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Abstract: The ability to identify factors that influence serious injuries and fatalities would help
construction firms triage hazardous situations and direct their resources towards more effective
interventions. Therefore, this study used odds ratio analysis and logistic regression modeling on
historical accident data to investigate the contributing factors impacting occupational accidents among
small electrical contracting enterprises. After conducting a thorough content analysis to ensure the
reliability of reports, the authors adopted a purposeful variable selection approach to determine the
most significant factors that can explain the fatality rates in different scenarios. Thereafter, this study
performed an odds ratio analysis among significant factors to determine which factors increase the
likelihood of fatality. For example, it was found that having a fatal accident is 4.4 times more likely
when the source is a “vehicle” than when it is a “tool, instrument, or equipment”. After validating
the consistency of the model, 105 accident scenarios were developed and assessed using the model.
The findings revealed which severe accident scenarios happen commonly to people in this trade, with
nine scenarios having fatality rates of 50% or more. The highest fatality rates occurred in “fencing,
installing lights, signs, etc.” tasks in “alteration and rehabilitation” projects where the source of injury
was “parts and materials”. The proposed analysis/modeling approach can be applied among all
specialty contracting companies to identify and prioritize more hazardous situations within specific
trades. The proposed model-development process also contributes to the body of knowledge around
accident analysis by providing a framework for analyzing accident reports through a multivariate
logistic regression model.

Keywords: occupational accident analysis; electrical contractors; predicting fatality rates; multi-variate
logistic regression

1. Introduction

In 1931, safety theorist Herbert William Heinrich described safety problems as relating to three
elements: environment (i.e., safe or unsafe states); decision space (i.e., safe or risky human acts);
and the probability that an accident happens given the risky action of humans in an unsafe state [1].
While Heinrich’s concepts have shaped much of the industrial and occupational safety considerations
of the last ninety years [2,3], current fatality and injury trends within various industries demonstrate
that these contributing elements have not been sufficiently controlled or considered to keep workers
safe. More than 5000 workers have died while working and about 2.8 million workers were injured
on jobsites in 2017. Almost one in every five fatalities has occurred in the construction industry [4].
These statistics further emphasize that new solutions to managing construction risk appear necessary.
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Many studies have leveraged Heinrich’s parameters to model occupational accidents and improve
worksite safety for workers [5–10]. For instance, Barkan et al. [11] integrated signal detection theory
into Heinrich’s framework to design and execute experiments to study the effects of several factors
(e.g., giving positive feedback for good behaviors while imposing punishment for unsafe behaviors)
on the probability of choosing a risky task in an unsafe state (i.e., miss rates). Furthermore, to tailor
Heinrich’s ideas to construction accident investigations, Abdelhamid and Everett [12] proposed an
accident root causes tracing model (ARCTM) which emphasizes unsafe environment/acts as the main
root cause of accidents; ARCTM’s application is intended to identify accident causes to prevent accident
recurrences. At their root, these applications of Heinrich’s theory demonstrate the desire to understand
the circumstances under which workers—especially construction workers—are more prone to fatalities
in occupational accidents, in order to improve safety performance.

However, defining the circumstances of events (i.e., unsafe conditions/acts) can be challenging.
Abdelhamid and Everett [12] suggested that any physical layout, status of materials, tools, and so
on, that are in violation of safety standards are a type of unsafe condition. Another study defines
an unsafe act as “a violation of an accepted safe procedure which could permit the occurrence of an
accident” [13] (p. 5). In the dynamic and diverse domain of construction, such specifications are too
general to be useful to safety practitioners. Furthermore, these generically defined factors do not exist
in a vacuum, so the interactions between environment, behavior, and probability make identifying and
proactively managing risk a compounding puzzle for practitioners.

To address this issue, this study builds a multivariate statistical model to identify which elements
combine to contribute to more serious accident scenarios (i.e., combinations of project’s characteristics,
worker’s tasks, and accident factors) among those performing a specific trade in the construction
industry. To select a trade for analysis, the authors evaluated the specialty trade contractors’
classifications within the North American Industry Classification System (NAICS) and found that
electrical contractors faced the largest increase in the number of fatalities in recent years [14]. In addition,
electrical contractors face a wide range of accident types (e.g., such as electrocution, fall, struck-by,
and caught in/between) that represent multiple accident scenarios. The variety of accident scenarios
enabled the research team to better measure the impact of each individual accident factor. Furthermore,
considering the large number of registered firms as electrical contractors and the large number of
workers employed by these specialty contractors [4], the research team decided to consider electrical
contractors as a prime candidate for the analysis in this study.

In this study, we used historical data about past accidents among electrical contractors to provide
a quantitative representation of the unsafe conditions/acts that existed on the construction sites, with
the severity of injuries serving as the metric to evaluate the safety performance. Then, using a thorough
logistic regression modeling framework, the research team iteratively analyzed the impact of individual
accident factors—as described in the accident reports—on the accidents’ outcomes; here, the severity
of injury among the electrical contractors. As a logistic regression model determines which factors
in a pattern have a significant effect on the dependent variable, this approach allowed our team to
determine which accident factors contribute significantly to the injury pattern. Given that an accident
pattern captures factors describing both unsafe environments and unsafe acts on a construction site, by
identifying significant contributory factors affecting accident severity, our model detects high-priority
factors that may be preemptively mitigated to prevent or ameliorate accidents. Such knowledge of
accident patterns helps safety managers prioritize addressing these conditions in the safety planning
and resource-assignment phase of future projects, and therefore supports worker safety while saving
safety practitioners time and resources.

The rest of the paper is organized as follows: (1) the background section discusses findings of a
literature review regarding the causes and circumstances of occupational accidents among electrical
contractors; (2) the methodology section details the logistic regression modeling process, where data
analysis and modeling were done using the R language [15]; (3) the results of each modeling process
step are demonstrated for the case of electrical contractors, and the hazardous accident patterns
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observed in this trade are outlined; and lastly, (4) the important findings of the paper are discussed
and summarized.

2. Background

2.1. Analyzing Accident Severity against Contributing Factors

Investigating incident severity through statistical modeling and data-mining techniques has been
a popular approach among accident-prevention studies [16–19]. A data mining method, association
rules, have been used by Liao and Perng [20], and Cheng et al. [21] to analyze construction accidents
to discover potential associations among accident factors. Liao and Perng [20] found that in civil
engineering projects worker’s age (i.e., between 45–54) and time of service (more than 365 days) are
most associated with higher probabilities of fatal injuries. In building construction projects, however,
the study found that the worker’s salary (i.e., more skilled workers) and day of the week (Mondays
and Tuesdays) are more associated with higher fatalities. Cheng et al. [21] applied association rules to
investigate the main factors that are associated with falls in civil engineering and building construction
projects. They revealed that “failure to install a work platform or protection when working in a high
place, workers’ horizontal movements, and failure to use personal protection equipment when at
work” are the top three factors contributing to falls in both types of projects (p. 443).

Another popular statistical modeling method to explain relationships between accident variables
and the outcome of the incident is logistic regression [22–24]. Many accident analyses studies have
utilized variations of logistic regression models. For instance, Al-Ghamdi [25] applied logistic regression
on police reports to examine the effects of several variables on the severity of injuries and revealed that
location and cause of accident are the most significant factors. In another study, Yan et al. [26] analyzed
the probability of rear-end accidents using Florida traffic accident data to identify the significance
of risk factors such as road environment features (e.g., number of lanes, road surface condition) and
driver/vehicle traits (e.g., drivers age, vehicle type) on this type of accident. In a study more relevant
to construction safety, Harb et al. [27] investigated three years of work-zone crash data from Florida
using multiple logistic regression models; the authors found roadway geometry, age and gender of the
driver, usage of drugs and alcohol, lighting and weather conditions can all be major risk factors of
work-zone crashes. Chau et al. [28,29] reviewed 880 cases in the French construction industry to study
the effects of the individual characteristics of workers on accident occurrence. The results indicated
that sleep disorders and young age significantly contribute to higher injury rates.

Savolainen et al. [30] performed a comprehensive review of studies related to the application
of logistic models in accident analysis; their work shows that among various modeling frameworks,
discrete outcome models such as ordered probit and unordered (i.e., nominal) logit models have been
applied the most. The choice between these models mainly depends on the nature of the response
variable (i.e., degree on injury). When the accidents are classified with either fatal or nonfatal outcomes,
binary outcome models become a viable choice for analysis. For instance, in an attempt to quantify the
effects of four different street patterns on road accident injury risks—controlling for other parameters
such as driver’s age, condition, and so on—Riffat and Tay [31] analyzed 22,704 crashes using a
binary outcome logistic regression model; the study showed that some patterns such as lollipops and
loops can be marginally safer when compared to the traditional gridiron pattern. Another study by
Peek-Asa et al. [32] investigated the impact of teenager drivers’ age on the degree of injury on rural
and urban roads. This study found that among teenage drivers the odds of a fatal/severe injury were
almost five times higher in non-urban areas than urban environments. The authors concluded that the
higher fatality rates in rural areas could be associated with road conditions, uncontrolled intersections,
narrower two-lane roads and less visibility. Each of these types of accident-severity analyses attempts
to detect accident factors with significant impacts on accident severity, and they can all lead to a better
understanding of the latent causes of accidents, as well as to the design of better safety solutions.
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While the occupational safety literature is rich in the field of construction, severity-analysis studies
based on empirical data are very limited compared to transportation accident studies. The lower
number of accidents and fewer data sources, as well as the unique conditions of construction sites—as
compared to the relatively ubiquitous conditions in traffic crashes—reasonably explains this gap in
the literature. Furthermore, the majority of safety studies/programs in construction have focused on
developing methods to reduce the frequency of accidents and not the severity of their outcomes [33].
This study addresses these knowledge gaps by analyzing the severity of construction accidents through
a multi-variate model. Another limitation, even among crash-injury analyses, is that many details
of the modeling process are usually missing from these studies. Thus, discussing the results of these
models without describing the details can hurt the final conclusions, as logistic models can be very
sensitive to their assumptions. Therefore, the authors provided a detailed description of modeling
steps that can be replicated in future safety studies.

2.2. Occupational Incidents among Electrical Contractors

Construction is one of the largest industries in the United States. According to the Bureau of
Labor Statistics, more than nine million people worked in this industry in 2018 [34]. The construction
industry also consists of a wide range of professions and specialties, and therefore a large number of
unique environments around each project. To limit the scope of analysis, the authors decided to focus
on only one specialty trade, electrical contractors.

According to the Statistics of U.S. Businesses (SUBS), in 2016 more than 144,000 establishments and
firms were registered as electrical contractors, making this subindustry the second largest in business
count among all specialty trades [35]. In 2017, this trade also had the third highest number of fatalities
among all 18 specialty trades within the industry [34]. To better understand accident patterns among
electrical contractors, the authors have conducted an in-depth literature review related to occupational
incidents in this trade.

Studies investigating the nature of accidents among electrical contractors are minimal [36]. In one
early study, an examination of the mortality patterns of 31,068 U.S. members of the International
Brotherhood of Electrical Workers (IBEW) working in the construction industry between 1982 to 1987
showed an elevated proportion of mortality due to causes such as leukemia, brain tumors, melanoma
skin cancer, and diseases caused by asbestos (e.g., lung cancer) [37]. However, their study reviewed
mostly long-term causes of injuries—such as cancer and heart disease—and therefore did not cover
day-to-day hazards and occupational injuries on construction sites.

Rossignol and Pineault [38] investigated fifty-seven electrocution accident reports that resulted in a
fatality in Quebec during the period of 1981–1988. The authors defined three phases as pre-electrocution,
electrocution, and post-electrocution, and they then set out seven descriptors for the first two
phases. The authors used factor analysis to classify the seven pre-defined descriptors. Results of the
factor analysis showed more than 90% of cases were covered with only two factors: (1) twenty-six
electrocutions occurred during an indoor electrical task performed in direct contact with a source of
less than 10,000 volts; and (2) twenty cases happened while performing non-electrical outdoor tasks
in indirect contact with a source of more than 10,000 volts. This clear distinction raised questions
about the efficiency of safety trainings where around 43% of accidents occurred in non-electrical tasks.
The authors suggested a shift in safety strategies from training to elimination or modification of hazard
sources. While the outcomes were interesting, the study suffered limitations from a relatively small
and old database of cases from outside the United States.

In a study that considered age, company size, experience, tasks performed, source of injury, and
accident causes as dependent variables, Chi et al. [39] performed a chi-square automatic interaction
detector (CHAID) analysis of 250 fatal electrocution accidents to classify accidents into seven
hazard-pattern scenarios. Among all these predictors, only source of injury and accident causes
were indicated to be significant in classifying accident scenarios. Results of the study show that if the
source of injury was energized equipment, then almost all electrocutions occurred due to direct contact;
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for other electrical sources, direct or indirect contact would happen relatively equally. As the authors
indicated, the main limitations of this study were inconsistency in reporting accidents and using only
two predictors in the analysis, along with the relatively small number of observations.

Considering the high proportion of fatalities due to electrocution in construction even after
safety controls have been employed for decades, Zhao et al. [40] examined 486 recommended controls
from 132 Fatality Assessment and Control Evaluation (FACE) accident reports to: (1) evaluate the
effectiveness of electrical safety recommendations given by NIOSH experts; and (2) assess safety
knowledge in the construction industry. Accident reports were coded using the hierarchy of controls:
elimination, substitution, engineering, administration, and personal protective equipment. The authors
also defined a variable to represent safety knowledge based on the number of recommendations
for each accident. They compared these two variables by three important parameters for electrical
safety—construction type (residential, commercial, etc.); occupation (electrician, and non-electrician);
and electrical condition (low voltage and high voltage)—and found that the number of suggested safety
practices was slightly higher for non-electrical workers, and control measures for high-voltage hazards,
were statistically less effective than those for low-voltage hazards. The effectiveness of controls was
not statistically different by construction type or occupation. Another interesting finding was that
behavioral controls in electrical hazard mitigation are overemphasized and more attention should
be paid to effective control measures, such as elimination. While the paper made several valuable
contributions, it suffered the limitation that FACE reports were collected in multiple decades and were
not randomly selected. Therefore, the assumption that the recommendations provided in those reports
are common practices in the construction industry would not be correct.

To better understand the chain of decision mistakes that lead to an electrical accident, Zhao et al. [41]
examined 144 FACE accident reports. Considering 12 common decision mistakes (e.g., failure to
lockout/tagout) as independent variables and 19 pre-defined factors (e.g., project type, safety training,
etc.) as predictors, the authors classified accident reports using Exhaustive CHAID, a type of
classification tree. The analysis detected five features of work (i.e., group of activities and sequences)
and decisions that could prevent electrocution accidents. One main finding of the study was that the
sooner a decision is made, the better it can mitigate the risk of electrical accidents. The results of the study
can help safety managers find critical decision points in different situations in order to suggest effective
safety controls before the construction phase. Using the same database, Zhao et al. [42] studied electrical
injuries by considering the interactions among humans, technology, social structure, and environment
as a sociotechnical system. By conducting latent class analysis and multiple correspondence analysis,
the authors identified three sociotechnical systems in the construction industry: residential-building;
heavy and civil-engineering; and non-residential-building construction. The authors provided specific
recommendations for each system to reduce the risk of electrocution injuries. However, both of these
studies were conducted on a small number of fatal accident reports; for this reason, a severity analysis
could not be done on such data.

In another study, Gholizadeh and Esmaeili [43] studied the effects of different accident types and
project end uses on the cost of injury among electrical contractors using robust hypothesis testing
methods (i.e., Welch-type procedure, extension of Yuen’s method, and percentile bootstrapping).
The results of the study confirmed that robust hypothesis testing approaches can be successfully
implemented on safety data even when the assumptions of conventional test statistics are violated.
The findings showed that various event types and project end-uses can impact the cost of injuries among
electrical contractors: caught in/between and exposure to electricity accidents can, on average, lead to
higher injury costs than fall to lower levels and struck-by objects/equipment accidents. For a project’s
end-use, the outcomes indicated that injuries that occurred in nonbuilding projects are significantly
costlier than those that occurred in building projects.

The results of the literature review indicated several limitations in previous studies on the
occupational health and safety of electrical contractors: (1) the majority of studies have focused
only on fatalities and ignored other incident outcomes; (2) most of the studies investigated electrical
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incidents and not all types of possible hazards (e.g., fall, struck by) among electrical contractors;
and (3) there is an absence of robust statistical analysis to support inferences made from incident
databases—severity-analysis studies (i.e., using statistical models to explain and predict the outcome
of an accident) are limited in the construction safety domain. On the other hand, researchers have been
able to enhance our understanding of traffic accidents and their consequences by applying logistic
regression models on traffic crash accident data. The authors believe that construction safety managers
can also benefit from such analysis by identifying more severe accident scenarios. While the modeling
method used in this study has been successfully applied to traffic accident data, its application to
construction accident data was not guaranteed before this study. Our findings show that empirical data
available publicly through organizations such as the Occupational Safety and Health Administration
(OSHA), while they may need improvements, are suited for such analysis, and that statistical models
can be built upon construction accident data to find more severe patterns and prioritize managing
them. Therefore, this study aims to address these limitations by using a multivariate logistic model to
analyze accidents in the OSHA’s Integrated Management Information System (IMIS) accident database
affecting electrical contractors.

3. Materials and Methods

To attain the research objectives, the research team first acquired reliable national data on
occupational incidents involving electrical contractors from OSHA’s online database of catastrophic
accidents. The authors then conducted a thorough content analysis to ensure consistency among
variables, to reduce any ambiguity in reported values, and to prepare data for statistical analysis.
As the most severe accidents end in a fatality, this study uses fatality rates to describe accident severity.
Thus, to investigate and explain the relationship between factors contributing to accidents and the
degree of accident injuries, this study executed a multivariate logistic regression model that estimates
the fatality rates of different accident scenarios occurring among electrical contractors. The ability to
consider several factors in one model and interpret the final coefficients in terms of adjusted odds
ratios (i.e., controlled for other factors) makes multivariate logistic modeling a suitable approach for
severity analysis. The rest of this section is devoted to explaining each of these steps.

3.1. Incident Database and Programming Language

The authors collected 621 accident reports involving electrical contractors between 2007 to 2013
from OSHA’s IMIS online database. In total, 689 employees were injured in these incidents while
performing their jobs on construction projects. The OSHA IMIS database has been successfully used
by previous researchers to study occupational incidents [44–46]. Within this database, a summary of
each accident, as reported by OSHA inspectors, appears along with variables that describe the accident
(e.g., event type, source and cause of injury), its context (e.g., project end-use, type, and cost), and its
consequences (e.g., nature and degree of injuries, and injured part of body). As this study’s concern
is contributing factors, the analysis only considers variables that manifest before an accident occurs;
therefore, variables such as nature of injury (e.g., fracture, burn), part of body (e.g., head, trunk), and
event type (e.g., fall, struck by, exposure to electricity) are excluded from the modeling process in this
study because these elements are all characteristics of the accident after the accident occurred and
therefore do not represent contributory factors to accident severity.

The data analysis and model development steps were done in R environments [15]. R is an open
source language for statistical computing and graphics which provides a broad range of statistical
techniques such as classical statistical tests, classification, clustering, time series analysis, and linear
and non-linear modeling. R environments can run on Windows, MacOS and Unix platforms.

3.2. Odds Ratio

To better understand the associations between each significant covariate and the target variable
(i.e., degree of injury) and to interpret the likelihood of a fatal accident in different situations, the
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unadjusted odds ratios of fatal accidents were calculated at this point. Odds ratios can compare the
magnitude of different risk factors over an outcome [47]. For example, consider a comparison of the
odds of a fatal injury among all accidents where the source of injury is either a vehicle or a machinery.
The odds ratio for the effect of the vehicle category in this example can show the magnitude of its effect
on the fatal injuries; an odds ratio of 4 means that the chance (i.e., odds) of a fatal injury is four times
more where the source is a vehicle compared to cases where the source is a machine. These ratios can
be compared to the adjusted ones once the final model is selected, as such a comparison reveals the
effects of controlling factors on odds ratios. Significant changes among unadjusted and adjusted ratios
would suggest high correlations between accident factors, and further encourages the use of logistic
models to achieve adjusted ratios.

3.3. Logistic Regression

While using chi-square tests can show the relationship between a single factor and the degree
of injuries, these tests are unable to determine the effects of these variables in the presence of other
factors. Logistic regression is a proper method to test the association between potential accident risk
factors and a dependent variable [27]. As mentioned in the background section, many studies have
used various types of logistic regression models to investigate potential associations in the field of
accident analysis. While more advanced machine learning (ML) methods have emerged and been
applied to accident studies in the past decade, logistic regression has some advantages over ML
methods to justify its application in this study. First, the results of a regression model are easier to
interpret. The model can be represented in one formula using only the independent variables and their
coefficients. The coefficients of the model can directly determine important variables, along with the
magnitude and direction of association between each independent variable (i.e., risk factor) and the
dependent variable. This property is very important in studies where finding the relationship between
risk factors and the dependent variable is as significant as the accuracy of the model’s predictions.
This could be the main reason for the popularity of regression modeling in traffic accident analysis
studies. Therefore, while some machine learning methods such as decision trees—and their variants
such as random forests and gradient boosting trees—and support vector machines might provide better
prediction accuracy, their lack of interpretability can be a disadvantage. Second, once the risk factors
are identified, developing a logistic regression model is straightforward and, unlike machine learning
methods, does not require tuning various hyperparameters. This quality makes logistic regression
the first choice in many predictive studies and a valid baseline for other more complicated classifiers.
Third, while methods such as association rules can be useful to find latent patterns in large data sets,
these methods are inherently different from classification methods such as logistic regression modeling.
As Freitas [48] has outlined, classification methods are about using the past data to predict the future;
prediction is a non-deterministic task, and that’s why two different classification methods (e.g., logistic
regression and decision trees) could generate different predictions on the same set of values. On the
other hand, association rules are deterministic: every algorithm would produce the same set of rules,
while some might be faster. One of the objectives behind modeling construction accidents in this
paper is to use a reliable and well-defined model to predict fatality rates in common accident scenarios;
association rules cannot be used for such predictions.

A logistic regression model can isolate effects and indicate which variables can explain the
variability among accidents more accurately. Logistic regression models have been adopted widely in
areas ranging from medicine [49,50] to the social sciences [51,52]. This section details several steps in
developing and evaluating a multivariate logistic regression model.

Traditionally, building statistical models starts with selecting variables that can result in a
parsimonious model (i.e., having as few variables as possible), explain the data, are stable, and can
be generalized to unseen situations [53]. To develop such models, this study adopted the purposeful
selection of variables procedure proposed by Hosmer et al. [54]. One main advantage of this approach is
that it considers both the significance and change-in-estimate criteria when selecting final variables [55].
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Each step will be explained here. One should note that to maintain the language of statistical modeling,
accident factors are called “covariates” in this section.

Three steps were taken to conduct this regression analysis (Figure 1):

• Step 1: Select variables and calculate odds ratios
• Step 2: Develop and adjust model
• Step 3: Assess and validate model
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Step 1: Select variables and calculate odds ratios

A purposeful model-building process starts with building univariate (i.e., containing only one
covariate such as project end-use or source of injury) models for each covariate and assessing their
performance. The performance of each univariate model is calculated as the difference between



Int. J. Environ. Res. Public Health 2020, 17, 4852 9 of 24

its deviance and the deviance of a model with only the constant parameter (i.e., no covariate).
The glm function from the stats package in R [15] was used to determine the deviances of models.
The significance of difference (i.e., presented by G) is determined through the p-value of a chi-square
test (i.e., the pchisq() function in R) with a degree of freedom equal to (d-1), where ‘d’ is the number
of categories of the covariate. Within this framework, a significant result recommends the inclusion
of the variable in the final model. As this is the first step, Hosmer et al. [54] recommended less
conservative significance levels (i.e., 0.25 instead of 0.05) to include more variables in the model.
In other words, this step allows less significant factors to remain in the model in order to analyze the
effects of these apparently less significant factors on more significant ones in future steps. Factors that
are neither significant at the 0.05 level nor have an effect on other factors would be excluded from the
model eventually.

Table 1 presents the log likelihood ratio statistics (i.e., G) for five univariate models. Low values of
G indicate that the difference between fatality rates among different categories of a factor are negligible
and therefore the variable would not be very predictive in the model. The significance of G also
depends on the degree of freedom (i.e., d.f.) which ultimately determines the p-values (i.e., the evidence
against a null hypothesis: the smaller the p-value, the stronger the evidence to reject a null hypothesis).
One can only check p-values and conclude whether the effect of a variable on fatality rates is significant
or not. As the significant level in this step is 0.25, any value less than that is considered as significant at
this step. Based on p-values of the chi-square tests, “end use” and “project cost” do not have significant
effects on the probability of a fatal accident (even at the significance level of 0.25); in other words, the
univariate models with these variables do not differ significantly from a model that has no covariates.
The results indicate that the other three covariates are significant and should be considered in the
multivariate model.

Table 1. Fitting univariate logistic models.

Model G Degree of Freedom
(d.f.) p-Value

End use (EU) 0.4 4 0.983
Project type (PT) 18.7 4 0.001 *
Project cost (PC) 6.36 6 0.384

Source of injury (SoI) 21.58 5 0.001 *
Cause of injury (CoI) 11.80 5 0.038 *

* Statistically significant variables at 0.25.

Step 2: Develop and adjust model

After finding the more important covariates (i.e., “source of injury,” “cause of injury,” “project
type”), one can build an additive (i.e., no interaction) model and test the importance of individual
covariates in this multivariate context using traditional significance levels (i.e., 0.05 in this study).
The non-significant covariates are temporarily removed from the model—in the case of categorical
covariates, all levels should be removed even if only one of the categories is not significant. Next, the
deviance of the new/reduced model is compared to the deviance of the original multivariate model (i.e.,
likelihood ratio test). A large difference means that the removed variables—though independently not
significant—have a considerable effect on adjusting the significant variables, and hence should be added
back to the model. This process can be repeated several times to make sure that the necessary variables
are included in the model. The last step in building a multivariate model includes the interaction
effects. As with the single covariates, the interaction terms are added to the model one-by-one, and
their effects are measured through the amount of deviance they can reduce. Thus, using this approach,
significant interactions also remain in the final model. The modeling step is accomplished using,
mainly, the generalized linear modeling [i.e., glm()] function with ‘binomial’ link in R [15].

As there are only eighteen possible models of interest based on the different combinations of these
variables and their interactions, all of them are shown in Table 2. Three subscripts were used to reflect
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the structure of the data: let πijk be the probability of a fatal accident in the (i, j, k)-th group, where i = 1,
2, 3, 4, 5, 6 indexes “source of injury,” j = 1, 2, 3, 4, 5 presents levels of “project type” and k = 1, 2, 3, 4, 5,
6 indicates the categories under “cause of injuries”. These variables can produce 180 accident patterns
(i.e., 6 × 6 × 5). However, 72 of these patterns have zero cases in the data and therefore should be
excluded from analysis, leaving 108 covariate patterns for modeling. As all predictors are categorical,
the authors decided to focus on fatality rates among these patterns instead of looking at each accident
individually. Table 2 shows models in abbreviated notation, formulas for the linear predictor, the
deviance, and the degrees of freedom. A unique ID number has also been assigned to each model for
future references.

Table 2. Deviance for logit models of fatality by “source of injury,” “project group,” and “project cost”.

ID Model Logit (πijk) Deviance d.f.

1 Null η 156.87 107

One Factor
2 SoI η + αi 135.29 102
3 PT η + βj 138.16 103
4 CoI η + γk 145.07 102

Two Factors
5 SoI + PT η + αi + βj 113.59 98
6 SoI + CoI η + αi + γk 123.40 97
7 PT + CoI η + βj + γk 125.49 98
8 SoI × PT η + αi + βj + (αβ)ij 91.65 80
9 SoI × CoI η + αi + γk + (αγ)ik 98.64 72

10 PT × CoI η + βj + γk + (βγ)jk 100.98 82

Three Factors
11 SoI + PT + CoI η + αi + βj + γk 101.20 93
12 SoI × PT + CoI η + αi + βj + γk + (αβ)ij 78.21 75
13 SoI × CoI + PT η + αi + βj + γk + (αγ)ik 75.10 68
14 SoI + PT × CoI η + αi + βj + γk + (βγ)jk 77.79 77
15 SoI × PT + SoI×CoI η + αi + βj + γk + (αβ)ij + (αγ)ik 55.17 50
16 SoI × PT + PT × CoI η + αi + βj + γk + (αβ)ij + (βγ)jk 54.38 59
17 SoI × CoI + PT × CoI η + αi + βj + γk + (αγ)ik + (βγ)jk 56.75 52
18 SoI × PT + SoI × CoI + PT × CoI η + αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk 37.55 34

Using the deviance and degree-of-freedom from Table 2, one should start with the additive model
with three covariates (i.e., model 11). Next, one covariate would be excluded from the model to check
its effect on the other two covariates. The results of these tests are presented in Table 3 (i.e., a1, a2, and
a3). The results reveal that the additive model with three variables (i.e., SoI + PT + CoI) represents a
significant improvement over all the additive models with two factors (i.e., model 5, 6, and 7). In other
words, while some levels of covariates are not significant (results are not shown), they have a significant
effect on adjusting the other variables and therefore should remain in the model.

The next step is to investigate the interaction effects, which includes models with one, two, or
three interaction terms. Three models (i.e., 12, 13, 14) in Table 2 have one interaction term. For example,
model 12 includes the main effects of source of injury (SoI), project time (PT), and cause of injury (CoI),
and the interaction between SoI and PT. The log likelihood tests in Table 3 (i.e., b1, b2, and b3) show that
none of these models with one interaction is better than the three-factor additive model (i.e., model 11).
One can also consider models involving two interactions between two factors, of which there are three
(i.e., models 15, 16, 17). The results show that only one model (i.e., model 16) is marginally (p-value:
0.071) better than the additive model. Model 18, which includes all the interactions between each
two variables, could not improve the additive model, and hence cannot be selected as a good model.
Considering the p-values in Table 3, one can conclude that model 11 (SoI + PT + CoI) is the best model.
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Table 3. Model comparisons.

Test ID Test (Model A vs. Model B) G d.f. p-Value

a1 11 vs. 5 12.39 5 0.030
a2 11 vs. 6 22.20 4 0.000
a3 11 vs. 7 24.29 5 0.000
b1 12 vs. 11 22.99 18 0.191
b2 13 vs. 11 26.1 25 0.402
b3 14 vs. 11 23.41 16 0.103
c1 15 vs. 11 46.03 43 0.348
c2 16 vs. 11 46.82 34 0.071
c3 17 vs. 11 44.45 41 0.329
d1 18 vs. 11 63.65 59 0.316

The last task in model development is to consider non-significant variables from step 1 in the
context of the new multivariate model and check whether they can improve the performance of this
model. Table 4 shows the results of such comparisons and declares that adding the non-significant
variables, one-by-one and together, cannot lead to better results. For instance, adding end use to
the model would reduce the model by four degrees of freedom while only reducing the deviance by
0.73, which is not even close to a significant improvement (p-value: 0.949). Therefore, the research
team concludes that the additive model with three variables is the best multivariate model among the
possible options.

Table 4. Additive models with and without non-significant variables.

Model G d.f. p-Value

PT + SoI + CoI + EU 0.73 4 0.949
PT + SoI + CoI + PC 4.73 6 0.579

PT + SoI + CoI + EU + PC 5.51 10 0.855

Step 3: Assess and validate mode

After building a model by selecting covariates and tuning the model in a purposeful manner, one
should investigate the probabilities that are produced by the model against true values in data. To do
so, the last step in every statistical modeling process includes model assessment. This section will
detail this study’s three main attempts to fulfill the requirements needed to assess our final model.

I. Goodness of fit
After building models and comparing deviances to determine covariates and build a parsimonious

model, one needs to examine how well the data fits the final model. Lack of fit means that estimated
coefficients are biased, odds ratios could be misleading, and future predictions are not accurate. To check
fit, one can compare predicted values derived from the model to observed values to confirm that the
fitted model is correct [56]. The Hosmer-Lemeshow (HL) statistic is a popular test for goodness-of-fit
and has been used in several clinical studies [49,50,57]. The idea is to partition observations based
on their estimated probabilities into g (usually 10 to represent deciles of risk) groups featuring
approximately the same quantity of observations; here, the first group would represent the lowest
probabilities of fatality, the next group would have larger estimated probabilities and so on, until
the last group which includes the highest probabilities [58,59]. The HL statistic is then calculated by
comparing the sum of probabilities to the number of observed values in each group. A chi-square test
on this value with g-2 degrees of freedom can determine whether there is enough evidence to reject the
hypothesis that data fits the model. The ‘hoslem.test()’ function from ‘ResourceSelection’ package in
R [15] provides the test statistic and p-value of the HL test.

Table 5 shows the results of the Hosmer-Lemeshow tests when dividing the accident patterns into
10 groups. The value of Hosmer-Lemeshow’s goodness of fit computed for the frequencies in Table 5 is
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5.85 when granted 8 degrees of freedom, with the corresponding p-value of 0.664. The large p-value
indicates that the null hypothesis that the model fits the data cannot be rejected, demonstrating that
the model fits the data quite well. A comparison of observed and expected frequencies in the 20 cells
in Table 5 also shows close agreements in every decile of risk. For instance, within the highest risk
decile (i.e., decile 10), the difference between both observed and expected values are within one point.
Figure 2 compares the average of observed and predicted values in each decile, which again shows a
close agreement in most deciles.

Table 5. Observed and estimated frequencies within ten deciles of risk for fatal and non-fatal accidents.

Decile Cut Point
Non-Fatal Fatal

Observed Expected Observed Expected

1 [0.058, 0.186] 55 56.4 10 8.6
2 (0.186, 0.255] 54 51.3 12 14.8
3 (0.255, 0.295] 48 50.8 23 20.2
4 (0.295, 0.310] 32 32.0 14 14.0
5 (0.310, 0.364] 48 52.3 32 27.7
6 (0.364, 0.390] 35 31.1 15 18.9
7 (0.390, 0.402] 38 33.7 18 22.3
8 (0.402, 0.499] 33 33.0 29 29.0
9 (0.499, 0.561] 26 29.1 35 31.9

10 (0.561, 0.781] 24 23.3 38 38.8
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II. Diagnostics
Even a strong fit can be very sensitive to outlying and extreme-leverage points in the data [60]. So,

while summary statistics such as the HL test can indicate the overall fit of a model to data with a single
number, one still needs to check if the model fits over all covariate patterns. Pregibon [61] introduced a
range of diagnostic measures for logistic models with binary outcomes. Two types of measures, based
on the leveraged value of covariate patterns, are adopted in this study: (1) those that determine fit in
each pattern (i.e., change in value of the Pearson chi-square, ∆χ2, and change in the deviance, ∆D);
and (2) those that can determine the amount of influence a pattern can have over other patterns (i.e.,
change in value of the estimated coefficients, ∆β).

For each covariate pattern, values of ∆χ2 (and ∆D) are calculated as the difference between
the Pearson chi-square (and deviance) values of the original model and the model when excluding
observations in that pattern. As mentioned by Peng et al. [62], at the significance level of 0.05, and based
on the critical value of the chi-square distribution with one degree of freedom (i.e., 3.84), changes more
than four are considered large and demonstrate that the pattern in question contributes significantly to
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the disagreement between the observed and predicted values. Large values of ∆β also indicate that
estimates are not stable. Large values of ∆χ2 or ∆D accompanied by large changes in coefficients can
signal that a covariate pattern is an outlier and should be investigated in more detail.

Figure 3 and Table 6 show diagnostic measures for covariates in the final model. Regarding the
poorest fit, covariate pattern 97 (i.e., SoI: “parts and material,” PT: “alteration or rehabilitation,” CoI:
“other”) and 55 (i.e., SoI: “machinery,” PT: “other,” CoI: “other”) induced large changes in Pearson
chi-square values. Covariate pattern 97 also created significant changes in deviance values. In terms of
effect of a covariate pattern on coefficients of other patterns, pattern 97 again has the largest value,
followed by pattern 100 (i.e., SoI: “parts and material,” PT: “alteration or rehabilitation,” CoI: “installing
plumbing and lighting fixtures”). Figure 3d combines Figure 3a with Figure 3c as the size of circles
represent the value of ∆β. Based on these results, three covariate patterns (i.e., 97, 55, and 100) were
selected for further investigation (Table 7).

Int. J. Environ. Res. Public Health 2020, 17, x  13 of 25 

 

Figure 3 and Table 6 show diagnostic measures for covariates in the final model. Regarding the 
poorest fit, covariate pattern 97 (i.e., SoI: “parts and material,” PT: “alteration or rehabilitation,” CoI: 
“other”) and 55 (i.e., SoI: “machinery,” PT: “other,” CoI: “other”) induced large changes in Pearson 
chi-square values. Covariate pattern 97 also created significant changes in deviance values. In terms 
of effect of a covariate pattern on coefficients of other patterns, pattern 97 again has the largest value, 
followed by pattern 100 (i.e., SoI: “parts and material,” PT: “alteration or rehabilitation,” CoI: 
“installing plumbing and lighting fixtures”). Figure 3d combines Figure 3a with Figure 3c as the size 
of circles represent the value of Δβ. Based on these results, three covariate patterns (i.e., 97, 55, and 
100) were selected for further investigation (Table 7). 

 

Figure 3. Diagnostic measures for the logistic model, (a) Change in Pearson Chi-square when 
removing individual covariate patterns from data, (b) Change in deviance when removing individual 
covariate patterns from data, (c) Change in the estimated coefficients when removing individual 
covariate patterns from data, (d) Combination of a and c: change in Pearson Ci-square (y-axis) and 
estimated coefficients (size of circles) when removing individual covariate patterns from data. 

Table 6. Covariate values, observed outcomes (yijk), number of cases in the covariate pattern (mijk), 
observed probability (Pijk), estimated logistic probability (πîjk), and the value of four diagnostic 
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Figure 3. Diagnostic measures for the logistic model, (a) Change in Pearson Chi-square when removing
individual covariate patterns from data, (b) Change in deviance when removing individual covariate
patterns from data, (c) Change in the estimated coefficients when removing individual covariate
patterns from data, (d) Combination of a and c: change in Pearson Ci-square (y-axis) and estimated
coefficients (size of circles) when removing individual covariate patterns from data.
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Table 6. Covariate values, observed outcomes (yijk), number of cases in the covariate pattern (mijk),
observed probability (Pijk), estimated logistic probability (πijk), and the value of four diagnostic statistics
∆χ2 (i.e., change in value of the Pearson chi-square), ∆D (i.e., change in the deviance), h (i.e., leverage),
and ∆β (i.e., change in value of the estimated coefficients), for three covariate patterns with at least one
large diagnostic value.

Covariate Pattern
Number 97 55 100

Source of injury Parts and materials Machinery Parts and materials
Project type Alteration or rehabilitation Other Alteration or rehabilitation

Cause of injury Other Other Installing plumbing, lighting fixtures

yjjk 5 2 14
mjjk 28 4 21
Pijk 0.179 0.500 0.667
πijk 0.373 0.149 0.524
∆χ2 6.667 4.464 2.737
∆D 7.452 3.115 2.802
h 0.322 0.125 0.377

∆β 3.166 0.639 1.658

To further validate this model, one can delete each of the three questionable patterns and
look at the model statistics to see if the modified model can still perform well. Columns three,
four, and five of Table 7 demonstrate deviance, sum of Pearson chi-square residuals, and the
Hosmer-Lemeshow goodness-of-fit statistic for three models excluding covariates 97, 55, and 100,
respectively. These numbers indicate that the selected additive model (i.e., SoI + PT + CoI) can
still perform well and fit the data in each case. The results of three other scenarios in Table 7 (i.e.,
removing two covariates with the poorest fit, removing two covariates with the largest influence, and
removing all three covariates) also show that the additive model with three variables can fit the data
very well in each scenario. These findings indicate that the additive model performs well with the
remaining 105 covariates patterns (representing 91% of all accidents). Based on these results, the three
questionable covariates were removed from the rest of analysis.

Table 7. Model statistics for the original model and six scenarios.

Model
Statistics

All Data
Coefficients 97 55 100 Poorest Fit

(97, 55)
Largest Influence

(97, 100) All Three

D 101.20 94.02 97.90 98.42 90.81 92.68 89.67
X2 83.82 77.24 77.24 80.99 74.35 75.62 72.94
C 3.17 1.60 1.01 4.21 3.03 2.92 2.24

III. Validation
As mentioned by Iezzoni [63], calibration and discrimination are two main methods to assess the

performance of a logistic regression model on unseen data. While discrimination measures the ability
of a model to distinguish between two classes of the dependent variable, calibration determines the
model’s capability in producing estimations that are, on average, close to the observed classes [64].
This study is focused on fatality rates among common accident scenarios. Due to the categorical nature
of predictors, the fatality rate (i.e., dependent variable) of an accident scenario is calculated as the
average of fatalities among all accidents in that scenario. For instance, among the eight accidents that
have occurred in alteration/rehabilitation projects with tools and instruments representing the source
of injury and interior plumbing/ducting/electrical work being the cause of injury, only one resulted in a
fatality. Therefore, the observed/actual rate of fatality in this scenario is around 13%. As the objective
is to study these rates and compare the performance of the logistic model to them, the authors have
concluded that calibration measures would better serve this purpose.
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The same measure (i.e., HL statistic) can be used for calibration/validation purposes. The only
difference is that the data would be divided into training and testing sets and the model would be
developed on the training set and be tested on the unseen testing set. Large p-values indicate there is
no evidence to believe the model does not fit test data. For more information on the test statistics for
testing dataset look at [54] (p. 155).

To validate the model on unseen data, a series of training sets were created using 70% of the
source data, and a series of testing sets were created using 30% of the source data. To increase the
reliability of the results, this study applied a stratified sampling method to generate training/testing
data sets. The same measure (i.e., Hosmer-Lemeshow statistic) was calculated to ensure that the model,
which was trained only on the training set, can fit testing data well. The chi-square statistic of 6.97 and
the p-value of 0.540 showed that the proposed model can fit unseen data as well.

4. Results

This section starts by presenting the odds ratios of fatality among three significant accident factors
and continues by presenting the final model, its coefficients, and the 36 most common accident patterns
among electrical contractors that can be explained by the model.

4.1. Odds Ratio

Before presenting the final model, one can examine unadjusted odds ratios for the three variables
that are included in the model: project type, source of injury, and cause of injury. The significant ratios
reveal which categories of a variable caused higher fatality rates. These ratios can also be compared to
adjusted ratios (i.e., controlled for other variables) from the logistic model and to identify the effect of
controlling factors on each variable. Table 8 demonstrates these ratios among project types. In the
first row, 1.24 means that fatal accidents in “alteration or rehabilitation” projects are 1.24 times more
likely to happen than in “maintenance or repair” projects. This ratio is the same as saying that fatal
accidents are 0.81 times (second row) as likely to happen in “maintenance or repair” projects than in
“alteration or rehabilitation” ones. As Table 8 shows, the odds of fatal accidents in the two largest
project types (i.e., “new” and “alteration”) are almost identical. Table 8 also shows that while the odds
of an occupational death are much larger in “demolition” projects than “new,” “maintenance,” and
“alteration” projects, the difference is not significant due to the low frequency of “demolition” projects,
which, in turn, produces large confidence intervals. While the definition of the ‘Other’ category is
ambiguous, since no further details were available from accident reports, it was not possible to translate
this category among project types.

Table 8. Odds ratios of fatal accidents among different project types.

Project Types Alteration or
Rehabilitation

Maintenance
or Repair

New Project or
New Addition Demolition Other

Alteration or rehabilitation † - 1.24 1.01 0.47 4.06 *
Maintenance or repair † 0.81 - 0.81 0.38 3.28 *

New project or new addition † 0.99 1.23 - 0.47 4.02 *
Demolition † 2.11 2.62 2.13 - 8.58 *

Other † 0.25 * 0.25 * 0.42 * 0.12 * -

* Statistically significant at 0.05 level; † First term in odds ratio.

Table 9 demonstrates the odds ratios among “sources of injuries”. As one can see, when the source
was a “tool, instrument, or equipment,” much fewer fatalities happened as compared to tasks that
involved “machinery,” “parts and material,” or “vehicles.” On the contrary, “vehicles” could lead to
more severe injuries than “parts and materials,” “structures and surfaces,” or “tools, instruments, and
equipment.” In fact, having a fatal accident is 2, 3, and 4.4 times more likely to occur when the source is
a “vehicle” than when it is a “part and material,” a part of “structure or surface,” or a “tool, instrument,



Int. J. Environ. Res. Public Health 2020, 17, 4852 16 of 24

or equipment,” respectively. Among sources of injuries, 56 cases were defined as “other” in OSHA’s
database. After reviewing accident reports, all 56 cases were reclassified with meaningful values
(vehicles, machinery, etc.). However, there were seven categories (e.g., chemical products, natural gas,
containers, etc.) with very low frequencies (less than 2% of sources). To reduce the number of groups
in the analysis, the authors combined these categories (accounting for 23 cases all together) into one
“other” category. One should note that this “other” category is less ambiguous after content analysis as
its components are known.

Table 9. Odds ratios of fatal accidents among different sources of injuries.

Source of Injury Machinery Parts and
Material

Structures and
Surfaces

Tools and
Instruments Vehicles Other

Machinery † - 1.26 1.79 2.57 * 0.58 1.50
Parts and Material † 0.79 - 1.42 2.04 * 0.46 * 1.19

Structures and Surfaces † 0.56 0.71 - 1.44 0.32 * 0.84
Tools and instruments † 0.39 * 0.49 * 0.70 - 0.23 * 0.58

Vehicles † 1.73 2.18 * 3.08 * 4.44 * - 2.59
Other † 0.67 0.84 1.19 1.71 0.39 -

* Statistically significant at 0.05 level, † First term in odds ratio.

The odds ratios for different causes of injuries are shown in Table 10. Four ratios were found
to be significant. When the tasks are “fencing, installing lights, signs, etc.” or “installing plumbing,
lighting fixtures,” the likelihood of a fatal accident is 2.88, and 2.01 times the likelihood of a non-fatal
accident than when the task is “interior plumbing, ducting, or electrical work” respectively. In other
words, “interior plumbing, ducting, or electrical work” is less hazardous than the other two tasks.
Also, “fencing, installing lights, signs” and “installing plumbing and lighting fixtures” cause fatality,
respectively, 2.39 and 1.67 times more than “Other” causes. One should note that the ‘Other’ category
here is consisted of two types of cases: (1) causes with low frequency incidents and (2) reports in which
the cause was not reported by OSHA inspectors. The first group represented less than 5% of the data.
From 34 reported causes, only five had at least 5% and the rest (e.g., demolition, excavation, cutting
concrete pavement) were labeled as ‘Other’. Other than low frequency causes, there were 130 cases
in which the cause of injury was not reported by OSHA inspectors. Interestingly, the fatality rate of
‘not reported’ cases was the same as those of the ‘Other’ category in the data: 32% of injuries in both
groups were resulted in a fatality. For this reason, the ‘not reported’ cases were also added to the
‘Other’ category when calculating the odds ratios and building the regression model.

Table 10. Odds ratios of fatal accidents among different causes of injuries.

Cause of Injury Fencing, Installing
Lights, Signs

Installing
Equipment

Installing
Plumbing

Interior Plumbing,
Ducting

Temporary
Work Other

Fencing, installing lights, signs † - 1.74 1.43 2.88 * 1.52 2.39 *
Installing equipment † 0.58 - 0.82 1.66 0.88 1.37
Installing plumbing † 0.70 1.22 - 2.01 * 1.07 1.67 *

Interior plumbing, ducting † 0.35 * 0.60 0.50 * - 0.53 0.83
Temporary work † 0.66 1.41 0.94 1.89 - 1.57

Other † 0.42 * 0.73 0.60 * 1.21 0.64 -

* Statistically significant at 0.05 level, † First term in odds ratio.

4.2. Final Logistic Regression Model

After selecting the final multi-variate model, one can discuss its coefficients for different levels of
variables. Note that reference groups among variables are set to those with the highest fatality rates:
accidents that have occurred in “demolition” projects, those where source of injury was a “vehicle,”
and those wherein the cause was “fencing, installing lights, signs, etc.” From the 14 coefficients, six
(excluding the constant) are significant at the level of 0.05, and three are marginally significant at the
0.10 significance level.
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New adjusted odds ratios can be calculated easily from Table 11. For instance, to compute the
adjusted odds ratios between “machinery” and “vehicle,” one can first get the estimated logits under
the model:

ĝ(SoI = Machinery; PT∗ = Alteration or rehabilitation; CoI∗

= Installing plumbing, lighting f ixtures) = 1.862− 0.733− 0.607− 0.420 = 0.102;
(1)

ĝ(SoI = Vehicles; PT = Alteration or rehabilitation; CoI
= Installing plumbing, lighting f ixtures)

= 1.862− 0.607− 0.420 = 0.835
(2)

* Values for PT and CoI could vary as long as same values are used in both cases
The difference between the two estimations is −0.733 and the odds ratio would be the exponential

of −0.733, which is 0.48. Comparing this ratio to Table 9 reveals that controlling for “project type” and
“cause of injury” has decreased the odds of fatality for machinery by around 17% (i.e., 0.58 to 0.48).
Note that this odds ratio is more accurate than the unadjusted one in Table 9 (i.e., 0.58) as the effects of
more accident factors are considered.

Table 11. Final model for the electrical contractors (number of remaining accidents = 566).

Accident
Factor Model Parameters Coefficient Std. Err. z p

Constant 1.862 0.786 2.369 0.018 *

SoI Machinery −0.733 0.445 −1.646 0.100 †

Parts and materials −0.764 0.336 −2.276 0.023 *
Structures and surfaces −1.247 0.381 −3.272 0.001 **

Tools, instruments, and equipment −1.613 0.381 −4.235 2.29 × 10−5 ***
Other −1.072 0.545 −1.966 0.049 *

PT Alteration or rehabilitation −0.607 0.651 −0.933 0.351
New project or new addition −0.635 0.629 −1.009 0.313

Maintenance or repair −1.082 0.637 −1.699 0.089 †

Other −2.456 0.751 −3.268 0.001 **

CoI Installing equipment (HVAC and other) 0.445 0.435 −1.023 0.306
Installing plumbing, lighting fixtures −0.420 0.476 −0.883 0.377

Interior plumbing, ducting, electrical work −1.032 0.450 −2.290 0.022 *
Temporary work (buildings, facilities) −0.389 0.526 −0.740 0.459

Other −0.735 0.421 −1.748 0.081 †

Significance levels: 0–0.001: ***; 0.001–0.01: **; 0.01–0.05: *; 0.05–0.1: †. HVAC: heating, ventilation, and
air conditioning.

4.3. Common Accident Patterns among Electrical Workers

To investigate common covariate patterns and study the performance of the model in predicting
the fatality rates among them, the authors decided to look into the observed and predicted fatality rates
among patterns with at least six cases (i.e., representing at least one percent of the data). Using this
criterion reduced the number of patterns to 36, which represent 411 accidents or 73 percent of the data.
Table 12 shows these results, which were sorted based on the observed fatality rates in each pattern.
Among the 36 patterns, in 11 cases, the predicted value was within 5 percent of the observed fatality
rates. These 11 patterns represent 38 percent of the 411 accidents in Table 12. Another 10 patterns,
representing 28 percent of the accidents, were predicted with 6–10 percent of the observed rates.
Among the rest of patterns, four of them did not have close prediction numbers, but yielded ranks
predicted correctly as having the highest fatality rates. For instance, the predicted fatality rate for
pattern 99 was 62 percent, which is the second highest prediction rate and indicates the high risk-level
of this pattern. These numbers indicate the satisfactory ability of the model to detect the level of risk
among various accident patterns.
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Table 12. Observed and predicted probability of fatal accidents in 36 common covariate patterns.

ID Observed Estimate SoI Cause Type n

149 0.00 0.07 Structures and surfaces Other Other 6
137 0.00 0.23 Structures and surfaces Other Maintenance or repair 6
165 0.10 0.22 Tools, instruments, and equipment Installing plumbing, lighting fixtures Maintenance or repair 10
160 0.13 0.20 Tools, instruments, and equipment Interior plumbing, ducting, electrical work Alteration or rehabilitation 8
106 0.15 0.27 Parts and materials Interior plumbing, ducting, electrical work Maintenance or repair 13
179 0.17 0.05 Tools, instruments, and equipment Other Other 6
116 0.17 0.14 Parts and materials Installing equipment (HVAC and other) Other 6
173 0.17 0.25 Tools, instruments, and equipment Other New project or new addition 12
119 0.20 0.11 Parts and materials Other Other 10
172 0.27 0.20 Tools, instruments, and equipment Interior plumbing, ducting, electrical work New project or new addition 11
158 0.29 0.31 Tools, instruments, and equipment Installing equipment (HVAC and other) Alteration or rehabilitation 7
170 0.31 0.30 Tools, instruments, and equipment Installing equipment (HVAC and other) New project or new addition 13
113 0.31 0.43 Parts and materials Other New project or new addition 32
112 0.33 0.36 Parts and materials Interior plumbing, ducting, electrical work New project or new addition 24
108 0.33 0.41 Parts and materials Temporary work (buildings, facilities) Maintenance or repair 9
11 0.33 0.63 Vehicle Other Alteration or rehabilitation 6

143 0.35 0.32 Structures and surfaces Other New project or new addition 26
107 0.36 0.33 Parts and materials Other Maintenance or repair 31
171 0.36 0.31 Tools, instruments, and equipment Installing plumbing, lighting fixtures New project or new addition 11
104 0.36 0.39 Parts and materials Installing equipment (HVAC and other) Maintenance or repair 11
167 0.38 0.17 Tools, instruments, and equipment Other Maintenance or repair 8
161 0.38 0.25 Tools, instruments, and equipment Other Alteration or rehabilitation 8
142 0.38 0.26 Structures and surfaces Interior plumbing, ducting, electrical work New project or new addition 8
159 0.38 0.32 Tools, instruments, and equipment Installing plumbing, lighting fixtures Alteration or rehabilitation 8
110 0.41 0.51 Parts and materials Installing equipment (HVAC and other) New project or new addition 17
140 0.42 0.39 Structures and surfaces Installing equipment (HVAC and other) New project or new addition 12
101 0.47 0.37 Parts and materials Interior plumbing, ducting, electrical work Alteration or rehabilitation 17
47 0.50 0.33 Machinery Other Maintenance or repair 6
17 0.50 0.51 Vehicle Other Maintenance or repair 6

128 0.57 0.39 Structures and surfaces Installing equipment (HVAC and other) Alteration or rehabilitation 7
98 0.59 0.51 Parts and materials Installing equipment (HVAC and other) Alteration or rehabilitation 17

103 0.67 0.50 Parts and materials Fencing, installing lights, signs, etc. Maintenance or repair 9
114 0.67 0.52 Parts and materials Temporary work (buildings, facilities) New project or new addition 6
23 0.67 0.62 Vehicle Other New project or new addition 9

111 0.78 0.51 Parts and materials Installing plumbing, lighting fixtures New project or new addition 9
99 0.83 0.62 Parts and materials Fencing, installing lights, signs, etc. Alteration or rehabilitation 6
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5. Discussion

To explore and quantify the effect of the three significant factors (i.e., “project type,” “source of
injury,” and “cause of injury”) on fatality rates, odds ratios were calculated, and their significance was
tested at the 0.95 level. Among “sources of injuries,” results indicate that “machinery” and “parts and
materials” can cause death at significantly higher rates than “tools and instruments”. Moreover, in
accidents where the primary “source of injury” was a “vehicle,” odds of a fatal injury would be two
times, three times, and four times more than where the sources are “parts and material,” “structures
and surfaces,” and “tools and instruments,” respectively. “Vehicles” in this study include highway
motorized vehicles, powered off-road and industrial vehicles, and non-powered plant and industrial
vehicles. All fatal accidents involving vehicles in this study can be categorized into four scenarios:
(1) struck by/run over by passenger vehicles or construction vehicles; (2) electrocuted by touching
part of a vehicle (e.g., boom) that was energized mistakenly; (3) fell from truck/forklift/bucket; and
(4) pinned between vehicles or part of vehicles. Chi and Lin [65] have mentioned the imperative
of using vehicles that are in compliance with standards such as American National Standard for
Powered Industrial Trucks. They also emphasized the need for required training and evaluation
of operators based on OSHA standards. For instance, to avoid falls, OSHA 1910.178 declares that
operators must avoid unsafe behaviors such as placing arms or legs between the uprights of the mast
or outside the running lines of the truck or standing or passing under the elevated portion of any truck.
Applying these recommendations could reduce the risk of accident scenarios involving vehicles.

While the odds ratios could show which level(s) of factors are more hazardous (i.e., produce
higher fatality rates), they are not enough to explain the relationship between fatality rates and accident
scenarios in which more than one factor is present. In other words, considering combinations of
attributing factors in a regression context could possibly reveal more about the outcome of accidents (i.e.,
the probability of a fatal injury in this case) than when only one factor has been studied. As mentioned
by Hosmer et al. [54], the dependent variable is usually associated with more than one predictor and
therefore considering only univariate models could be insufficient and misleading. Therefore, the
authors took several steps to find the best fitting, most parsimonious, and efficiently interpretable
multivariate logistic regression model. The final model is an additive model consisting of three factors:
source of injury; type of project; and cause of injury. The analysis shows that this model is better than
any of the other 17 possible models and the saturated model (Tables 2 and 3), that it can fit the data
well (Table 5 and Figure 2), and that it has a satisfactory performance on unseen data validated by
Hosmer-Lemeshow test. To ensure that the model can fit individual patterns, the authors have also
performed diagnostic tests, which revealed that three patterns do not fit the model. These patterns
have been removed from the data.

Using coefficients of the final model (Table 11), one can study new adjusted odds ratios among
factors. These ratios are different from those in Tables 2–4, as the new ones are controlled for the use of
other factors in the model. For instance, controlling for “project type” and “cause of injury,” the odds
ratios of “vehicles” to “machinery,” “structure and surfaces,” “tools, instruments, and equipment,” and
“other” sources would increase by 20 percent, 13 percent, 13 percent, and 13 percent, respectively, while
the odds ratio between “vehicles” and “parts and materials” would be reduced by 1 percent (compared
to the ratios that are not adjusted for “project type” and “cause of injury” in Table 9: “vehicles’” row).
The significance of coefficients strongly confirms the effects of the selected factors on the rate of fatality.

The logistic regression model can also be used to estimate the probability of a fatal injury in a
specific accident scenario. Using statistical methods to find common accident scenarios have been
tested in previous studies. For instance, Chi et al. [66] have applied Phi coefficients on fatal accidents to
find strong positive associations between industry, sources of injury, and accident type. They reported
that fatal falls from structures and construction facilities had the most obvious link to the construction
industry. In this paper, the authors have considered both fatal and non-fatal accidents and used the
fatality rates as the measure of risk among accident patterns.
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From the 105 accident scenarios/patterns used to validate the model, 36 of them happened more
frequently. Each of these scenarios occurred at least six times, and together they cover 73 percent of all
accidents in this study. To identify and study more hazardous scenarios both in terms of severity and
frequency, observed rates of fatality and total number of accidents in each scenario were calculated.
Furthermore, the logistic model’s estimated rates of fatality were computed and compared to observed
rates to detect which scenarios could be predicted correctly. The two most common patterns share
the same source (i.e., “parts and materials”) and cause of injury (i.e., “other”), and only differ in their
“project type.” Among the two, most accidents (32 cases) occurred in “new projects or new additions,”
followed closely by “maintenance and repair” (31 cases). Considering the fatality rates, though,
“new projects” have caused fewer fatalities (31 percent) than “maintenance” projects (36 percent).
Without considering the source and cause of injury, the total fatality rates in “new projects” and
“maintenance projects” were 40 percent and 35 percent, respectively. The reduction in fatality rates
among “new projects” (when putting source and cause into picture) is notable. One can conclude that
when the “source of injury” is a “part or material” (e.g., an electrical part) and the cause is “other,”
“new projects” are much less hazardous than “maintenance projects.”

In terms of severity, there were nine patterns with at least 50 percent fatality rates. Among them,
in five patterns the “source of injury” was “parts and materials”: two “alteration projects,” two “new
projects,” and one “maintenance.” Reviewing the fatality rates among these five patterns further
confirms the effect of “cause of injury” on fatality rates. Note that with the same source (i.e., “parts
and material”) a different cause (i.e., “fencing, installing lights, signs, etc.”) increased the fatality rates
from 36 percent to 67 percent in “maintenance projects” (Table 12). “Type of project” can also play a
significant role in determining the fatality rates. For instance, when “source of injury” was a “part or
material” and “cause” is “installing equipment,” the fatality rates could vary from 17 percent in other
projects to 59 percent in “alteration or rehabilitation projects.” These jumps in probabilities signal that
safety managers may benefit from preemptively addressing such coinciding factors in work situations
to plan around the risks and thereby offset them.

Considering the prediction performance, while the range of actual fatality rates among 36 patterns
was 0 to 83, the predicted rates represent a smaller range of 5 to 62 percent. This difference is
important in interpreting the results as, for instance, an estimated value of 62 percent would refer to
the most dangerous patterns whereas the same value might not be as alarming among observed rates.
One should note that while this smaller range caused some large variations between the observed and
estimated values—especially among larger rates (i.e., greater than 50 percent)—the level of severity
was predicted correctly in these cases. As an example, consider the most fatal pattern (83 percent
death rate), which occurred in “alteration projects” when the “source” and “cause of injuries” were
“part and materials” and “fencing, installing lights, signs, etc.,” respectively. The predicted rate for
this pattern (i.e., 62 percent) was the second highest predicted rate, which clearly declares the high
risk of this accident pattern. The research team could identify four of such patterns in which the
predicted rate—thought not close to actual rates—accurately determined the high-risk level of the
pattern. Other than that, 11 and 10 scenarios were estimated within 5 percent and 10 percent of the
actual rates, respectively. These 25 patterns represent 69 percent of the patterns and 73 percent of
the accidents.

Another practical application of the results is related to risk assessment of projects for electrical
contractors. For example, as shown in Table 12, in new projects or new addition projects, when workers
were “installing plumbing, lighting fixtures” and exposed to “parts and materials”, the risk of fatality
was the highest. In another example scenario, if the project was “alteration or rehabilitation” and
activity was “fencing, installing lights, signs, etc.”, the risk of fatality was the highest again when
workers were exposed to “parts and materials”. In these cases, a project or safety manager can assign
more safety resources, conducting job hazard analysis, or toolbox meetings to increase awareness of
construction workers regarding potential hazards.
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6. Conclusions

Electrical contractors working in the construction industry are exposed to various hazardous
situations leading to a high number of severe injuries and fatalities [67]. This problem necessitates
the identification of high-priority accident scenarios both in terms of frequency and severity (i.e.,
probability of a fatal outcome) to thereby allow for risk mitigation. Accordingly, the objective of
the present work was to first study individual effects of different contributing factors (e.g., project
characteristics, sources and causes of accident) on degree of an injury and then explain the significant
effects through a multivariate logistic model. Rather than estimating the probability of a single accident,
the authors utilized three significant factors (i.e., “project type,” “source of injury,” and “cause of
injury”) to form 108 accident scenarios (i.e., covariate patterns) and reviewed these scenarios both in
terms of frequency and fatality rates. Model assessment techniques verified the fit of the model to the
data and its capability to estimate the probability of a fatal injury in future cases. All analysis has been
done using R language packages [15].

Implications of this study suggest that, when controlling for “project type” and “cause of injury,”
“vehicles” cause significantly higher fatality rates than “tools, instruments, and equipment,” “structures
and surfaces,” “parts and materials,” and to a lower degree “machinery.” Considering common
accident scenarios (i.e., 36 scenarios that were repeated at least 6 times in the data), there were nine
of patterns with fatality rates of 50 percent or more. The logistic model also assigned the highest
probabilities to most of these scenarios, demonstrating the effectiveness of our approach to predictive
accident modeling. These patterns should be considered as high-priority safety-risk scenarios by
electrical contractors and their safety managers when allocating safety resources and planning for
possible interventions. Outside of these practical implications, this study also contributes to the body
of knowledge by providing a roadmap for building multivariate regression models for safety studies.

This work has discussed several contributing factors to analyze accidents that occur to electrical
contractors. Future studies can incorporate more variables such as “time of the accident” to develop
models with better prediction performance. The severity of accidents also can be defined more
accurately by considering more variables such as “monetary cost of injuries” or “days away from work”
for non-fatal incidents. Furthermore, more advanced, non-parametric machine learning methods
can be applied to similar data for the same classification purposes. Addressing these limitations can
improve the prediction ability of models in accident-severity classification problems.
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