Skip to main content
. Author manuscript; available in PMC: 2020 Jul 19.
Published in final edited form as: J Neurosci Methods. 2018 Mar 22;302:75–81. doi: 10.1016/j.jneumeth.2018.03.008

Table 7.

Confusion matrix for multi-class classification.

Result Best-Submission
Selection-Submission
ad hc mci cmci ad hc mci cmci
AD 35 0 0 5 37 0 0 3
HC 1 15 6 18 0 18 12 10
MCI 7 8 5 20 3 15 11 11
cMCI 8 3 0 29 4 8 7 21
Precision 0.69 0.58 0.45 0.40 0.84 0.44 0.37 0.47
Recall 0.88 0.38 0.13 0.73 0.93 0.45 0.28 0.53
F1-score 0.77 0.46 0.20 0.52 0.88 0.44 0.31 0.49
Official Score 52.500% 54.387%

The lowercase ad, hc, mci, and cmci denotes the number of AD, HC, MCI and cMCI which generated from our algorithm. The capital AD, HC, MCI, and cMCI mean the number of real data (all these numbers exclude the simulated data).