of Mt-II may be intrinsic or more possible
related to a trace contamination with Mt-I, where the total chromato-
graphic separation for these toxins is hardly achieved [92].

In addition, it was suggested that Mt-I acts by a direct virucidal
mechanism that depends on its enzymatic activity, which may hydro-
lyze viral envelope phospholipids and disrupt the viral envelope of
flaviviruses leading to the impairment of the infection. Also, the mode
of action of Mt-I and Mt-II is not related to an effect on host cell, since
cell treatment after infection did not interfere in viral replication [92].
Furthermore, in a pretreatment assay, it was demonstrated a partial re-
duction of viral plaques, that may be explained by a slight cytotoxic ac-
tion of Mt-I on cells [92]. Finally, the higher antiviral activity of Mt-I
against Flaviviridae viruses in comparison to other enveloped virus fam-
ilies may be related to the specific structural organization, physico-
chemical composition, curvature and fluidity of viral envelope from
flaviviruses, which may positively affect the catalytic activity of Mt-I
against this family [106].

3.4. Taipoxin (Oxyuranus scutellatus), nigexine (Naja nigricollis) and
NmmCMIII (Naja mossambica mossambica)

In a previous study, Fenard and colleagues [107] demonstrated anti-
HIV-1 effects of different sPLA2s from snake venom, such as taipoxin
(Oxyuranus scutellatus venom), NmmCMIII (Naja mossambica
mossambica venom) [108,109] and nigexine (Naja nigricollis venom)
[110]. Investigating the possible mode of action of some of these
sPLA2s, it was observed that despite their enzymatic activity, NmmCMIII

and taipoxin did not show virucidal effects against HIV-1, but promoted
an efficient inhibition of HIV-1 entry by preventing the intracellular re-
lease of HIV-1 Gap p24 proteins from the viral capsid [107].

The blockage of HIV entry appears to not depend exclusively on
sPLA2s catalytically active, whichwas confirmed through twomanners:
i) the use of inhibitors of sPLA2s activity, such as phenacyl bromide,
aristolochic acid or oleoyloxyethylphosphocholine, that were not able
to interfere in the blockage of virus entry mediated by sPLA2s; ii) the
use of cleavage products of sPLA2s, such as arachidonic acid,
lysophosphatidylethanolamine, lysophosphatidic acid, oleoyl-
lysophosphatidylcholine and palmitoyl-lysophosphatidylcholine,
which were also not able to inhibit virus entry [107]. In addition, com-
petition binding assays between sPLA2s and host cells showed ex-
tremely low dissociation constant (K) values for NmmCMIII, taipoxin
and nigexine, suggesting that the inhibition of HIV-1 entry triggered
by sPLA2s is more probably linked to sPLA2s binding membrane recep-
tors of host cells than their enzymatic activity [107,111].

3.5. CM-II-sPLA2 from Naja mossambica mossambica venom

CM-II-sPLA2 is a secreted PLA2 isoform isolated from Naja
mossambica mossambica venom [112,113]. Recently, Chen and co-
workers [114] reported that this sPLA2 possesses a potent dose-
dependent virucidal activity that impairs the entry of enveloped viruses
from budding through the endoplasmic reticulum, such as HCV, DENV
and JEV (Japanese encephalitis virus) belonging to the Flaviviridae fam-
ily. In contrast, CM-II-sPLA2 demonstrated a low antiviral activity
against other enveloped viruses by: i) budding through the plasma
membrane, as observed for SINV (Sindbis virus; Togaviridae), SeV (Sen-
dai virus; Paramyxoviridae), FLUAV (Influenza A virus;
Orthomyxoviridae), VSNJV (Vesicular stomatitis New Jersey virus;
Rhabdoviridae) and HIV-1 (Retroviridae); ii) budding through the
trans-Golgi network, as seen for HSV- 1 (Herpes simplex virus type 1;
Herpesviridae); iii) budding through the ER-Golgi intermediate com-
partment, as for MERS-CoV (Middle East respiratory syndrome corona-
virus; Coronaviridae). Additionally, the slight effect was also observed
against non-enveloped viruses, such as EMCV (Encephalomyocarditis
virus; Picornaviridae) and CV-B3 (Coxsackievirus B3; Picornaviridae)
[114].

The disruption of viral envelope by CM-II-sPLA2 appears to be di-
rectly related to its enzymatic activity, which was confirmed by the
use of manoalide (a specific sPLA2 inhibitor) that inhibited the virucidal
activity of CM-II-sPLA2 against HCV and DENV [114]. Moreover, the se-
lectivity of CM-II-sPLA2 for virus buds through endoplasmic reticulum
may be related to the differences in the phospholipid contents and
physicochemical characteristics (thickness and sturdiness) that can dif-
fer among the different routes of viral budding, which would enhance
the sensitivity to CM-II-sPLA2 mediated by hydrolysis against HCV,
DENV and JEV [114–117].

4. Proposed antiviral mechanism of sPLA2s from snake venom

Findings from the current literature about the antiviral activity of
toxins (Table 1) are heterogeneous, since authors developed a variety
of assays/models using different sPLA2s and viruses. The virucidal
model corresponds to the strategy in which the toxins act directly on
the virus particles before infecting the cell monolayer; in the pre-
infection model, the uninfected monolayers are previously treated
with toxins before viral infection; and in the post-infection model, cell
monolayers are adsorbed with the virus followed by toxin treatment.
In this sense, many studies raised the following questions: in which
stages of virus replication are the sPLA2s able to interfere? Does the an-
tiviral action of sPLA2s depend on their catalytic activity? Based on this,
we summarize a possible model of antiviral action mediated by sPLA2s
from snake venom.

As discussed above, sPLA2s have demonstrated to be potent antiviral
inhibitors by interfering in different stages of virus replicative cycle as
entry steps, replication and release (Fig. 1). Current studies have re-
ported that the antiviral action of sPLA2s on steps of viral cycle can
occur through a direct action upon viral particle and/or by an interaction
with virus or host cell components.

Regarding the virucidal activity, studies have shown that both
catalytically-active sPLA2s (crotoxin, PLA2-IC, PLA2-CB, Mt-I and CM-II-
sPLA2) and catalytically-inactive sPLA2s (Mt-II and BthTX-I) indicated
virucidal activity preferentially against enveloped viruses, such as
DENV (serotypes 1, 2 and 3), YFV, ROCV, OROV, MAYV, HCV, JEV,
MERS-CoV, SINV, FLUAV, SeV, VSNJV, HIV-1 and HSV-1 [88–90,92,114].

It is proposed that the potent virucidal activity of sPLA2s against
enveloped viruses is likely associated with the ability that
catalytically-active sPLA2s have to cleave glycerophospholipids in the
virus lipid envelope, and it is reasonable to propose that sPLA2s also
present domains that are capable to interactwith viral envelope compo-
nents, which could lead to viral envelope disruption, hence resulting in
exposure of the viral content (viral inactivation) and compromising the
early stages of viral replication. Additionally, Muller and colleagues
[88,89], through a steric and electrostatic analysis of the interaction of
PLA2-CB with the DENV envelope lipid bilayer, showed that PLA2-CB
probably accesses the DENV lipid bilayer through the pores found on
each of the twenty 3-fold vertices in the E protein shell on theDENV sur-
face, which would allow the glycerophospholipid cleavage on the virus
envelope and destabilization of the E proteins. Interestingly, it has been
demonstrated that the structural organization and lipid composition of
viral envelope may influence the antiviral efficiency of some sPLA2s,
suggesting that the virucidal mechanism mediated by sPLA2s is specific
[92].

Independent studies have revealed that sPLA2s such as crotoxin,
PLA2-IC, PLA2-CB, Bl-PLA2 and BthTX-I are also able to dramatically im-
pact the entry, replication and release of viruses by targeting host cell
components [88–91]. To gain insights into these viral cycle stages, it
was demonstrated that NmmCMIII, taipoxin and nigexine prevented
the intracellular release of HIV-1 Gap p24 proteins from the viral capsid
(inhibition virus entry) by a direct binding to membrane receptors of



Fig. 1. Schematic representation of themechanismsof action of sPLA2s from snake venomonviral replicative cycle. sPLA2s,whichpossess antiviral activity, are indicated in early and/or late
stages of the viral life cycle: entry, replication and release.Mt-I andMt-II (Bothrops asper), BthTX-I (Bothrops jararacussu), crotoxin, PLA2-CB and PLA2-IC (Crotalus durissus terrificus), CM-II-
sPLA2 and NmmCMIII (Naja mossambica mossambica), nigexine (Naja nigricollis), taipoxin (Oxyuranus scutellatus), BlK-PLA2 and BlD-PLA2 (Bothrops leucurus) are demonstrated.
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host cells [107]. In addition, PLA2-CBwas able to disrupt HCV replication
probably by an interference in lipid metabolism of host cell [90].

It was demonstrated through the use of both specific sPLA2 inhibi-
tors and the catalytically-inactive sPLA2s that the antiviral effect of the
major tested catalytically-active sPLA2s, such as crotoxin, PLA2-IC,
PLA2-CB, BlD-PLA2, Mt-I and CM-II-sPLA2 is significantly higher when
presented their functional catalytic site to sPLA2s with no enzymatic ac-
tivity (BthTX-I, BlK-PLA2 and Mt-II) [88,91,92,114].

In order to corroborate with the data from the current literature, we
performed docking simulations between the sPLA2s from Bothrops asper
venom and three phospholipids found in the DENV envelope, which are
1-Palmitoyl-2-oleoylphosphatidylcholine (POPC), 1-palmitoyl-2-
oleoylphosphatidylethanolamine (POPE) and 1-Palmitoyl-2-
oleoylphosphatidylserine (POPS) [118]. The molecular docking simula-
tions were done by using the 3D crystal structure of Mt-I (PDB: 5TFV)
and Mt-II (PDB ID 4YV5) retrieved from Protein Database (https://
www.rcsb.org/).

We simulated the interaction in the enzymatic site of sPLA2s with
palmitoyl phospholipids (head or complete structure) using AutoDock
Vina software [119]. The predicted affinity between sPLA2s and
palmitoyl phospholipids (head or complete) was similar (Table 2).
Table 2
Docking simulations betweenMt-I andMt-II with palmitoyl phospholipids (head or com-
plete structure) from DENV envelope.

PLA2s affinity (kcal/mol) Phospholipids

POPC POPE POPS

Head Complete Head Complete Head Complete

Mt-I −5.1 −5.4 −4.7 −5.1 −5.0 −5.4
Mt-II −4.3 −4.5 −4.3 −4.7 −4.3 −4.8

POPC - 1-palmitoyl-2-oleoylphosphatidylcholine; POPE - 1-palmitoyl-2-
oleoylphosphatidylethanolamine; POPS - 1-palmitoyl-2-oleoylphosphatidylserine.
Concerning to the interaction with the phospholipids head, Mt-I
showed a higher affinity to POPC, POPE and POPS (−5.1, −4.7 and
−5.0 kcal/mol, respectively) related to Mt-II (Table 2). When we simu-
lated the docking with the complete palmitoyl phospholipid molecule,
Mt-I also has a higher affinity than Mt-II (Table 2).

Although we do not observe a strong difference in the affinity be-
tween Mt-I and Mt-II for palmitoyl phospholipids, it is possible to note
structural variation in the enzymatic site of these two toxins. Compared
to Mt-II, the enzymatic site of Mt-I (Fig. 2A) is more suitable due to a
smaller aspartic acid radical group. The van der Waals radii volume of
aspartic acid is 91 and hence it is more prominent, while the lysine
has a volume of 135, and this results in less space in enzymatic site en-
trance in Mt-II (Fig. 2B). This difference could create an enzymatic site
more restricted to palmitoyl phospholipid entrance/binding and be par-
tially responsible for the absence of enzymatic activity in Mt-II [120]. In
addition, the enzymatic activity of Mt-I can be attributed to highly con-
served catalytic site formed by the amino acid residues His48, Asp49,
Tyr52 and Asp99. Asp49 coordinates the hydrolysis reaction of phos-
pholipids togetherwith the residues of the Ca2+binding loop, essential
in the catalytic activity of PLA2s. The substitution of lysine residue at the
same position affects the ability of this protein to bind to Ca2+, resulting
in the absence of catalytic activity [92].

Despite the stronger antiviral activity is associated with the enzy-
matic activity, the antiviral mechanism of sPLA2s does not depend ex-
clusively on their catalytic site, since Lys49 sPLA2s and inhibited
catalytically-active sPLA2s were also able to show antiviral effects, sug-
gesting that sPLA2s may possess different mechanisms of action. How-
ever, additional studies with different Lys49 from snake venom are
required to better characterize the antiviral potential of this protein
class.

Functional and structural studies have described that the activity of
Lys49 PLA2s from snake venom toward cell membranes in myotoxic
mechanism involves an allosteric transition, and the participation of

https://www.rcsb.org/
https://www.rcsb.org/
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Fig. 2.Docking simulations between sPLA2s and 1-palmitoyl-2-oleoylphosphatidylcholine
(POPC).Mt-I (A) andMt-II (B) are showed as surface and the enzymatic site is colored. The
amino acids from the enzymatic site are H48 in red, D49 (Mt-I) or K49 (Mt-II) in blue, and
Y52 in green. The POPC is showed aswire structure. The aspartic acid has a smaller volume
than lysine,whichmay result in a less open entrance inMt-II (panel B) comparedwithMt-
I (panel A). H: histidine; D: aspartate; K: lysine; Y: tyrosine.
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two independent interaction sites with the target membrane
[67,72,121–123]. The action of Lys49 PLA2s is related to a cluster of cat-
ionic and hydrophobic/aromatic amino acid residues located at the C-
terminal region of this toxin. These two conserved regions in most
Lys49-PLA2s are designed by “cationic membrane-docking site”
(MDoS),which are formedby the strictly conserved C-terminal residues
(Lys115 and Arg118), eventually aided by other cationic and exposed
residues such as Lys20, Lys80, Lys122 and Lys127; and the “hydrophobic
membrane-disruption site” (MDiS) formed by residues of Leu121 and
Phe125. The key step for protein activation is the binding of a fatty
acid at the hydrophobic channel, which leads to allosteric transition
and structure stabilization exposing MDoS and MDiS to the membrane,
following by the insertion of theMDiS region from bothmonomers into
the target membrane. This penetration disrupts the lipid bilayer, caus-
ing alterations in the membrane permeability, highlighted by a promi-
nent influx of ions (i.e., Ca2+ and Na+), and eventually, irreversible
intracellular alterations and cell death [123].

According to myotoxic mechanism of Lys49 PLA2s from viperid
snake venoms, it is proposed that the fatty acids which are important
to protein activationmay come frommembrane phospholipid hydroly-
sis by catalytic PLA2s (Asp49), highlighting the synergism between
Asp49 PLA2s and Lys49 PLA2 in snake envenomation [124]. In this
way, the antiviral effects of the Lys49 PLA2s from snake venom, showed
in this review,may be associated to fatty acids from the catalytic activity
of cytosolic PLA2 (cPLA2) from virus lipid envelope, once it was
demonstrated that enzymatic activity of the cPLA2 is required for repli-
cation of various virus [125–127]. Muller and colleagues [126] showed
that the pharmacological inhibition of a cellular phospholipase, cPLA2,
using a specific small-molecule inhibitor, drastically reduces coronavi-
rus RNA synthesis and, as a consequence, protein accumulation and
the production of infectious virus progeny. In addition, cPLA2 activity
was shown to be critically involved in the production of infectious prog-
eny of HCV and DENV [128].

5. Concluding remarks: sPLA2s as a possible useful tool for the devel-
opment of antiviral compounds

The present review highlighted that PLA2s from snake venom have
become valuable as pharmacological tools and/or therapeutic ap-
proaches due to their extremely high specificity and potent activity
against microbial infection. Regarding to antiviral properties, we
highlighted the following remarks: (i) the antiviral effects of sPLA2s
can be mediated by either a dependent or independent catalytic mech-
anism; (ii) sPLA2s-antiviral effects are more evident against enveloped
virus; (iii) sPLA2s promoted the blockage of viral entry into host cells
by the direct action on the viral particle, resulting in
glycerophospholipids cleavage and destabilization of viral envelope
proteins; (iv) the structural organization, physicochemical composition,
and the curvature and fluidity of viral envelopemay influence in the an-
tiviral efficiency of some sPLA2s; (v) sPLA2s promoted the blockage of
entry, replication and release of virus probably by the interference on
the host cell components.

The structure and function of sPLA2s from snake venom have been
widely explored. Homology studies with sPLA2s have demonstrated
highly conserved regions in these proteins capable of disrupting the in-
tegrity ofmembranes and provokingmany pharmacological effects. De-
spite extensive studies on sPLA2s in over decades, there is few of them
focusing on mechanistic aspects of the antiviral activities and to date
are limited to in vitro and in silico models. It is important to note that
these sPLA2s showed damage effects in vivo, such asmyotoxicity and in-
flammation. Thus, further in vivo studies for attesting antiviral effects of
sPLA2s need to be addressed to investigate their safety, toxicity and
pharmacokinetics. Taken together, new structural and functional stud-
ieswith sPLA2s are essential to discover new relevantmotifs responsible
for the antiviral activities that would allow the future use of these pro-
teins or peptides for the design of antiviral drugs, capable of ensuring
more stability and targeting the specific site of action.
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