TABLE 2.
Accuracy, sensitivity, and specificity of prediction models for different data sets compared over three machine learning approaches namely, random forests (ntree = 800, mtry = 18), linear and radial support vector machines for ROSMAP data
Random forests | |||||||
---|---|---|---|---|---|---|---|
HV | MCI | AD | |||||
Data set | Accuracy | Sensitivity | Specificity | Sensitivity | Specificity | Sensitivity | Specificity |
1 | 0.9605 | 0.9947 | 0.9545 | 0.9444 | 0.9648 | 0.5 | 1 |
2 | 0.9407 | 0.989 | 0.875 | 0.8254 | 0.9789 | 0.77778 | 0.9918 |
3 | 0.9407 | 0.9838 | 0.8971 | 0.8413 | 0.9737 | 0.6 | 0.9879 |
4 | 0.9328 | 0.9944 | 0.863 | 0.8525 | 0.9635 | 0.41667 | 1 |
5 | 0.9644 | 1 | 0.918 | 0.8868 | 0.985 | 0.625 | 0.9959 |
6 | 0.9407 | 0.9944 | 0.8378 | 0.8261 | 0.9837 | 0.6 | 1 |
7 | 0.9605 | 0.9945 | 0.9143 | 0.8923 | 0.984 | 0.6 | 0.996 |
Linear support vector machine | |||||||
1 | 0.8656 | 0.9358 | 0.7424 | 0.6667 | 0.9246 | 0.6667 | 0.9917 |
2 | 0.8538 | 0.9282 | 0.7361 | 0.6984 | 0.9105 | 0.44444 | 0.9959 |
3 | 0.8261 | 0.9027 | 0.6618 | 0.6032 | 0.9 | 0.8 | 0.9919 |
4 | 0.8617 | 0.95 | 0.726 | 0.6721 | 0.9219 | 0.5 | 1 |
5 | 0.8972 | 0.9583 | 0.7541 | 0.6981 | 0.95 | 0.75 | 0.9959 |
6 | 0.8656 | 0.9721 | 0.6486 | 0.6087 | 0.962 | 0.6 | 0.996 |
7 | 0.8538 | 0.9344 | 0.7286 | 0.6462 | 0.9255 | 0.6 | 0.9839 |
Radial support vector machine | |||||||
1 | 0.8775 | 0.9572 | 0.7576 | 0.7037 | 0.9246 | 0.41667 | 1 |
2 | 0.8696 | 0.9558 | 0.7361 | 0.6667 | 0.9368 | 0.55556 | 0.9918 |
3 | 0.8854 | 0.9622 | 0.7059 | 0.6825 | 0.9526 | 0.6 | 1 |
4 | 0.8656 | 0.9722 | 0.7123 | 0.6557 | 0.9323 | 0.3333 | 1 |
5 | 0.8854 | 0.9531 | 0.7213 | 0.6792 | 0.94 | 0.625 | 1 |
6 | 0.8775 | 0.9888 | 0.6622 | 0.6377 | 0.9674 | 0.2 | 1 |
7 | 0.8775 | 0.9563 | 0.7286 | 0.6923 | 0.9415 | 0.4 | 0.996 |
Abbreviations: AD, Alzheimer's disease; HV, healthy; MCI, mild cognitive impairment; ROSMAP, the Rush Religious Orders Study and Rush Memory and Aging Project