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Background. Few previous studies have comprehensively explored the level of DNA methylation and gene expression in ccRCC.
The purpose of this study was to identify the key clear cell renal cell carcinoma- (ccRCC-) related DNA methylation-driven
genes (MDG) and to build a prognostic model based on the level of DNA methylation. Methods. RNA-seq transcriptome data
and DNA methylation data were obtained from The Cancer Genome Atlas. Based on the MethylMix algorithm, we obtain
ccRCC-related MDG. The univariate and multivariate Cox regression analyses were employed to investigate the correlation
between patient overall survival and the methylation level of each MDG. Finally, a prognosis risk score was established based on
a linear combination of the regression coefficient derived from the multivariate Cox regression model (β) multiplied with the
methylation level of the gene. Results. 19 ccRCC-related MDG were identified. Three MDG (NCKAP1L, EVI2A, and BATF)
were further screened and integrated into a prognostic risk score model, risk score = ð3:710 ∗methylation level of NCKAP1LÞ
+ ð−3:892 ∗methylation level of EVI2AÞ + ð−3:907 ∗methylation level of BATFÞ. The risk model was independent from
conventional clinical characteristics as a prognostic factor for ccRCC (HR = 1:221, 95% confidence interval: 1.063–1.402,
and P = 0:005). The joint survival analysis showed that the gene expression and methylation levels of the prognostic genes
EVI2A and BATF were significantly related with prognosis. Conclusion. This study provided an important bioinformatics
foundation for in-depth studies of ccRCC DNA methylation.
1. Introduction

Clear cell renal cell carcinoma (ccRCC) is the most common
pathological type of renal cancer [1, 2]. Approximately
350,000 new patients with RCC are confirmed globally every
year, and RCC causes more than 140,000 deaths each year
[3]. ccRCC has complex biological characteristics and is not
sensitive to radiotherapy and chemotherapy; radical or
partial nephrectomy is the main method for treating RCC
[4, 5]. Although the surgical effect is definite, 20%-40% of
patients experience local recurrence or distant metastasis
after surgery [6], and the mortality rate is very high for
advanced renal cell carcinoma [7]. In the last ten years, with
the development of molecular biology, several ccRCC driver
genes such as von Hippel–Lindau (VHL) and PBRM1 have
been discovered [8, 9], and targeted drugs, such as tyrosine
kinase inhibitors (TKIs) [10], have been developed to treat
these advanced ccRCC patients; however, not all of these
patients can benefit from these drugs. Therefore, the identifi-
cation of new ccRCC-related driver genes and the establish-
ment of risk models through bioinformatics analysis are
very important for patient prognosis evaluation.

Epigenetic changes are thought to be closely related to
cancer progression, and aberrant DNA methylation is one
of the most crucial and routine epigenetic modifications
[11]. DNA methylation is an epigenetic modification that
plays a crucial role in regulating the growth, development,
gene expression pattern, and stability of the genome without
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Table 1: DNA methylation-driven genes in ccRCC.

Gene Normal me Tumor me logFC P value Cor Cor P value

C1orf116 0.647716 0.896463 0.468882 3.76E-109 -0.6038 4.66E-54

ALDOC 0.315874 0.201405 -0.64925 1.32E-72 -0.44678 2.04E-27

NCKAP1L 0.822054 0.656117 -0.32528 1.06E-64 -0.35805 1.66E-17

EVI2A 0.854583 0.71327 -0.26077 1.95E-62 -0.5227 1.45E-38

CD2 0.74397 0.633319 -0.23231 1.57E-54 -0.46794 3.01E-30

BATF 0.696094 0.535991 -0.37707 3.59E-48 -0.43104 1.96E-25

CD96 0.703644 0.600698 -0.22821 2.19E-45 -0.35773 1.79E-17

RAB25 0.498379 0.687697 0.46453 2.40E-38 -0.38485 3.44E-20

IL20RB 0.886919 0.731896 -0.27716 1.13E-33 -0.50225 2.79E-35

TMEM173 0.514377 0.327888 -0.64963 4.07E-30 -0.36018 1.04E-17

CTSZ 0.478134 0.400661 -0.25503 7.68E-30 -0.32922 6.89E-15

MASP1 0.600411 0.503547 -0.25382 8.74E-26 -0.40218 4.61E-22

LAMA4 0.426073 0.346439 -0.2985 4.99E-22 -0.36743 2.04E-18

LTA 0.859977 0.795969 -0.11159 1.31E-18 -0.56031 3.21E-45

SLC9B2 0.43967 0.392664 -0.16312 3.45E-13 -0.38856 1.40E-20

FAM107A 0.465871 0.414634 -0.16809 1.77E-11 -0.32415 1.86E-14

SLC5A12 0.705801 0.634831 -0.15289 1.16E-08 -0.33355 2.90E-15

AL592211. 0.44045 0.575433 0.38567 0.002048 -0.32193 2.87E-14

LRMP 0.534103 0.516217 -0.04914 0.039959 -0.33687 1.48E-15
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changing the DNA sequence [12, 13]. Many studies in recent
years have found that abnormal DNA methylation is closely
related to tumorigenesis, development, and cell canceration
[14–16]. In particular, alterations in DNA methylation can
supply crucial information for the early diagnosis and prog-
nosis of cancer [17–20].

Few previous studies have comprehensively explored the
level of DNA methylation and gene expression in ccRCC.
The purpose of this study was to identify the key ccRCC-
related methylation-driven genes and to build a prognostic
model based on the level of DNA methylation.

2. Materials and Methods

2.1. Data Acquisition and Integrative Analysis. In this study,
RNA-seq transcriptome data and DNA methylation data
were obtained from The Cancer Genome Atlas (TCGA) web-
site (https://portal.gdc.cancer.gov/repository). Of them, the
DNA methylation data was using the Illumina Infinium
HumanMethylation450 platform and 27 platform, and beta
values, ranged from 0 to 1, were quantified to indicate the
levels of DNA methylation. Based on R software and pack-
ages [21], we analyzed the above data to obtain differentially
methylated genes and differentially expressed genes. In addi-
tion, clinicopathological data including survival status, sur-
vival time, age, sex, the International Society of Urological
Pathology (ISUP) grade, and American Joint Committee on
Cancer (AJCC) stage were obtained from TCGA. Based on
the MethylMix package [22], we performed an analysis by
combining the differentially methylated genes and differen-
tially expressed genes. MethylMix is an algorithm for identi-
fying the hypermethylation and hypomethylation of genes in
diseases [23]. MethylMix is based on a β-mixture model to
identify the methylation status and compares this status with
the normal DNA methylation state. The correlation was
computed between the gene methylation level and the gene
expression level. Finally, the exported result of MethylMix
is methylation-driven genes (MDG).

2.2. MDG Set Enrichment Analysis. Gene functional enrich-
ment analyses were conducted to discover the main biologi-
cal characteristics of the MDG, including Gene Ontology
(GO) analyses with molecular function, biological process,
and cellular component analyses [24]. In our study, the bio-
logical process category was selected for GO analysis through
the enrichGO function in the clusterProfiler package (version
3.6) and the original database was acquired from the “org.H-
s.eg.db” package [25].

2.3. Definition of the MDG-Related Prognostic Model. We
randomly divided the tumor samples obtained from TCGA
into two cohorts: a training cohort (244 patients, Table S1)
and a validation cohort (242 patients, Table S2). We used
the training cohort to build the Cox regression risk model,
and the validation cohort was adopted to verify the
performance of the model. First, we performed univariate
Cox regression analysis to identify six methylation-driven
genes related to overall survival in patients by considering P
value < 0.01 as significant. Then, multivariate Cox
regression analysis was used to build a prognostic risk
model. The risk score was figured out using the regression
coefficients (β) from the multivariate Cox regression model
to weight the methylation values of the selected genes. Risk
score = βgene ð1Þ ×methylation level of gene ð1Þ + βgene ð2Þ
×methylation level of gene ð2Þ+⋯+βgene ðnÞ ×methylation
level of gene ðnÞ. According to the median risk score, the
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Figure 1: Heat maps of ccRCC-related aberrant methylation-driven genes. (a) The hierarchical clustering heat map of ccRCC-specific
methylation-driven mRNAs. (b) The hierarchical clustering heat map of the methylation level of ccRCC-specific methylation-driven
genes. In the figure, red represents highly methylated genes and green represents low methylated genes between ccRCC and normal tissues.
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Figure 3: Further analysis of methylation-driven genes the in the training cohort. (a) Six methylation-driven genes selected through
univariate Cox regression analysis. (b) Final multivariate prognostic model containing three survival-associated methylation-driven genes.
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training cohort was separated into the low-risk and high-risk
groups. To assess the predictive power of the risk score, we
performed receiver operating characteristic (ROC) curve
analysis. The same method was adopted in the testing
cohort to test the performance of the model.

2.4. Independence of the Risk Model from Traditional Clinical
Features and Building a Nomogram. To verify whether the
risk score was independent of other clinical variables in
ccRCC patients (including age, sex, ISUP grade, and AJCC
stage), the univariate and multivariate Cox regression analy-
ses were performed on the entire TCGA cohort. According to
results of multivariate Cox regression analysis, we con-
structed a nomogram with R package “rms” to assess the
overall survival for ccRCC. The predictive performance was
evaluated by the C index and calibration curve.

2.5. Joint Survival Analysis of the Gene Expression Levels and
Methylation Levels of the MDG. To further identify the key
genes related to the prognosis of ccRCC patients, based on
the survival R package, a joint survival analysis was per-
formed by combining the methylation levels of MDG with
the corresponding gene expression levels.

2.6. Statistical Analysis. All statistical analyses were per-
formed using R software. P < 0:05was considered statistically
significant. The MethylMix package was used to identify
DNA methylation-driven genes. We performed the univari-
ate and multivariate Cox regression analyses to determine
whether the risk score had prognostic value independent of
various clinicopathological characteristics. We conducted
the log-rank test and Kaplan-Meier survival analysis to eval-
uate the predictive ability of the risk model.

3. Results

3.1. Data Analysis and Acquisition of DMG in ccRCC.All data
were acquired from TCGA. The methylation data were
downloaded from 542 cancer tissues and 357 noncancer tis-
sues. In addition, the mRNA expression data were retrieved
from 611 samples, consisting of 72 normal samples and 539
cancer samples. On the basis of the LIMMA software
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Figure 4: Continued.

5Disease Markers



5-year overall survival AUC = 0.689

0.0

0.2

0.4

0.6

0.8

1.0

TP

FP

0.0 0.2 0.4 0.6 0.8 1.0

(e)

Figure 4: Prognostic analyses of the high-risk and low-risk patients in the training cohort. (a) Risk score distribution of patients in the
prognostic model. (b) Survival status scatter plots for patients in the prognostic model (green dots: alive; red dots: death). (c) The Kaplan-
Meier plot (high-risk vs. low-risk group) for the training cohort. (d, e) Receiver operating characteristic curves showed the predictive
efficiency of the risk score for the training cohort. AUC: area under the curve; FP: false positive; TP: true positive.

6 Disease Markers
package, we analyzed the downloaded data to obtain differ-
entially methylated genes and differentially expression genes.
We performed an integrative analysis via the R package
MethylMix, and the analysis required three datasets, includ-
ing normal DNAmethylation data, cancer DNAmethylation
data, and matched gene expression data (Tables S3, S4, and
S5). ∣logFC∣ > 0, P < 0:05, and ∣Cor∣ > 0:3 were adopted for
screening MDG. Finally, 19 MDG were obtained (Table 1).
Heat maps of the ccRCC-related aberrant MDG are shown
in Figure 1.

3.2. MDG Set Enrichment Analysis in ccRCC. Gene Ontology
analysis showed that MDG were mainly enriched in the reg-
ulation of interferon-gamma production, interferon-gamma
production, regulation of the inflammatory response to
antigenic stimuli, lymphocyte-mediated immunity, myeloid
dendritic cell activation, regulation of lymphocyte-mediated
immunity, negative regulation of interferon-gamma produc-
tion, and negative regulation of lymphocyte-mediated immu-
nity (P < 0:05, Figure 2).

Above MDG set enrichment analysis revealed that MDG
were significantly linked to inflammatory response regula-
tion and immune regulation.

3.3. Construction of the MDG-Related Prognostic Model. The
training cohort was used to construct the risk model. Firstly,
we conducted a univariate Cox regression analysis of the
methylation level of nineteen MDG. We identified six genes
(NCKAP1L, EVI2A, BATF, CD96, IL20RB, and CTSZ)
related to overall survival in the training cohort by consider-
ing P value < 0.01 as significant (Figure 3(a), P value < 0.01).
To better predict the relationships between the methylation
levels of the methylation-driven genes and overall survival
of ccRCC, we further analyzed them by stepwise multivariate
Cox regression analysis. Finally, three genes were selected to
build a predictive model (Figure 3(b), P value < 0.05). The
risk score was figured out using a linear combination of the
methylation levels of the three selected MDG weighted by
their specific regression coefficients (β). Risk score = ð3:710
∗methylation level of NCKAP1LÞ + ð−3:892 ∗methylation
level of EVI2AÞ + ð−3:907 ∗methylation level of BATFÞ. On
the basis of the median risk score, the patients in the training
cohort were classified as a high-risk group and a low-risk
group. The risk score distribution of the patients according
to the prognostic model is shown in Figure 4(a). Survival sta-
tus scatter plots for the patients according to the prognos-
tic model are shown in Figure 4(b), which shows that the
high-risk subgroup contained a higher number of patients
who died than the low-risk subgroup. We observed a sig-
nificant difference in overall survival between the two
groups (Figure 4(c), P < 0:0001), and the AUCs at three
and five years were 0.719 and 0.689, respectively
(Figures 4(d) and 4(e)).

3.4. Testing of the Methylation-Driven Gene-Related
Prognostic Model. To confirm the performance of the model,
the testing cohort was analyzed. First, we used the selected
methylation-driven genes (NCKAP1L, EVI2A, and BATF)
to compute the risk score of each patient in the validation
cohort. Similar results were observed in the testing cohort,
and the risk score distribution of the patients according to
the prognostic model is shown in Figure 5(a). Survival status
scatter plots for the patients according to the prognostic
model are shown in Figure 5(b). Significant survival
differences were observed in the testing cohort (Figure 5(c),
P < 0:0001). The AUCs at three and five years were 0.674
and 0.659, respectively (Figures 5(d) and 5(e)).

3.5. Independence of the Prognostic Model from Other Clinical
Characteristics and Building a Nomogram Based on the Risk
Score and Other Clinical Characteristics. We conducted the
univariate and multivariate Cox regression analyses to deter-
mine whether the risk score was a prognostic factor of ccRCC
independent from traditional clinical features (including age,
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Figure 5: Prognostic analyses of the high-risk and low-risk patients in the testing cohort. (a) Risk score distribution of patients in the
prognostic model. (b) Survival status scatter plots for patients in the prognostic model (green dots: alive; red dots: death). (c) The Kaplan-
Meier plot (high-risk vs. low-risk group) for the testing cohort. (d, e) Receiver operating characteristic curves showed the predictive
efficiency of the risk score for the testing cohort. AUC: area under the curve; FP: false positive; TP: true positive.
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sex, ISUP grade, and AJCC stage). The results revealed that
the risk score was independent of conventional clinical fea-
tures in the entire TCGA cohort (Figure 6), with a hazard
ratio (HR) of 1.221 (95% confidence interval: 1.063–1.402;
P = 0:005).

Then, a nomogram predicting the overall survival in
ccRCC was constructed based on the risk score and clinical
characteristics (Figure 7(a)). The C index was 0.776. The cal-
ibration curve showed that the nomogram performed well
(Figures 7(b) and 7(c)). Both the C index and the calibration
curve suggested a good predictive performance.

3.6. MethylMix Model of Three Selected DNA MDG. The
MethylMix model of the three selected DNA MDG is shown
in Figure 8. The correlation between DNA methylation and
gene expression is visualized in Figures 9(a)–9(c), Cor<−0:3.

3.7. Joint Prognostic Assessment of MDG in ccRCC. To further
identify the key genes related to the prognosis of ccRCC
patients, a joint survival analysis was conducted by combin-
ing the methylation levels of the MDG with the correspond-
ing gene expression levels. The results are shown in
Figures 9(d) and 9(e). The gene expression and methylation
levels of the prognostic genes EVI2A and BATF were signif-
icantly related to prognosis.

4. Discussion

ccRCC is the most common pathological type of kidney can-
cer [26]. In-depth molecular pathogenesis research and the
early detection of tumor prognostic biomarkers and specific
driven-genes may have great significance for improving the
prognosis of patients [27–29]. In recent years, with the deep-
ening of epigenetic research, the epigenetic regulatory mech-
anisms of renal cancer, especially DNA methylation, are
often used to predict the survival time of renal cancer, includ-
ing DAB2IP [30], RCVRN [31], CRHBP [32], AR [33], and
CDO1 [34]. However, the heterogeneity of ccRCC limits
single-gene methylation in predicting ccRCC outcomes, so
it is important to establish a multigene prediction model.

Related studies have shown that abnormal DNA MDG
may cause transcriptional disorders, causing some gene
expression mistakes and cell differentiation mistakes [35],
and tumor suppressor genes and DNA repair genes were
silenced due to hypermethylation. DNA methylation alter-
ations at precancerous stages may determine tumor aggres-
siveness and patient prognosis [36]. Therefore, identifying
abnormal DNA MDG can provide new insights for the risk
assessment and prognosis of patients.

In this study, we identified key ccRCC-related MDG and
constructed a prognostic model based on the level of DNA
methylation. First, we screened nineteen methylation-
driven genes by analyzing methylation and transcriptome
data. Then, to discover the main biological characteristics
of these methylation-driven genes, a series of gene functional
enrichment analyses were performed. The gene functional
enrichment analyses revealed that MDG were significantly
linked to inflammatory response regulation and immune reg-
ulation (P < 0:05, Figure 2).

In addition, a risk score-based prognostic model was con-
structed for these methylation-driven genes, and the predic-
tion ability of this model was validated in the testing
dataset. Three methylation-driven genes (NCKAP1L,
EVI2A, and BATF) were identified and used to construct a
prognostic risk model for ccRCC. We performed the univar-
iate and multivariate Cox regression analyses on the entire
TCGA cohort to verify that the risk model was a prognostic
factor for ccRCC independent from other clinicopathological
data (age, sex, ISUP grade, and AJCC stage) (HR = 1:221,
95% confidence interval: 1.063–1.402, and P = 0:005). In
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Figure 6: Univariate (a) and multivariate (b) Cox regression analyses of the entire TCGA cohort.
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addition, we constructed a nomogram to predict overall sur-
vival in patients with ccRCC. The C index and calibration
curve indicated that the predictive performance of the nomo-
gram was good. Finally, we performed joint survival analysis
by combining the methylation levels of the methylation-
driven genes with the corresponding gene expression levels.
The prognostic genes EVI2A and BATF were significantly
related to prognosis.

The gene EVI2A, as the human homolog of mouse genes,
may be associated with other proteins in the membrane as a
part of a cell surface receptor complex [37]; EVI2A has been
shown to be an oncogene [38]; EVI2A is highly expressed in
oral tongue squamous cell carcinoma [39] and osteosarcoma
[40] and is a risk factor for cancer prognosis. In this study, we
found that EVI2A is one of theMDG of ccRCC, and its hypo-
methylation leads to poor prognosis (Figure 9(d)).

The BATF gene acts a pivotal part in the development of
different types of cancer, including colon cancer, lymphoma,
and multiple myeloma [41–43]. In addition, Feng et al. found
that BATF acted as an oncogene in non-small-cell lung can-
cer [44]. In this study, the joint survival analyses revealed that
the BATF gene was closely related with poor prognosis in
patients with ccRCC (Figure 9(e)).

There are some limitations in this study. The specific
mechanisms of EVI2A and BATF in ccRCC were not inves-
tigated in the previous literature. Therefore, future studies
may focus on the molecular mechanisms underlying the
potential interactions of EVI2A and BATF in ccRCC.
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survival at (b) 3 years and (c) 5 years in TCGA datasets. Nomogram-predicted probability of overall survival is plotted on the x-axis;
actual overall survival is plotted on the y-axis.
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Figure 8: MethylMix model of three selected DNA methylation-driven genes. The distribution maps show the methylation states of
methylated genes. The histogram represents the distribution of methylation in tumor samples. The horizontal black bar demonstrates the
distribution of methylation in the normal samples. The distribution of the methylation degree can be clearly seen from (a–c).
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5. Conclusion

In conclusion, we identified key ccRCC-related MDG and
constructed a prognostic model based on the level of DNA
methylation. In addition, we verified that the risk model
was an independent prognostic factor for overall survival in
ccRCC. Although further experimental verification is needed,
this study provided an important bioinformatics foundation
for in-depth studies of ccRCC DNA methylation.
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