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Quantitative assessment of spatial relations between tumor and tumor-infiltrating lymphocytes (TIL) is
increasingly important in both basic science and clinical aspects of breast cancer research. We have
developed and evaluated convolutional neural network analysis pipelines to generate combined maps of
cancer regions and TILs in routine diagnostic breast cancer whole slide tissue images. The combined
maps provide insight about the structural patterns and spatial distribution of lymphocytic infiltrates
and facilitate improved quantification of TILs. Both tumor and TIL analyses were evaluated by using

three convolutional neural network networks (34-layer ResNet, 16-layer VGG, and Inception v4); the
results compared favorably with those obtained by using the best published methods. We have produced
open-source tools and a public data set consisting of tumor/TIL maps for 1090 invasive breast cancer
images from The Cancer Genome Atlas. The maps can be downloaded for further downstream analyses.
(Am J Pathol 2020, 190: 1491—1504; https://doi.org/10.1016/].ajpath.2020.03.012)

Among women worldwide, invasive breast cancer is the
most common cancer and the second most common cause of
cancer-related deaths." This finding is despite decreasing
mortality rates in recent years due to early diagnosis and
current therapeutic options that significantly prolong sur-
vival. Invasive breast cancers are a heterogeneous category
of disease phenotypes™ that are histologically classified
into subtypes based on: growth patterns; the expression of
estrogen (ER), progesterone (PR), and human epidermal
growth factor receptor 2 (HER2); and the Ki-67 prolifera-
tion index.

The role of tumor-infiltrating lymphocytes (TILs) in
invasive breast cancer has become increasingly important as
a biomarker that can predict clinical outcomes, as well as
treatment response in the neoadjuvant and adjuvant
settings.” " TILs are a readily available biomarker, and
their evaluation is likely to expand with the emergence of
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immunotherapy. Elevated concentrations of TILs in HER2-
positive'” and triple-negative (ER /PR /HER27)"” breast
cancers are associated with prolonged overall and disease-
free survival, whereas elevated concentrations of TILs in
luminal HER2-negative breast cancer have been associated
with poor overall survival.” TILs can also serve as a pre-
dictive biomarker because a significant part of the cytotoxic
effects of systemic chemotherapy and radiation therapy is
actually mediated by activating the immune system to kill
cancer cells instead of directly targeting the tumor cells.'”
Targeted therapies against HER2 and vascular endothelial
growth factor are mediated by both antibody-dependent and
complement-mediated cytotoxicity in cancer cells through
lymphocytes and other immune cells in the tumor micro-
environment.'> Recent studies suggest the potential for
synergistic effects between targeted and immune therapies
in multiple disease sites.'*"”

Current practice routinely includes manual assessments of
hematoxylin and eosin (H&E)—stained tissue sections by
surgical pathologists to identify and classify invasive breast
cancer. Such diagnostic evaluation provides insight about
clinical management, treatment selection, survival, and
recurrence. Because H&E—stained tissue sections are
readily available, there is a sustainable opportunity to pro-
vide potentially actionable data about TILs without the need
for additional tissue samples [eg, immunohistochemical
(IHC) testing]. H&E—stained tissue also permits the inter-
pretation of the lymphocyte infiltrate within and proximal to
the tumor in the context of histology to provide insight
about the spatial relations between tumor regions and TILs.
The published guidelines for the histologic assessment of
TILs in invasive breast cancer”'®'” require pathologists to
select the region of tumor and to delineate stromal areas to
assess the percentage of TILs in these regions as a contin-
uous variable from 0% to 100% within the boundaries of the
entire tumor; this is used to classify the lymphocyte infiltrate
as low, intermediate, and high, respectively. However, this
evaluation is intrinsically qualitative and often subject to
interobserver variability; previous research has articulated
these concerns”’ in an attempt to clearly state the need for
automated methods to evaluate the percentage of TILs in
H&E—stained breast cancer tissue sections.

Computationally calculating the percentage of TILs
intrinsically provides spatial information about how TILs
are distributed in whole slide images (WSIs), where it is
likely that the distinction between intratumoral and stromal
TIL infiltrates is important. Although some relatively small
studies have examined intratumoral and stromal TILs,”' the
predictive power of the spatial distribution of TILs within
tumor and tumor-associated stroma must be better eluci-
dated. Automated evaluation of TILs in H&E—stained WSIs
fundamentally requires tumor segmentation linked with the
detection of lymphocyte infiltrates. Automation of
H&E—stained tumor-TIL analyses will make it possible to
conduct large-scale correlative studies that quantitatively
describe TIL distributions in well-characterized clinical
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populations. Computer analysis of high-resolution images of
whole slide tissue specimens can enable a data-driven and
quantitative characterization of TIL patterns.

With the recent success of deep learning” and the
availability of public data sets,” ° several research groups
have proposed deep learning—based algorithms to detect or
segment cancer/tumor regions in breast cancer WSIs.”” "
Previous methods developed classification models from
customized convolutional neural networks (CNNs)?"** or
from limited training data.”"’

In this work, standard state-of-the-art deep learning
models are used along with a large-scale data set to detect
invasive breast cancer regions in WSIs. This approach au-
tomates breast cancer detection at intermediate- to high-
resolution to generate detailed probability-based heatmaps
of the tumor bed. It achieves an F1 score of 0.82, a positive
predictive value (PPV) of 79%, and a negative predictive
value of 98% in terms of pixel-by-pixel evaluation in an
unseen and independent test data set consisting of 195 WSIs
from The Cancer Genome Atlas (TCGA) repository. These
performance numbers are better than those achieved by the
models in the previous studies.”’**

Moreover, our study combines tumor detection with
lymphocyte detection to identify tumor-TIL patterns in a
large number of publicly accessible WSIs. TIL prediction
models were trained using training data sets from a previ-
ously published deep learning approach’’ to generate high-
resolution TIL maps. The cancer detection results were then
combined with the TIL results. The combined results
represent regions of tumor with intratumoral and peritu-
moral TILs in publicly available 1090 WSIs from the TCGA
repository. We expect that the availability of high-resolution
spatial tumor-TIL maps will allow quantitative estimation
and characterization of the relation between tumor cells and
TILs. The ability to quantify and visualize the spatial re-
lations between tumor and TILs can be a very practical and
useful way to further elucidate intriguing observations in
previous studies. It will also further our collective under-
standing of the biological behavior of invasive breast can-
cers within the context of cancer—immune interactions in
the tumor microenvironment.**

Materials and Methods
Datasets and Data Availability

High-resolution WSIs from the Surveillance, Epidemiology,
and End Results (SEER, https://seer.cancer.gov, last
accessed February 13, 2020) cancer registry system and
from TCGA (https://portal.gdc.cancer.gov, last accessed
February 13, 2020) were used to train and evaluate the
deep learning models and generate cancer region maps.
The WSIs from TCGA are de-identified and publicly
available for research use. The WSIs from SEER came
from a pilot program examining the feasibility of and best
practices for a Virtual Tissue Repository (ie, the VTR
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Table 1  Data Statistics of the Training, Validation, and Testing
Data Sets for the Breast Cancer Detection Models
Cancer-  Cancer-
Source Purpose ID WSIs, n Patches, n positive, n negative, n
SEER  Training Dy 102 333,604 99,889 233,715
Validation Dy, 7 10,224 4953 5271

Testing  Teeer 89 - - -
TCGA Testing  Tiega 195 - - -

-, not applicable; ID, referred name used in the texts; SEER, Surveillance,
Epidemiology, and End Results; T, test; TCGA, The Cancer Genome Atlas;
WSIs, whole slide images.

Pilot). Because all data in the VTR Pilot, including the
WSIs, had been de-identified before receipt, the NIH
Office of Human Subjects Research Protection determined
that the study was excluded from NIH Institutional
Review Board review. Each of the SEER registries
supplying the de-identified WSIs has obtained institutional
review board approval from their respective institutions.
The Stony Brook Institutional Review Board has classified
the data set as being a non—human subjects research data
set.

The training, validation, and test data sets for the breast
cancer detection models consisted of image patches
extracted from 102, 7, and 89 SEER WSIs, respectively. All
of the images were scanned at 40x magnification and
manually segmented by an expert pathologist (R.G.) into
cancer and non-cancer regions using a Web-based applica-
tion.* In addition, the deep learning models were evaluated
with 195 TCGA WSIs (referred to here as Ti.g,), which had
been manually annotated in work done by Cruz-Roa et al.”®
The details of the training, validation, and test data sets for
tumor region segmentation are presented (Table 1). The
trained models were applied to 1090 diagnostic WSIs from
TCGA invasive breast cancer cases.

The same set of 1090 WSIs was also analyzed by using
the TIL classification models trained with data generated by
Saltz et al.”' These data consisted of 86,154 and 653 image
patches for training and validation, respectively. A test data
set of 327 patches extracted from TCGA invasive breast
cancer WSIs was created to evaluate the trained TIL models.
The details of the training, validation, and test data sets for
TIL classification are presented (Table 2).

The SEER images used in the training data set were
gathered in research conducted with the SEER consortium.
At the time of the writing of the current article, the images
were not publicly accessible. The SEER team is working
with The Cancer Imaging Archive to make them public for
use in future research. The invasive breast cancer images are
publicly available and provided by TCGA (hip://
cancergenome.nih.gov) and the Genomic Data Commons
Data Portal (https://portal.gdc.cancer.gov, last accessed
February 13, 2020). The cancer and TIL heatmaps for
TCGA can be found at fhups://app.box.com/s/
1qux9ub?2 1zcvpwao I cf81ardmilxI25x (last accessed
February 28, 2020).

The American Journal of Pathology m ajp.amjpathol.org

Table 2  Data Statistics of the Lymphocyte Data Set
Source Purpose Patches, n TIL-positive, n TIL-negative, n
TCGA Training 86,154 21,773 64,381
Validation 653 295 357
Testing 327 174 153

Data set provided in Saltz et al.**
TIL, tumor-infiltrating lymphocyte; TCGA, The Cancer Genome Atlas.

The cancer detection pipelines implemented in this work
are available at https.//github.com/SBU-BMI/quip_cancer_
segmentation (last accessed February 13, 2020).

Patch Extraction for Breast Cancer Detection Models

Image patches were extracted at the highest image resolu-
tion within and outside cancer regions, which were manu-
ally segmented and annotated by a pathologist (R.G.) using
an open source library called OpenSlide™ to train breast
cancer detection models. Each patch was labeled cancer
positive (ie, it intersected or was in a cancer/tumor region)
or cancer negative (ie, it was outside cancer/tumor regions).
An example of the pathologist's annotations (R.G.) is shown
(Figure 1).

Patches of 350 x 350 pixels at 40x magnification
(equivalent to 88 um x 88 pm) were used to create the
training data sets. The patch size was determined as follows:
multiple patch sets were extracted from the images in the
training set, and the patch size was then varied across the

A B

VNS o N ENE SIS A

Figure 1  Annotation example from pathologist (R.G.) (A and B) and
image patches extracted from whole slide images (C and D). Red lines in A
and B indicate cancer regions. Regions outside the annotated regions are
noncancer regions. Patches inside C are positive samples that contain
invasive cancer cells. Patches inside D are negative samples that do not
contain invasive cancer cells. Original magnification, x40 (C and D).
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sets (patches in the same set were of the same size). Multiple
cancer detection models were trained using the patch sets.
As was expected, patch sets with larger patches generated
more accurate models but resulted in coarser segmentations
of cancer regions. To achieve a good balance of model
accuracy-versus-segmentation resolution, a pathologist
(R.G.) reviewed the results from each model and chose the
minimum patch size that provided acceptable cancer
detection (segmentation) accuracy.

Previous research has shown that it is beneficial to have
more negative samples than positive samples in a training
data set for image classification in digital pathology.”***°
A good ratio of negative to positive patches will increase the
generalization of a CNN model and decrease the false-
positive rate. We experimented with a range of ratios of
cancer-negative patches to cancer-positive patches with the
same validation data set. The final training, validation, and
test data sets are presented (Table 1).

Convolutional Neural Networks

We investigated and adapted multiple state-of-the-art deep
learning architectures, namely the 16-layer VGG (VGG16),”’
the 34-layer ResNet (ResNet34),”® and the Inception-v4
network.”” These CNNs are widely used in an extensive
range of application domains. VGG16 and ResNet34 are
designed to process 224 x 224-pixel patches. Inception-v4
accepts 299 x 299-pixel image patches. Our tumor data set
consists of 350 x 350-pixel patches at 40x magnification.
The lymphocyte training data sets contain 100 x 100-pixel
patches at 20x magnification; this patch size is the same
patch size used in a previous study.’’ Input patches in these
data sets were resized to the desired input size for each
network by using standard image resizing functions in
PyTorch version 0.4.%° In addition, for ResNet34 and
Inception-v4, the dimension of the output layer was changed
from 1000 classes to two classes, because each patch in our
case is labeled positive or negative.

For VGG16, the size of the intermediate features of the
classification layer was reduced from 4096 to 1024 and only
the first four layers in the classification layer were kept. This
modification reduced the number of trainable parameters of
this network from 138 million to 41 million. Our

modifications to the classification layers of the CNN ar-
chitectures are presented (Table 3). The CNN networks
were implemented by using PyTorch version 0.4.%

Earlier work™"*** showed that refining a CNN pretrained
on the ImageNet data set” is a good approach to boosting
image classification performance in digital pathology. The
pretrained CNN models were refined with our training data.
The pretrained CNN models were trained with natural im-
ages after the RGB channels of the images had been
normalized. This study applied the same approach and
normalized the RGB channels of the image patches in our
training data set. Without normalization, the ranges of RGB
values in our data set would be different from those in the
data sets used for the pretrained models, significantly
reducing the effectiveness of model refinement.

The same training procedure was used for all of the
networks. At the beginning of the training, the weights of
the networks were initially fixed except for the classification
layer. The networks were trained in this state for N epochs
(N is three for the cancer models and N is five for the
lymphocyte models) with a batch size of B (B is 256 for the
cancer models and 128 for the lymphocyte models), an
initial learning rate of 0.01, a momentum of 0.9, and a
weight decay of 0.0001. After N epochs, the training pro-
cess turned on updates to the initially fixed weights. The
network was then trained for total of 20 epochs, updating all
of the weights. The training process used a stochastic
gradient descent method** to minimize a cross entropy loss
function.

The color profiles of WSIs may vary from image to image
because of variations in staining and image acquisition.”>
The R, G, and B channels of each patch were normalized to
a mean of 0.0 and an SD of 1.0. In addition, data
augmentation was used to further reduce the effects of color/
intensity variability and data acquisition artifacts. The data
augmentation operations included random rotation between
0 and 22.5 degrees, random vertical and horizontal flipping,
and perturbations in patch brightness, contrast, and satura-
tion. In the prediction (test) phase, no data augmentation
was applied except for the normalization of the color
channels. Each patch was assigned a value between 0.0 and
1.0 by the trained model, indicating the probability of the
patch being positive.

Table 3  Modifications to the Classification Layers of the CNNs
VGG16 ResNet34 Inception-v4
Original Modified Original Modified Original Modified

Linear (25,088, 4096)
ReLU — Dropout
Linear (4096, 4096)
ReLU — Dropout
Linear (4096, 1000)

Linear (25,088, 4096)
ReLU — Dropout
Linear (1024, 2)

Linear (512, 1000)

Linear (512, 2) Linear (1536, 1000) Linear (1536, 2)

CNN, convolutional neural network; ResNet34, 34-layer ResNet; VGG16, 16-layer VGG.
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Table 4 Performance Comparison of the Cancer Detection Task between the ConvNet and Our Models

Method F1 score PPV NPV TPR TNR FPR FNR
ConvNet?® 0.76 £+ 0.20 0.72 £ 0.22 0.97 £ 0.05 0.87 £ 0.16 0.92 £ 0.08 0.08 £ 0.08 0.13 £ 0.16
ConvNet-ours 0.75 £ 0.18 0.69 £ 0.22 0.96 + 0.09 0.87 £ 0.18 0.91 £ 0.09 0.09 £ 0.07 0.12 £ 0.16
ConvNet-ours* 0.77 £ 0.21 0.73 £ 0.23 0.97 £ 0.09 0.87 £ 0.23 0.92 £ 0.09 0.08 £ 0.09 0.13 £ 0.22
C-VGG16 0.80 £+ 0.20 0.78 £ 0.20 0.97 £ 0.05 0.88 £ 0.21 0.94 £ 0.06 0.06 £+ 0.06 0.12 £ 0.21
C-ResNet34 0.82 + 0.18 0.79 +£0.20 0.98 + 0.04 0.89 +0.18 0.95 4+ 0.05 0.05 + 0.05 0.11 £ 0.18
C-Incepv4 0.81 £ 0.19 0.79 £ 0.20 0.97 £ 0.05 0.88 £+ 0.19 0.94 £ 0.06 0.06 £ 0.06 0.12 £ 0.19

Data are expressed as means & SEM. ConvNet-ours indicates our implementation of the ConvNet® that was trained on the Surveillance, Epidemiology, and
End Results (SEER) data set. The ConvNet-ours results are reported without applying the postprocessing method (Materials and Methods). All of the models were
trained on the SEER data set (D) and evaluated on 195 whole slide images of The Cancer Genome Atlas (Ti,). Positive predictive value (PPV), negative
predictive value (NPV), true-positive rate (TPR), true negative-rate (TNR), false-positive rate (FPR), and false-negative rate (FNR) were used to measure the

performance. Bold numbers indicate the best results.

*ConvNet-ours: Our implemented version of the ConvNet®® that was trained on the SEER data set. The ConvNet-ours results are reported after the post-
processing step is executed. The last three rows show the performances of our convolutional neural networks.

C, cancer detection models; ResNet34, 34-layer ResNet; VGG16, 16-layer VGG.

Experiments

In the experimental evaluation, accuracy, F1 score, and area
under the receiver-operating characteristic curve (AUC)
were used as performance metrics. Accuracy is the ratio of
correctly classified patches to the total number of patches in
the ground truth test data set. Because a data set is not al-
ways balanced between classes, the F1 score that considers
both precision and recall was used to compute a score.
Mathematically, the F1 score is equal to 2 x (precision X
recall)/(precision + recall). Lastly, AUC was used to eval-
uate the prediction performance of the models at different
threshold settings. AUC shows the relation between the
true-positive rate and the false-positive rate of a model. It is
a widely used metric to assess model performance for binary
classification tasks.

The cancer region segmentation and TIL classification
performances of the different CNNs are presented (Tables 4
and 5) (Results). The best models were applied to the 1090
WSIs from TCGA invasive breast cancer cases to generate
prediction probability maps for cancer regions and TILs. A
prediction probability map is constructed by uniformly
partitioning a WSI into image patches in each image
dimension. The image patches are analyzed by a trained
model and assigned a label probability between 0.0 and 1.0.
For cancer region segmentation, the label of a patch was
either cancer positive (ie, the patch predicted to be within or

Table 5 Performance Comparison of the Lymphocytes Detection
Task between Saltz et al and Our Models

Method F1 score Accuracy AUC

Saltz et al*' 0.770 74.9% 0.808
L-VGG16 0.891 88.4% 0.943
L-ResNet34 0.893 89.0% 0.950
L-Incepv4 0.879 87.5% 0.938

Bold numbers indicate the best results. L indicates the lymphocyte
detection models. AUC, area under the receiver-operating characteristic
curve; ResNet34, 34-layer ResNet; VGG16, 16-layer VGG.

The American Journal of Pathology m ajp.amjpathol.org

intersect a cancer region) or cancer negative (ie, the patch is
predicted to be outside the cancer regions in the WSI). For
TIL classification, the label of a patch was either TIL pos-
itive (ie, the patch was predicted to contain lymphocytes) or
TIL negative. A Web-based application was implemented to
visualize and interact with the prediction probability maps
as heatmaps (Figure 2) (Materials and Methods).

Postprocessing Step for Cancer Heatmaps

Most patch-based classification algorithms*®** predict the

label of a patch independent of other patches in an image.
They do not take into account the characteristics and labels
of neighbor patches. Invasive cancer regions in breast can-
cer tend to be close to each other. Thus, the probability of a
patch to be cancer positive is correlated with its surrounding
patches. To incorporate this information into our analysis
pipeline, a simple, yet effective, aggregation approach was
used as a postprocessing step. This approach takes per-patch
classification probability values, converts them into a
probability map, called H, and produces an aggregated
probability map, called A. The classification probability
value of a patch in A is computed by an aggregation oper-
ation over neighbor patches within a specific distance of the
patch in H. The relation between A and H can be formulated

as follows: - Héwqﬂ “)WH}) (1)

Here, H(m,n) is the probability values of a patch at
location (m,n) in H; A(i, j) is the probability value of the
aggregated patch at location (i,j) in A; and f is the aggre-
gation function over a set of patches in a window of

g (BBl (=)

where w is the window size. In our aggregation approach, all
patches within the window will have the same prediction
score after the aggregation operation. |x| is the floor

At =1 ( {tmn
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PNGs/brca/TCGA-AR-A1AW-01Z-00-DX1.png
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additional classifications will be available here
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0 —(segmentation threshold)— 1
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Figure 2

5mm

caMicroscopeisplay ID: TCGA-AR-A1AW-01Z-00-DX1

User interface of Web-based application to study the spatial relation between cancer regions and lymphocyte regions. Left panel shows the

tumor-infiltrating lymphocyte (TIL) heatmap; invasive breast cancer detection is denoted in yellow with superimposed lymphocyte detection denoted in red.
Right panel is the caMicroscope®? that displays the regions of the whole slide image. Users can click on the TIL map to zoom in the corresponding regions on
the caMicroscope. Readers can access our tool at https://mathbiol.github.io/tcgatil (last accessed March 19, 2020). Scale bar = 5 mm.

operation which takes x as an input and returns the largest
integer that is less than or equal to x. Different aggregation
functions such as Average, Median, and Max were
explored. The experiments were conducted by using Tgeer.
The best aggregation method from these experiments was
used to generate aggregated probability maps for Ti.g,.
Empirically, the Max function and a window of 4 x 4
resulted in the best performance with T..,. These settings
were applied to postprocess predictions in Tcg,.

Combined Tumor-TIL Maps

Each pair of cancer and lymphocyte heatmaps were merged
into a single heatmap as an RGB image. The R channel
stores the lymphocyte probabilities quantized from 0 to 255;
the G channel stores the cancer probabilities quantized from
0 to 255; and the B channel stores 0 or 255 to indicate if a
patch is glass background or tissue, respectively.

Software Support for Analysis Workflow

QuIP*” and caMicroscope’” software were used to support
the data management and visualization requirements in this
study. A typical whole slide tissue image can be several
gigabytes in size. Even a modest cohort of 100 subjects can
result in one terabyte of image data. It is a nontrivial task to
efficiently store, manage, and index a data set of this size
and to provide interactive capabilities for visualization of
images and analysis results for evaluation, validation, and
additional downstream analyses. Examination of the anal-
ysis results (ie, the probability maps) requires their
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interactive interrogation through visual analytic tools that
link the probability maps with the underlying images. Our
software converts probability maps into heatmaps for visu-
alization purposes. We have developed a Web-based
application, called FeatureMap, and a database, called
PathDB, in QulP. PathDB manages and indexes metadata
about whole slide tissue images and metadata regarding
heatmaps. It links the heatmaps with the images for query
and retrieval. FeatureMap implements a browser-based
multivariate visualization library that is sufficiently light-
weight to run on a mobile device. It interacts with PathDB
to query and retrieve heatmaps and then display them as
low-resolution images so that a user can rapidly go through
multiple images and probability maps. The low-resolution
image representations of the probability maps are linked
to full-resolution images and high-resolution heatmaps. The
user can switch to the high-resolution view for more
detailed and interactive examination of a probability map
and the source image.

Results

Evaluation of Cancer Detection Models

Three cancer detection and segmentation models, C-
VGG16, C-ResNet34, and C-Incepv4, were trained by using
VGG16, ResNet34, and Inception-v4, respectively. The
performances of the models were compared with each other
as well as with another network, called ConvNet, which was
developed by Cruz-Roa et al.””** ConvNet was trained on a
different training data set, called HUP (from the Hospital of
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the University of Pennsylvania) and UHCMC/CWRU (from
University Hospitals Case Medical Center/Case Western
Reserve University), in previous work.”’ To use our training
data sets, ConvNet was implemented by using PyTorch™ by
precisely following the network description in the original
paper. We call our implementation ConvNet-ours.

An average F1 score was computed across all of the test
images by varying the threshold value from 0.0 to 1.0 in
steps of 0.01. At each threshold value, prediction probability
maps were computed for the 195 test images by the model
under evaluation. The patch labels were assigned by
applying the threshold value to the corresponding proba-
bility maps. The label maps and the ground-truth masks”®
were then used to compute average F1 score, PPV, a
negative predictive value, true-positive rate, true-negative
rate, false-positive rate, and false-negative rate. The per-
formance comparison between our models, the original
ConvNet model,””** and our implementation of the Con-
vNet model (ConvNet-ours) is presented (Table 4). We
report the performance of ConvNet-ours both with and
without applying our postprocessing step (described in the
Methods section) because the original ConvNet model did
not include a postprocessing step. In addition, the ConvNet-
ours model outperformed the original ConvNet model in all

metrics. Furthermore, the postprocessing step improved the
average F1 score from 0.75 to 0.77 and PPV from 0.69 to
0.73. Given that the postprocessing step is relatively simple
and inexpensive, we recommend the inclusion of this step in
the implementations of the proposed approach in research
and clinical settings.

Probability maps from the C-ResNet34 model for a set of
representative WSIs in Ty, are shown (Figure 3). Visual
inspection of the maps and the respective WSIs showed that
the model was able to detect and segment cancer regions
well.

Evaluation of Lymphocyte Classification Models

Three lymphocyte detection models, L-VGGI16, L-
ResNet34, and L-Incepv4, were trained by using VGGI16,
ResNet34, and Inception-v4, respectively. A training data
set, containing 2912 image patches from invasive breast
cancer WSIs only, was created from the original TIL
training data set in work performed by Saltz et al.”' The
86,154 patches in the original training data set had been
selected from multiple cancer types. Our experiments
showed that the smaller training data set resulted in more
accurate classification models than the full original data set.

Figure 3

Prediction map of representative slides from The Cancer Genome Atlas whole slide images. A—D: Whole slide images with ground truth generated

by an expert pathologist (R.G.). E—H: The corresponding prediction heatmap generated by our cancer detection algorithm (C-ResNet34) before applying any
aggregation methods. I—L: The corresponding prediction map after applying the Max aggregation function with window size of 4, then applying a threshold of
0.6 to exclude prediction scores that are <0.6. The shades of red in the map images indicate the probability of a patch being cancer positive as predicted by
the model. M—P: Results of our algorithm in terms of true positives (TP; green), false negatives (FN; red), false positives (FP; yellow), and true negatives (TN;
blue) regions. Red lines in A—D indicate cancer regions. Blue lines in D, H, and L and the black lines in B, F, and J are ink marks that are artifacts during the

staining process. C, cancer detection model; ResNet34, 34-layer ResNet.
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The trained models were tested with a set of image
patches extracted from TCGA invasive breast cancer WSIs.
The performance comparison between our models versus
the model developed in the previous work is presented
(Table 5).>' The new models consistently outdid the previ-
ous model in all of the performance metrics.

The experimental evaluation showed that the cancer re-
gion segmentation and lymphocyte classification models
achieved very good performance with respect to the F1
score, accuracy, and AUC metrics and performed better than
the previous models. The best of these models were applied
to 1090 TCGA invasive breast cancer WSIs and generated
tumor, TIL, and combined tumor-TIL maps. These maps
will be made publicly available (Datasets and Data
Availability). Examples of the tumor-TIL combined maps
overlaid on WSIs as heatmaps are shown (Figures 4 and 5).

Assessment of Interrater and Machine versus Human
Scoring of TIL Patches

A direct comparison of TIL predictions according to the
trained models with labeling of patches was performed by
experienced pathologists (R.G., R.B., T.Z.) by scoring 8 x 8

super-patches for TIL content. Three pathologists assessed
500 super-patches as having low, medium, or high TIL
content. Machine-derived scores were assigned to a super-
patch by counting TIL-positive patches in the super-patch;
thus, the scores range from 0 to 64. To assess concordance
between the human pathologists, the polychoric correlation
coefficient, designed for comparing ordinal variables, was
used.” The polyserial coefficient was used for comparison
of continuous valued TIL counts estimated by the deep
learning models versus the ordinal scores of the experienced
pathologists (as having low, medium, or high TIL content).
The performance comparison between human raters with the
models developed is shown (Table 6). A somewhat
consistent improvement in the quality of concordance be-
tween human experts and machine predictions was
observed, even perhaps slightly better than human—human
concordance. Also, the deep learning models permit a
lower variability relative to human raters, as evidenced by
the width of the corresponding CIs. The concordance be-
tween the summarized scores (using median) across pa-
thologists vis-a-vis machine-derived predictions also
generally improves relative to concordance measures of
individual experts against the machine predictions. The

D
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Figure 4

A—C: Cancer and lymphocyte probability maps along with a map of cancer and lymphocyte labels generated through analysis of representative

slides from The Cancer Genome Atlas (TCGA) whole slide images (A: TCGA-A2-A0CL-01Z-00-DX1; B: TCGA-A2-A04X-01Z-00-DX1; C: TCGA-A2-AOCW-01Z-00-DX1).
Figures in a given row are results generated from the whole slide image depicted in the first column. A, E, and I: Whole slide images with ground truth
generated by an expert pathologist (R.G.). Red lines in A, E, and I indicate the cancer regions annotated by pathologist (R.G.). B, F, and J: The corresponding
cancer probability maps generated by our cancer detection models (C-ResNet34). C, G, and K: The corresponding lymphocyte probability maps generated by
the lymphocyte classification models (L-ResNet34). D, H, and L: A combined heatmap of cancer and lymphocytes. Invasive breast cancer detection is denoted
in yellow with superimposed lymphocyte detection denoted in red. These figures visualize the spatial relations between lymphocytes and tumor regions. The
lymphocyte patches in these examples show the TILs and tumor-associated lymphocytes (TALs) that surround the cancer regions. These visual representations
of TILs, TALs, and cancer regions provide valuable information for further analyses. C, cancer detection model; L, lymphocyte detection model; ResNet34, 34-
layer ResNet; T, tissue region.
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Figure 5 Enlarged example of a cancer and lymphocyte probability map and cancer along with map of cancer and lymphocyte labels for The Cancer Genome
Atlas (TCGA) whole slide image (case ID: TCGA-E9-A248-01Z-00-DX1) generated by our algorithms (C-ResNet34 and L-ResNet34). A: Whole slide image of an
invasive breast cancer hematoxylin and eosin—stained tissue section. Red line indicates the viable tumor region. B and C: Lymphocyte probability map and
cancer probability map predicted by our algorithm, respectively. The probabilities range from 0 to 1. D: Invasive breast cancer detection denoted in yellow with
superimposed lymphocyte detection denoted in red. Gray areas outside of the yellow tumor region denote nontumor connective and adipose tissues. C, cancer
detection model; L, lymphocyte detection model; ResNet34, 34-layer ResNet; T, tissue region.

median machine-derived score is distinct between the three
ordinal bins (Figure 6).

TIL Infiltration as a Predictor of Survival

To validate the potential clinical relevance of our system,
the relation between overall survival and TIL infiltration
into the tumor was investigated. Continuous patch likeli-
hoods from tumor (C-ResNet34 model) or lymphocyte
(L-ResNet34 model) predictions were binarized such that a
prediction >50% was counted as predicted to contain
tumor or lymphocytes, respectively. The proportion of
pixels in our image that were predicted as containing
tumor as well as lymphocytes was counted: (number of
pixels predicted as lymphocyte AND tumor)/(number of
pixels predicted as tumor). For associations with survival,
clinical information including stage was obtained from
Genomic Data Commons using the TCGAbiolinks

package in R statistical software version 3.6.0 (R Foun-
dation for Statistical Computing, Vienna, Austria). PAMS50
labels were obtained.”’ TIL fractions were analyzed as
both continuous and dichotomous variables. The distribu-
tion of TIL infiltration fraction across samples was right-
skewed, and the mean of this distribution (6.4%) served
as a natural inflection point separating the majority (n =
695) of cases with low infiltration from the minority group
(n = 281) with high infiltration. First, it was checked if
TIL infiltration fraction was predictive of survival as a
continuous variable when correcting for major factors
known to predict survival: stage (aggregated into stage I,
II, OI, and IV) as well as gene expression subtype
(PAMS50 Basal, Luminal A, Luminal B, and HER?2).
Finally, it was established that binarized TIL infiltration
fraction was still predictive of survival even after sub-
dividing cases according to PAMS0 subtype or stage.
Detail analysis is shown (Figure 7).

Table 6 Interrater Concordance (Between Human Raters: A, R1, and R2) and Human versus Machine Models

Rater Human VGG16

ResNet34 Incepv4

A R1: 0.62 (0.48, 0.76)

R1 R2: 0.74 (0.64, 0.85)
R2 A: 0.73 (0.62, 0.84)
Median NA

0.85 (0.81, 0.88)
0.73 (0.68, 0.79)
0.73 (0.68, 0.79)
0.77 (0.70, 0.83)

0.82 (0.78, 0.86)
0.73 (0.67, 0.79)
0.74 (0.69, 0.80)
0.74 (0.67, 0.81)

0.85 (0.82, 0.88)
0.72 (0.66, 0.78)
0.76 (0.70, 0.81)
0.76 (0.70, 0.83)

Point estimate of correlation coefficients and CIs are provided.
NA, not applicable; ResNet34, 34-layer ResNet; VGG16, 16-layer VGG.
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Figure 6  Comparison of tumor-infiltrating lymphocyte scores of super-

patches between pathologists (R.G. R.B., and T.Z.) and computational
stain. x axis: median scores from three pathologists (R.G. and T.Z.)
assessing 500 super-patches as having low, medium, or high lymphocyte
infiltrate. y axis: scores from deep learning predictions on a scale from
0 to 64.

Discussion

Studies have shown that TILs can be used as a biomarker to
predict clinical outcomes, including treatment response, in
patients with invasive breast cancer.””'' With the emer-
gence of immunotherapy for breast cancer treatment,

A

Hazard ratio

evaluation of the concentration of TILs as a readily available
biomarker is increasingly important. The cancer detection
algorithm indicates that the cancer region occupies
approximately 50% to 60% of the total tissue area in the
WSI (Figure 3). The lymphocyte detection algorithm shows
high probability areas with TILs. The tumor-TIL method
provides insight regarding scattered TILs that occupy
approximately 20% to 30% of the cancer region, consistent
with a low percentage of TIL categorization, with additional
spatial information that indicates a sparse multifocal distri-
bution. Combined breast cancer tumor—TIL maps like the
one shown in this example have been generated for 1090
TCGA breast cancer WSIs, and they will be made publicly
available in our custom Web-based application.

The evaluation of TILs in invasive breast cancer is likely
to expand due to the accumulating evidence showing how
TILs can be used to predict treatment response in the set-
tings of neoadjuvant and adjuvant chemotherapy. However,
the routine evaluation of TILs has not achieved widespread
adoption even though the methodology established by the
International Immuno-Oncology Biomarker Working
Group'® is relatively straightforward, uncomplicated, and
based on the examination of TILs on standard
H&E—stained tissue sections TILs and a focal area with
peritumoral TALs as a surrogate computational biomarker
that is similar to how IHC is routinely used by pathologists
to highlight cells and structures are identified (Figure 4).
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However, IHC is not routinely performed to identify and
classify subsets of TILs in breast cancer due to the time
constraints of pathologists, desire to preserve diagnostic
tissue, and additional costs, whereas this kind of insight can
be made readily available in a low-cost and scalable manner
to achieve the goals of the International Immuno-Oncology
Biomarker Working Group. With emerging methods such as
our breast cancer tumor—TIL detection tool, pathologists
will be able to add the evaluation of TILs to the standard
IHC panel to determine ER, PR, and HER2 expression
status.

In previous work, several research groups conducted
image analyses focused on detection of metastatic breast
cancer’” °* and mitosis™ °’ using highly curated but
relatively small data sets from algorithm evaluation
challenges.”” *® Cruz-Roa et al’”*® used deep learning
approaches for detecting invasive breast cancer in WSIs.
The deep learning models were trained by using WSIs from
the Hospital of the University of Pennsylvania and from
University Hospitals Case Medical Center/Case Western
Reserve University and evaluated with 195 WSIs from
TCGA. Kwok” and Dong et al®’ proposed methods to
classify breast cancer regions in WSIs by using data sets
provided by the 2018 International Conference on Image
Analysis and Recognition Grand Challenge on Breast
Cancer Histology Images.”® The conference data set con-
tains two subsets of training data: Part A consists of 400
images of 2048 x 1536 pixels at 0.42 pm x 0.42 pm res-
olution; and Part B comprises 10 WSIs with manual anno-
tations from pathologists. Kwok implemented a two-stage
training approach in which a basic CNN network is trained
in the first stage to mine hard examples on data from part B.
These examples were then used to train a deep learning
model in the second stage. Dong et al used deep rein-
forcement learning to decide whether regions of interest
should be processed for segmentation at high or low image
resolutions. Most recently, Amgad et al’® proposed a fully
convolutional framework for semantic segmentation of
histology images via structured crowdsourcing. This was the
first work using crowdsourcing in pathology tasks that
involved a total of 25 participants at different expertise
levels, from medical students to expert pathologists, to
generate training data for a deep learning algorithm. The
authors solely focused on segmenting triple-negative breast
cancer, an aggressive genomic subtype that comprises 15%
of breast cancer cases, into five distinct classes: tumor,
stroma, inflammatory infiltration, necrosis, and other. Using
a training data set of 151 representative regions of interest
(mean region of interest size, 1.18 mmz) selected from 151
H&E—stained TCGA WSIs with detailed curated annota-
tions, a fully convolutional VGG16-FCN-8 network was
able to achieve an AUC of 0.941 for tumor region.

The current methods for assessing TILs in individual
patients are still subjective, laborious, and may be difficult
to quantify. More rigorous, objective, and efficient methods
are needed. This is especially true for precision medicine

The American Journal of Pathology m ajp.amjpathol.org

applications because the tumor microenvironment in breast
cancer is heterogeneous and composed of malignant cells,
premalignant lesions, adjacent normal tissue, stroma, im-
mune cell infiltrates, vessels, nerves, and fat. Therefore, to
help further our understanding of breast cancer biology for
research and clinical applications, we developed a tumor-
TIL spatial mapping tool to automatically detect breast
cancer in H&E—stained WSIs to quantitatively estimate and
characterize the relation between tumor cells and TILs.

In the current state, the breast cancer tumor—TIL maps
can be used to identify spatial patterns of distributions of
TILs within intratumoral and peritumoral regions of inva-
sive cancer, as well as lymphocyte infiltrates in adjacent
tissues beyond the borders of the tumor. This tool can also
be adapted for practical uses that include improving the
reproducibility and precision in reporting tumor size and
features of the tumor boundary for radiologic—pathologic
correlation. As a potential clinical application to quantify
TILs and identify spatial patterns of distribution of TILs,
this tool can help guide management and select treatment in
conjunction with existing molecular subtyping platforms;
the goal is to predict survival and recurrence, as the TILs
have been shown to be reliable prognostic and predictive
biomarkers in invasive breast cancer. Another potential
application of this tool is to screen candidates who may
benefit from immunotherapy in primary, refractory, and
recurrent disease because such treatments are not expected
to be useful if a significant amount and distribution of TILs
are not present.

Most existing software algorithms for TILs assessments
are proprietary, expensive, and cannot be customized by the
user. Therefore, we are making our invasive breast cancer
TCGA tumor—TIL data set publicly available with an
interface to visually interact with the data. The interface
permits quantification of TILs in tumor areas and the ability
to rapidly spot check and evaluate true-positive and false-
positive predictions by the deep learning models. The
invasive breast cancer TCGA—TIL maps are displayed side-
by-side with an interactive H&E slide viewer to permit a
high level of exploration within the entire data set. We also
intend to further combine this tumor-TIL method to char-
acterize tumor immune heterogeneity and spatially charac-
terize local patterns of the lymphocytic infiltrate in different
parts of the tumor (eg, center of the tumor, invasive margins,
metastases). The tumor-TIL heatmaps can also be combined
with other types of digital pathology—based image analyses
that extract object-level information such as size, shape,
color, and texture (collectively known as pathomics) to
generate an unprecedented quantitative examination of
invasive breast cancer. Such analytic data can complement
traditional histopathologic evaluation, which can be corre-
lated with clinical information, radiologic imaging, molec-
ular studies, survival, and treatment response. We believe
that the availability of tumor-TIL maps along with software
that allows interactive viewing of the computational analysis
will improve reproducibility and precision in reporting
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tumor size, tumor boundary features, TIL assessment, and
extraction of relevant nuclear and cellular features. These
improvements will in turn enhance clinical and pathology
decision support in guiding management, treatment selec-
tion, and predicting survival and recurrence, in conjunction
with existing molecular subtyping platforms.

The need to quantify spatial interrelations between tumor
regions and infiltrating lymphocytes is becoming increas-
ingly important in invasive breast cancer. Tumor-TIL maps
generated from H&E—stained images can be used to
perform a wide range of correlative studies in the context of
clinical trials, epidemiologic investigations, and surveillance
studies. Our methods leverage open-source CNNs; the
programs we have developed are also being made public
and freely available. In summary, this study has produced a
reliable and robust methodology, data sets of TIL and cancer
region predictions, and programs that can be used to
conduct tumor-TIL tissue image analyses of invasive breast
cancers. Although our analysis approach has been imple-
mented and evaluated with breast cancer cases, the proposed
approach is not specific to breast cancer. Indeed, this
approach has been used for the detection and segmentation
of cancer regions in prostate and pancreatic cancer cases.

Our approach enables detection and segmentation of
cancer regions in whole slide tissue images. Once a cancer
region is identified, a more focused, higher resolution
analysis within those regions can be executed. In addition,
we expect that output from our approach could be used to
improve the performance of other cell-level or subregion-
level analysis methods. For example, an analysis method
that detects and classifies cancer cells could use the output
of our approach to check if a cell, which it labels as a cancer
cell, actually is within the cancer region. We also expect that
with sufficient training data that include regions of necrosis,
deep learning models can be taught to differentiate between
cancer regions, normal regions, and regions of necrosis. We
should note that this claim requires further study and eval-
uation. Another approach could be to train a necrosis-
specific model that can detect and segment regions of ne-
crosis with high accuracy, as used in our previous work.””
We trained a necrosis-specific model to segment out ne-
crosis regions and improve the accuracy of the overall TIL
analysis pipeline.

In future studies, we will further refine our methodology
and tools to differentiate between invasive and in situ pre-
malignant lesions and explore methods that can facilitate
faster predictions for practical real-time clinical
applications.
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