Table 7.
Confusion matrix for multi-class classification.
| Result | Best-Submission |
Selection-Submission |
||||||
|---|---|---|---|---|---|---|---|---|
| ad | hc | mci | cmci | ad | hc | mci | cmci | |
| AD | 35 | 0 | 0 | 5 | 37 | 0 | 0 | 3 |
| HC | 1 | 15 | 6 | 18 | 0 | 18 | 12 | 10 |
| MCI | 7 | 8 | 5 | 20 | 3 | 15 | 11 | 11 |
| cMCI | 8 | 3 | 0 | 29 | 4 | 8 | 7 | 21 |
| Precision | 0.69 | 0.58 | 0.45 | 0.40 | 0.84 | 0.44 | 0.37 | 0.47 |
| Recall | 0.88 | 0.38 | 0.13 | 0.73 | 0.93 | 0.45 | 0.28 | 0.53 |
| F1-score | 0.77 | 0.46 | 0.20 | 0.52 | 0.88 | 0.44 | 0.31 | 0.49 |
| Official Score | 52.500% | 54.387% | ||||||
The lowercase ad, hc, mci, and cmci denotes the number of AD, HC, MCI and cMCI which generated from our algorithm. The capital AD, HC, MCI, and cMCI mean the number of real data (all these numbers exclude the simulated data).