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Honeysuckle flower
Honeysuckle flower is a common edible-medicinal food with significant anti-inflammatory efficacy. Process
quality control of its ethanol precipitation is a topical issue in the pharmaceutical field. Near infrared (NIR) spec-
troscopy is commonly used for process quality analysis. However, establishing a robust and reliable quantitative
model of complex process remains a challenge in industrial applications of NIR. In this paper, modeling design
based on quality by design concept (QbD) was implemented for the ethanol precipitation process quality control
of Honeysuckle flower. According to the 56models' performances and 25 contour plots, quadratic model was the
best with Radj

2 increasing from 0.1395 to 0.9085, indicating the strong interaction among spectral pre-processing
methods, variable selection methods, and latent factors. SG9 and CARS was an appropriate combination for
modeling. Furthermore, spectral assignment method was creatively introduced for variable selection. Another
56models' performances and 25 contour plotswere established. Comparedwith the chemometric variable selec-
tionmethod, spectral assignment combinedwith QbD conceptmade a higher Rpre

2 and a lower RMSEP.When the
latent factors of PLS was small, Rpre

2 of the model by spectral assignment increased from 0.9605 to 0.9916 and
RMSEP decreased from 0.1555mg/mL to 0.07134 mg/mL. This result suggests that the variable selected by spec-
tral assignment is more representative and precise. This provided a novel modeling guideline for process quality
control in PAT.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Honeysuckle flower is a common edible-medicinal food with signif-
icant anti-inflammatory efficacy [1]. It not only has a specific efficacy of
detoxification, but also could be used as a heat-clearing drink. It has
even been developed into products, such as Chinese famous tea drink
Wang Laoji, Jiaduobao, as well as the distilled liquid of Honeysuckle
flower. The annual sales of Honeysuckle flower productions are
among the best in China. For example, Jiaduobao's operating income
OVA, analysis of variance; CARS,
al modeling parameters; CQAs,
, high-performance liquid chro-
; NIR, near-infrared; PLS, partial
an square error of calibration;
itzky-Golay smoothing with 9
ctra; SG9 + 2D, SG9 combined
ate; SR, selection ratio; UVE, un-
in projection.
ese Medicine, Beijing 102488,
in 2016 was 24 billion yuan, ranking first in the Chinese herbal tea in-
dustry with a market share of 52.6%. In Japan, the Kobayashi's Qingfei
Soup is an edible-medicinal prescription containing Honeysuckle
flower.

Ethanol precipitation is a characteristic and significant process of
Honeysuckle flower production, which calls for a precise quality control
method. Off-line quality control methods have hysteresis leading to an
insecure and unpredictable production quality [2]. To solve this issue,
process analytical technology (PAT) based on chemometrics is proposed
to quality control, which is especially applicable in case of complex pro-
cesses [3]. Currently, NIR spectroscopy is the most commonly used PAT
process analyser in pharmaceutical technology because of non-
destructive measurements and real-time monitoring in process [4,5].
It is especially suitable for a complex production, which needs process
quality control [6,7].

Wu et al. used NIR spectroscopy tomonitor the concentration distri-
bution of amino acids in the hydrolysis of Cornu Bubali [2]. Xu et al. pro-
posed amulti-phase andmultivariate statistical process control strategy
for alcohol precipitation of Honeysuckle flower. [8]. Laub-Ekgreen et al.
applied NIR spectroscopy to rapid and non-destructive salt
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concentration monitoring in the pickling process of squid [9]. Oxidative
damage of porkmyofibrils during frozen storage has beenmonitored by
the NIR hyperspectral imaging [10].

In the application of NIR to process quality control, there is an essen-
tial factor, quantitative model. To establish an accurate NIR model, the
most important part is the optimization of the critical modeling param-
eters (CMPs). One CMP in NIR modeling is the spectral preprocessing
because of some interfering information [11]. Pizarro et al. and
Christensen et al. both demonstrated the performance of quantitative
NIR models established by different pre-processing methods were di-
verse [12,13]. Variable selection [14] is another CMP to extract useful in-
formation for modeling. Bi et al. proved that, compared with the full
spectra, the NIR model established by optimal spectra achieved better
performance [15]. Yuan et al. indicated that the discriminant models
were improved and simplified significantly by variable selection [16].
In addition, a suitable latent factor is also a CMP to avoid over-fitting
and under-fitting for modeling [17].

In classical modeling, the CMPs were optimized step-by-step. Ge-
netic algorithm is a commonly used method to optimize the spectral
pre-processing method or variable selection method [18]. Rosas et al.
compared three spectral pre-processing methods for NIR process opti-
mization of a multicomponent formulation [19]. Wu et al. used a novel
method to optimize the model performance of Partial least square
(PLS), interval PLS (iPLS), backward interval PLS (BiPLS) and moving
window PLS (MWPLS), and point out that with different evaluation in-
dicator, the optimal method is diverse [20]. Pan et al. found that BiPLS
was the appropriate variable selection method for establishing the par-
ticle size model rather than synergy iPLS (SiPLS) [21].

Nevertheless, the established models optimized step-by-step ig-
nored the interaction among modeling parameters and were not the
best in overall situation. An integrated approach was introduced to op-
timize several modeling parameters simultaneously based on genetic
algorithm [22,23]. Similarly, a systematic modeling method was put
up by using a processing trajectory to select modeling parameters
[24–26]. Althoughmore valid than before, this method still needs to es-
tablish a lot of models laboriously and could not demonstrate the inter-
action among the parameters. Hence, modeling design is necessarily
applied here to simplify the process and establish an overall optimal
model.

To implement modeling design, Quality by Design (QbD) concept is
a good choice [27], which was introduced in chemical manufacturing
control in 2004. In the ICH Q8 guideline, QbD is defined as a systematic
approach to development that begins with predefined objectives and
emphasizes product and process understanding, as well as process con-
trol, based on sound science and quality risk management [28]. It was
often used to optimize process parameters in pharmaceutical industry
[29]. Liu et al. used it to the quality control of Angong Niuhuang Wan
by Laser-Induced Breakdown Spectroscopy [30]. Dai et al. applied it to
the development of a novel RP-HPLC analytical method for Huanglian
[31]. Similarly, it could also be applied to optimize NIR CMPs by a design
of modeling evaluation procedures.

However, the chemometrics variable selection could not discern
special components in samples directly. Lee et al. argued that the differ-
ent variable selectionmethods performedwide variability in their capa-
bilities to identify the consistent subset of variables [32]. Du et al. also
demonstrated that different chemometrics selectionmethods led to dis-
tinct characteristic wavelengths and bands [33]. NIR spectral assign-
ment based on the interrelation between spectra and structure is
efficacious to improve model performance and interpretation [34,35].
Chlorogenic acid is the main medicinal component of honeysuckle
[36,37]. It is also used as the quality control component of honeysuckle
in Chinese Pharmacopeia. Many researches proved that it played an im-
portant role in the treatment of SARS virus in 2003 and novel coronavi-
rus pneumonia in 2019.

Therefore, a design of NIR modeling evaluation procedures was im-
plemented by D-optimal design method according to QbD concept.
Furthermore, getting the characteristic band of chlorogenic acid [38],
the special component of Honeysuckle flower, by spectral assignment,
this paper creatively combined this characteristic band with modeling
CMPs designed by D-optimal to establish a more precise and reliable
model. These also provided a reference method for modeling design
and the establishment of global optimal models in PAT of edible-
medicinal food.

2. Materials and methods

2.1. On-line NIR spectra acquisition and HPLC analysis in ethanol precipita-
tion process of Honeysuckle flower

Honeysuckle flower was purchased from Ben Cao Fang Yuan Medi-
cineCo. LTD. (Beijing, China). Its authenticitywas determinedbyProfes-
sor Chunsheng Liu of Beijing University of Chinese Medicine.
Chlorogenic acid reference standard (lot number: 110777-201005)
was supplied by the National Institutes for Food and Drug Control (Bei-
jing, China). HPLC grade acetonitrile was purchased from Tedia (USA).
Deionized water was purified by Milli-Q water system (Millipore
Corp., Bedford, MA, USA).

The ethanol precipitation process of Honeysuckle flower was imple-
mented according to a specific production process parameters of a cer-
tain enterprise, which was performed in a 3 L glass reactor using an
agitator at constant speed of 500 rpm. Ethanol was pumped into the re-
actor from the ethanol tank with a flow rate of 75 mL/min. Samples
were collected during the alcohol precipitation process at 5 min inter-
vals. 60 samples were collected in this research. Sample of 1.5 mL was
drawn by a pipette gun each time. The NIR spectrum was recorded im-
mediately after the sample collection hadbeen completed,whichwas to
ensure that the collected spectrum was consistent with the obtained
sample. The on-line NIR spectra of this alcohol precipitation were col-
lected by the transmission way for 16 times of each sample, setting re-
solving power as 2500 μm and scanning range as 1.0 μm - 2.5 μm.

Quantitative determination by high performance liquid chromatog-
raphy (HPLC) of chlorogenic acid in Honeysuckle flower was imple-
mented immediately after online NIR sensor measurement. A Waters
2695 HPLC system was used with an auto-sampler, a column tempera-
ture controller, and a diode-array detector (DAD) (SHIMADZU Corpora-
tion, Japan). Samples were separated on a Diamonsil C18 column
(250 mm × 4.6 mm; 5 μm particles; Dikma) using acetonitrile and
water containing 0.4% phosphoric acid (13: 87, v/v) as the mobile
phase. The separation parameters have been set, column temperature
as 30 °C; detection wavelength as 327 nm; flow rate as 1.0 mL/min;
sample size as 10 μL.

2.2. The parameters of D-optimal design for modeling design

The spectral pre-processingmethods, variable selectionmethods, la-
tent factors of variable selection, and latent factors of PLS model were
determined as the CMPs of for D-optimal design. Spectral pre-
processing method was taken as a categorical variable, including raw,
standard normal variate (SNV), Savitzky-Golay smoothingwith 9 points
(SG9), SG9 combined with first derivative spectra (SG9+ 1D), and SG9
combined with second derivative spectra (SG9 + 2D). Similarly, vari-
able selection method contains of variable importance in projection
(VIP), uninformative variable elimination (UVE), selection ratio (SR),
moving window partial least square (MWPLS), and competitive adap-
tive reweighted sampling (CARS). Moreover, In order to avoid over-
fitting effect and under-fitting effect, latent factors of variable selection
and latent factors of PLSwere both set as the numerical discrete variable
including five levels from 3 to 11.

For the optimization of NIRmodel, the CQAswere determined as co-
efficient of determination of prediction set (Rpre2 ) and root mean square
error of prediction (RMSEP). In practical applications, the lower the



Table 1
The ANOVA results of modeling design.

CQAs Rpre
2 RMSEP (mg/mL)

Source F value

Linear 2FI Quadratic Linear 2FI Quadratic

Model 1.8915 9.27⁎⁎⁎ 13.1393⁎⁎⁎ 2.5354⁎ 14.5006⁎⁎⁎ 22.6199⁎⁎⁎

A 3.3506 8.26⁎ 13.2131⁎⁎ 3.8117 10.476⁎⁎ 19.0088⁎⁎

B 1.5226 1.63 0.6095 4.9911⁎ 18.1239⁎⁎ 19.1375⁎⁎

C 1.3597 7.02⁎⁎ 13.816⁎⁎⁎ 1.7039 12.3366⁎⁎⁎ 26.1679⁎⁎⁎

D 1.4018 12.3⁎⁎⁎ 8.6467⁎⁎ 1.3596 16.9293⁎⁎⁎ 11.9931⁎⁎⁎

AB – 4.71 4.0897 – 3.6734 2.8724
AC – 4.8⁎ 5.4169⁎ – 6.2963⁎⁎ 6.3197⁎⁎

AD – 2.83 2.495 – 3.0845 2.0682
BC – 18.01⁎⁎⁎ 17.1204⁎⁎⁎ – 22.7732⁎⁎⁎ 22.465⁎⁎⁎

BD – 5.84⁎⁎ 7.1531⁎⁎ – 7.7059⁎⁎ 9.3885⁎⁎

CD – 5.64⁎⁎ 7.7202⁎⁎ – 7.5474⁎⁎⁎ 10.9737⁎⁎⁎

A2 – – 0.8682 – – 0.0462
B2 – – 7.3065⁎ – – 8.9445⁎

Linear refers to linear regression, 2FI refers to 2 factors international regression, Quadratic
refers to Quadratic regression.Model refers to the relationship between Rpre

2 or RMSEP and
modeling parameters. A refers to latent factors of variable selection, B refers to latent fac-
tors of PLS model, C refers to spectral pre-processing method, and D refers to variable se-
lection methods.
⁎ p b 0.05.
⁎⁎ p b 0.01.
⁎⁎⁎ p b 0.001.
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RMSEP value, the more robust and accurate the models will be, while
Rpre
2 is opposite of RMSEP.

Rpre
2 ¼ 1−

∑N
i¼1 byi−yi

� �2
∑N

i¼1 yi−yið Þ2
ð1Þ

RMSEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 byi−yi
� �2
N

s
ð2Þ

where, N is the number of validation set, yi represents the reference
value of the sample i,byi represents the prediction value of the sample
i, and yi is the mean of the reference value of the validation set.

2.3. The implement of D-optimal design for modeling design

Kennard-stone (K-S) (PCA-Score) method was used to divide the
sample set into a calibration set and validation set with a ratio as 4:1.
D-optimal design was implemented by Design Expert 8.0. In this
paper, D-optimal design in this research contains four factors, two nom-
inal factors and two discrete factors. Each factor contains five levels.
These parameterswere shown in Table S.1 and supplemented in in Sup-
plementary Materials. Setting blocks as 1, 56 total runs have been
established and composed of 46 required model points, 5 lack-of-fit
points, and 5 replicate points.

In this research, D-optimal design in this research contains four fac-
tors, two nominal factors and two discrete factors. Each factor contains
five levels.

Two discrete variables were taken as examples to explain the D-
optimal algorithm.

A. Latent factors of variable selection, 3 to 11.
B. Latent factors of PLS model, 3 to 11.

Multifactor constraints like that pictured above must be entered as
an equation taking the form of:

βL ≤β1Aþ β1B…≤βU ð3Þ

where βL and βU are lower and upper limits, respectively.
Anderson and Whitcomb provide guidelines for developing con-

straint equations in Appendix 7A of their book RSM Simplified. If, as in
this case for both A and B, you want factors to exceed their constraint
points (CP), this equation describes the boundary for the experimental
region:

1≤
A−LLA

CPA−LLA
þ B−LLB
CPB−LLB

ð4Þ

where LL is the lower level.
This last equation can be entered directly, or it can be derived by

Design-Expert from the constraint pointswhile setting up a RSMdesign.

2.4. NIR modeling based on characteristic bands of chlorogenic acid

In the previous study, using DMSO as the solvent and concentration
as the disturbance term, the spectra of the DMSO and chlorogenic acid
DMSO solutions with different concentrations were scanned. According
to the second derivative spectra, it was found that the difference in the
spectra was obvious in the range of 1650–1800 nm [38]. Furthermore,
the NIR band of chlorogenic acid extrated by spectral assignment,
1650–1800 nm, were introduced as the characteristic variables of Hon-
eysuckle flower. Associate with CMPs combination designed by D-
optimal, this band was used to establish models instead of
chemometrics variable selection methods. PLS models were developed
successively by the parameter combination in Electronic Supplemen-
tary Material Table S.2.
2.5. Software for modeling design

D-optimal design and the development of design spaces have been
implemented by Design-Expert (Stat-Ease, USA). The NIR models were
established by ChemDataSolution (Dalian ChemDataSolution Informa-
tion Technology Co. Ltd., China). All the figures were drawn by
SigmaPlot 12.5 (Systat Software, USA).
3. Results and discussion

3.1. The features of Near-infrared raw spectra and quantitative analysis by
HPLC method

The on-line NIR raw spectra of Honeysuckle flower were shown in
Electronic SupplementaryMaterial Fig. S.1. As seen, thewide absorption
peaks of raw spectra overlapped severely and the characteristic band
was difficult to identify. Therefore, it is vital to erase the influence of
noise and extract suitable bands for PLS model.

Chlorogenic acid content was measured by HPLC method, of which
themethodology referred to the Chinese Pharmacopeia. The separation
degree, prediction degree, repetition, and stability of HPLC all matched
the demands of analysis. The fitting curve revealed good linearitywithin
the content range from 0.0792 μg to 0.7920 μg. The slope of the linear
model was (1.15(+/−)0.04) × 10^6 uAU/g and the intercept (−7(+/
−)1) × 10^3. The linear correlation coefficient R2 of this model is
0.9999. As a result, the concentrations of chlorogenic acid as the refer-
ence are in the range of 1.1892–5.9163 mg/mL.
3.2. Modeling design in ethanol precipitation process of Honeysuckle flower
according to DoE

D-optimal design was used to optimize the NIR modeling CMPs. 56
PLS models have been developed. The Rpre

2 and RMSEP of these models
were shown in Electronic Supplementary Material Table S.2. Three re-
gression models had been investigated to design an optimal model.
Since spectral pre-process method and variable selection method
were two kinds of classified variables, their analysis was carried out
through dummy variables, regarding raw and UVE as reference,
respectively.
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The results of variance analysis were shown in Table 1. It can be seen
that as the complexity of themodel increases, from linearmodel to qua-
dratic model, the Radj

2 of Rpre
2 increases remarkably from 0.1395 to

0.9085 and one of RMSEP increases from 0.2183 mg/mL to
0.9465 mg/mL. It indicated that there was a strong interaction among
these modeling CMPs.

Notably, this interaction was neglected when modeling parameters
were optimized step-by-step. The ANOVA results of modeling design
shown in Table 1 indicated the influence of four CMPs on modeling
were all significant. All these demonstrated that D-optimal was an ap-
propriate method for NIR modeling design. And quadratic model was
suitable for the evaluation of models by these two CQAs.

3.3. The effects of different CMPs on the performance of the PLS model by
modeling design

In previous research of optimizing step-by-step, the latent factors of
PLSwas determined by themodel performance andoften selected as 10,
which ignores the interaction among the modeling parameters. To
Fig. 1. The contour plots and response surface plots between la
investigate the influence of latent factors of variable selection and latent
factors of PLS on model, the contour plots and response surface plots
were shown in Fig. 1. The contours of these two plotswere both concen-
tric circles, indicating that latent factors of variable selection and latent
factors of PLS had a synergistic influence on spectral pre-processing
method and variable selection method. This suggested that there was
an extreme value under the appropriate combination of latent factors.
Therefore, it was necessary to find the relationship between latent fac-
tors of variable selection and latent factors of PLS by modeling design,
rather than optimizing step-by-step.

Furthermore, 25 contour plots developed by the combinations of
five preprocessing methods and five variable selection methods were
exhibited in Fig. 2. The darker the color in the figure, the closer it is to
the set maximum value. The lighter the color, the closer it is to the set
minimum value. As seen, the model performance in the upper-left cor-
ner (Fig. 2(a1))was thebestwhile one in thebottom-right corner (Fig. 2
(e5)) was theworst. As shown in Fig. 2, themodel performancewas be-
coming better with the increase of the complexity of the variable selec-
tionmethod, from SR to CARS. Oddly the trendwas reversed for the raw
tent factors of variable selection and latent factors of PLS.



Fig. 2.Twenty-five contour plots of Rpre
2 developed by spectral pre-processingmethod (SG(9), SG(9)+2D, raw, SNV, SG(9)+1D), and variable selectionmethod (CARS, VIP, UVE,MWPLS,

SR). *P refers to the spectral pre-processing method, VS refers to the variable selection method.
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spectra. This was because raw spectra contain a lot of noise which was
often used as residuals for modeling by complex variable selection
method. So the model performance was worse from CARS to SR.

According to the 25 contour plots, it can be seen that spectral pre-
processing method and variable selection method both had significant
synergistic influence on model performance. For example, the contour
in Fig. 2(a3) demonstrated that spectral pre-processing method was
an important factor for modeling while variable selection method was
insignificant. However, the result shown in Fig. 2(e3)was just the oppo-
site. Moreover, when using CARS as the variable selection method, no
matter which preprocessing method was chosen, a better model could
be obtained under a smaller latent factor, especially for SG9. These
mean SG9 and CARS was an appropriate combination for modeling.

3.4. Modeling design demonstrated by design spaces of PLS models

The premise of developing design space is suitable target range of
the CQAs. According to the established models, the ranges were set as
Rpre
2 N 0.990 and RMSEP b0.070 mg/mL. Within these ranges, 25 design

spaces were developed based on all spatial subsets with a confidence
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interval ofα=0.05 to ensure the robustness. The resultswere shown in
Fig. 3, of which, the x-coordinate represented the latent factors of vari-
able selection, the y-coordinate represented the latent factors of PLS.
The dark yellow was risk region, and the bright yellow region was the
design space, which indicated that there were many parameter combi-
nations can all get a perfect model performance, instead of the only one
modeling path.
Fig. 3. Twenty-five design spaces developed by P (raw, SNV, SG(9), 1D + SG(9), 2D + SG(9))
processing method, VS refers to the variable selection method.
Furthermore, two validation points, Z1 and Z2, in design space
(bright yellow region) and outside design space (dark yellow or gray re-
gion) were selected to establish quantitative models respectively. The
modeling parameter combinations of two points and the comparison
of twomodeling resultswere shown in Electronic SupplementaryMate-
rial Fig. S.2 and Table S.3. All CQAs of the points inside the space were
better than those outside the space, which indicated the established
and variable selection method (VIP, UVE, SR, MWPLS, CARS). *P refers to the spectral pre-



Fig. 4. The model performance by two methods. (a) Chemometric; (b) spectral assignment.
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spaces were reliable. This proves again that there was interaction
among modeling parameters, and the modeling path was multiple
rather than unique.

3.5. Modeling design in ethanol precipitation process of Honeysuckle flower
based on spectral assignment

In order to establish a pertinent PLSmodel, spectral assignment was
introduced to select variables for PLSmodeling, instead of chemometric
variable selection method. Chlorogenic acid is the main active ingredi-
ents of Honeysuckle flower. In our previous research, the characteristic
band of chlorogenic acid was 1650–1800 nm [36]. This band was se-
lected to establish PLS models combined with the spectral pre-process
methods and latent factors of PLS designed in Electronic Supplementary
Material Table S.1. 56 models were developed and their performances
were shown in Electronic Supplementary Material Table S.4. Notably,
compared with the chemometric variable selection method (shown in
Electronic Supplementary Material Table S.2), spectral assignment
method can make a higher Rpre

2 and a lower RMSEP of the model
when the latent factors of PLS was small (Fig. 4). As we all known, the
smaller the latent factors of PLS, the better the applicability of the
model was. Therefore, the variables selected by spectral assignment
were more precise and representative, so that the model established
by spectral assignment combined with QbD concept was more applica-
ble and robust.

3.6. An excellent NIR model established by design and spectral assignment

According to the model performance established by spectral assign-
ment method combined with QbD concept, the optimal combination of
Fig. 5. (a) The optimal fitting results of PLS model by spectral assignment method. (b) T
parameters was using SG(9) + 2D as preprocessing method and
selecting 3 as latent factors of PLS. Then PLS model was established
and exhibited in Fig. 5(a). The Rpre

2 of this model was 0.9916 and the
RMSEP was 0.07134 mg/mL. While the performance of model based
on chemometric variable selection method was worse than spectral as-
signment method when the modeling parameter combination was
same (Fig. 5(b)). Specifically, the Rpre

2 decreased from 0.9916 to 0.9605
and the RMSEP increased from 0.07134 mg/mL to 0.1555 mg/mL.
These proved once again that spectral assignment was reasonable for
characteristic band selection.

D-optimal could obtain the interaction between key modeling pa-
rameters and the best combination of CMPs. The extracted bands by
spectral assignment are more representative than one selected by che-
mometric variable selection method. Combined with spectral assign-
ment, D-optimal could design an appropriate parameter combination
to develop a better model.

4. Conclusion

According to the results of 56models, 25 contour plots and 25design
spaces, ANOVA illuminated that there was strong interaction among
CMPs, of which appropriate combination can achieve excellent model
performance. Compared with other parameter combination, SG
(9) combined with CARS can make themodel more robust and reliable.
Moreover, spectral assignment was reasonable for characteristic band
selection to establish a more pertinent and robust model when the la-
tent factors of PLS was small. A novel modeling design idea, using spec-
tral assignment method combined with D-optimal design, provided a
perfect referencemethod to establish a global optimalmodel for process
quality control in PAT.
he optimal fitting results of PLS model by chemometric variable selection method.
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