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Abstract

This chapter reviews how allosteric (heterotrophic) effectors and natural mutations impact 

hemoglobin (Hb) primary physiological function of oxygen binding and transport. First, an 

introduction about the structure of Hb is provided, including the ensemble of tense and relaxed Hb 

states and the dynamic equilibrium of Hb multistate. This is followed by a brief review of Hb 

variants with altered Hb structure and oxygen binding properties. Finally, a review of different 

endogenous and exogenous allosteric effectors of Hb is presented with particular emphasis on the 

atomic interactions of synthetic ligands with altered allosteric function of Hb that could potentially 

be harnessed for the treatment of diseases.
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Introduction

Hemoglobin (Hb) is the most studied of the heme containing globulin proteins and yet is not 

fully understood. It was one of the first proteins to be studied by X-ray crystallography, and 

earned Max Perutz the Nobel Prize in Chemistry in 1962. The structural studies provided a 
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plethora of data that offered glimpses of the magnificent molecular mechanisms behind Hb 

physiological functions. Hemoglobin is a polyfunctional molecule that is involved in several 

functions, such as catalytic (nitrite reductase, NO dioxygenase, monooxygenase, 

alkylhydroperoxidase, esterase, lipoxygenase); nitric oxide metabolism; metabolic 

reprogramming; pH regulation and maintaining redox balance (Kosmachevskaya and 

Topunov 2018). This chapter however, focuses on Hb primary function of oxygen transport 

and how mutations, endogenous or exogenous ligands or effectors affect Hb allostery.

Structure and Function of Hemoglobin

The primary function of Hb is to transport oxygen (O2) from the lung to tissues, binding and 

releasing O2 in a cooperative manner, as demonstrated by the oxygen equilibrium curve 

(OEC), which represents O2 saturation of Hb (SO2) at varying partial pressures of O2 (pO2) 

(Fig. 14.1). The pO2 at 50% SO2 (expressed as P50) measures the O2-affinity for Hb, which 

is about 26 mmHg for normal adult human Hb (HbA) (Fig. 14.1). Historically, Hb function 

has been explained in terms of equilibrium between two classical states: the tense (T) state 

(unliganded Hb) which exhibits low affinity for O2, and the relaxed (R) state (liganded Hb) 

which exhibits high affinity for O2, providing a structural basis for cooperative effects that 

facilitate the efficient uptake and release of O2 in vivo (Perutz 1972a, b; Perutz et al. 1998; 

Safo and Bruno 2011; Safo et al. 2011). The equilibrium between the T and R states is 

affected by endogenous heterotropic ligands, such as 2,3-bisphosphoglycerate (2,3-BGP), 

protons (H+), carbon dioxide (CO2), chloride (Cl−) or synthetic allosteric effectors that 

modulate Hb-O2 affinity, either by stabilizing the R state Hb (left-shift the OEC) (Fig. 14.1 

colored red) or stabilizing the T state Hb (right-shift the OEC) (Fig. 14.1; cyan) (Perutz 

1972a, b; Perutz et al. 1998; Safo and Bruno 2011; Safo et al. 2011).

In most vertebrates, Hb is a tetramer, consisting of two α-subunits (α1 and α2) and two β-

subunits (β1 and β2) that are structurally similar and about the same size (Fig. 14.2a). The 

two αβ dimers (named α1β1 and α2β2) are arranged around a 2-fold axis of symmetry 

resulting in a large central water cavity in the T or unliganded or deoxygenated structure and 

a narrower cavity in the R or liganded or oxygenated structure (Fig. 14.2b) (Fermi 1975; 

Safo and Bruno 2011; Safo et al. 2011). The α-and β-clefts are the two entry points into the 

central water cavity that are larger in T state structure than R state structure. The interdimer 

interface (α1β1–α2β2) of T state structure is also characterized by more salt-bridge/

hydrogen-bond interactions than R state structure. (Fermi 1975; Safo and Bruno 2011; Safo 

et al. 2011).

The α-subunits and β-subunits are formed of 7 and 8 helices, respectively named A–H that 

are joined by non-helical segments (referred to as corners). Each subunit has a binding 

pocket for heme formed by the E and F helices. The heme consists of a ferrous ion held in 

the center of a porphyrin and coordinated by the four nitrogen atoms of the porphyrin ring. 

The Fe is also covalently anchored to Hb at the heme proximal pocket by an imidazole of a 

histidine residue located on the F helix (known as the proximal histidine or His (F8)). This 

setup allows the Fe to bind O2 or other gasses at the distal pocket of the heme by a covalent 

bond to fulfill the octahedral coordination of six ligands. The O2 molecule binds in an “end-

on bent” geometry where one oxygen atom binds to Fe, and the other protrudes at an angle. 
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The imidazole of a histidine residue at the distal pocket (His E7) stabilizes the bound O2 

through hydrogen-bond interaction. In the absence of oxygen (in deoxygenated Hb) at the α-

cleft, a very weakly bonded water molecule fills the site, forming a distorted octahedron.

Other ligands, such as nitrite ion (NO2−), nitric oxide (NO), carbon monoxide (CO), cyanide 

(CN−), sulfur monoxide (SO), sulfide (S2−), may bind to the distal side of the heme and act 

as competitive inhibitors, affecting O2 binding. Some of these compounds bind with 

significantly higher affinity than oxygen, making these compounds highly toxic to humans. 

For example, Hb binding affinity for CO is as much as 240 times greater than O2, and a 

concentration of 0.1% CO in the air could lead to unconsciousness and eventually death 

(Winter and Miller 1976).

Ligand binding and unbinding events have far more ramifications, not just on the heme iron, 

but rather on the tertiary and the whole quaternary structure of Hb by inducing 

conformational changes to the globin E helix, CD and FG corners that extend to the heme 

environment (affecting the size of the distal pocket), central water cavity, α- and β-clefts, 

and salt-bridge/hydrogen-bond interactions across the α1β1–α2β2 (α1β2 or α2β1 or α1α2 or 

β1β2) dimer interface, subsequently, triggering cooperativity events that affect the T → R 

transition and giving rise to the phenomenon of allostery (Perutz 1972a, b; Baldwin and 

Chothia 1979; Paoli et al. 1996; Perutz et al. 1998; Safo and Bruno 2011; Safo et al. 2011).

Allosteric Models of Hemoglobin

Various allosteric models have been proposed to explain cooperative oxygen binding to 

hemoglobin. The earliest are the two-state Monod–Wyman–Changeux (MWC) and the 

Koshland–Némethy–Filmer (KNF) models. The MWC model assumes that, upon ligand 

binding, the T state switches to the R state without intermediate states (Monod et al. 1965), 

while the KNF model assumes one Hb conformation in the absence of ligand, which 

changes with each binding of ligand to the subunit that are sequentially transmitted to the 

rest of the subunits (Koshland et al. 1966). Following, Max Perutz proposed a 

stereochemical mechanism incorporating aspects of both the MWC and the KNF models to 

explain the cooperativity effect in Hb (Perutz 1972a, b; Perutz et al. 1998). According to this 

combined model, ligand binding to each subunit of the tetramer induces tertiary 

conformational changes that are transmitted to other subunits through direct communication 

between the α1 and β2 subunits; ultimately leading to a sequential increase in the affinity for 

the ligand at other heme sites and shifting the allosteric equilibrium from the T state towards 

the R state. The two-state model was based on a plethora of liganded and unliganded Hb 

crystal structures from different species, such as horse, human, and bovine (Muirhead and 

Perutz 1963; Perutz et al. 1968; Fermi 1975; Ladner et al. 1977). Liganded Hb structures are 

mostly co-crystallized with CO as the heme ligand since CO-liganded Hb is chemically 

stable, rendering it easier to manipulate and crystallize compared to the O2-liganded Hb. 

Nevertheless, the structures of O2- or CO-liganded Hb are very similar. Based on these 

crystal structures, Perutz partly attributed the low oxygen affinity in the T state to tension in 

the Fe–His (F8) bond, which restrains the Fe from moving into the porphyrin plane on 

ligand binding (Perutz 1972a, b; Perutz et al. 1998). This proposition was further supported 

by Paoli et al. (1996) who published for the first time the crystal structure of fully liganded 
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Hb in T state (by introducing ligands to deoxygenated Hb crystals in the presence of T state 

stabilizing allosteric effector) demonstrating the rupture of the Fe–His(F8) bond in the α-

subunits, which was cited as the reason behind uncoupling of the structural changes at the α-

subunits from those at the β subunits. Barrick et al. (1997) also through site-directed 

mutagenesis studies noted that disrupting the Fe–His(F8) bond leads to a significant increase 

in ligand affinity, reduction in cooperativity, as well as slow down of the quaternary switch. 

However, the group also suggested that additional communication pathways exist (other than 

the Fe–His(F8) bond) that is responsible for the residual cooperativity observed (Barrick et 

al. 1997).

Perutz’s stereochemical model failed to account for the critical contributions of heterotropic 

ligands that can modulate the structure and function of Hb, and moreover, represented Hb as 

having only a binary state of either T or R without the existence of intermediary states. 

Several variations of Hb allosteric models were consequently put forward. Examples are the 

modified MWC Cooperon model of Brunori et al. (1986); the SK model of Szabo and 

Karplus (Szabo and Karplus 1972); the tertiary two-state (TTS) model of Henry and 

colleagues that describes distinct “tertiary t and r” within the T and R states conformations 

(Henry et al. 2002); and the global allostery model by Yonetani that also relates 

conformational changes to effector binding in both the T and R states and proposes that O2 

affinity is dependent on heterotropic effector-induced tertiary structural changes (Yonetani et 

al. 2002; Yonetani and Tsuneshige 2003; Yonetani and Kanaori 2013). There are several 

excellent reviews of this topic, and the reader is referred to two such publications (Yonetani 

and Kanaori 2013; Gell 2018).

Multi States that Lie Along the T to R Transition

The early structural studies by Max Perutz and others (Muirhead and Perutz 1963; Perutz et 

al. 1968; Fermi 1975; Ladner et al. 1977) provided two classical end-state conformations of 

Hb during the T to R transition, but several lines of evidence drawn from functional, 

computational, structural, thermodynamic and spectroscopic experiments suggested discrete 

multi states along the T → R transition (Sawicki and Gibson 1976, 1978; Samaja et al. 

1987; Schumacher et al. 1995; Jayaraman et al. 1995; Wilson et al. 1996; Perrella and Cera 

1999; Yonetani and Tsuneshige 2003; Samuni et al. 2004; Song et al. 2008), which is 

expected to be due to the fact that proteins are flexible entities, and crystal structures can 

only provide a subset of the conformational ensembles present under physiological 

conditions. NMR and wide-angle X-ray scattering (WAXS), studies showed that the time-

averaged solution structure of liganded Hb is unlikely to be identical to crystallized 

structures (Lukin et al. 2004; Gong et al. 2006; Sahu et al. 2007; Song et al. 2008; 

Makowski et al. 2011; Fan et al. 2013). Using laser photolysis and in the presence of the 

potent allosteric effector of Hb, inositol hexaphosphate (IHP), Sawicki and Gibson observed 

quaternary conformational changes in CO-liganded human Hb (Sawicki and Gibson 1976, 

1978). Perrella and Cera (1999) also showed, using rapid quenching of the reaction between 

human Hb and CO, that different ligation intermediates exist with distinct conformations 

and oxygen affinities. Mozzarelli and collegues reported two distinct human Hb populations 

that had different oxygen-binding affinities (1000 and 100 times lower than the high-O2 

affinity R state) and were non-cooperative (Mozzarelli et al. 1991). The former species was 
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proposed to have T state like conformation, while the latter showed relaxed features that 

placed it closer to the R state.

Several crystal structures have also provided evidence of multi states along the T → R 

transition. A horse deoxygenated Hb trapped in the high-affinity relaxed state was reported 

to be a ligation intermediate of the R state (Wilson et al. 1996). Cross-linked human Hb, 

with trimesic acid exhibiting low oxygen affinity, was reported by Schumacher et al., in 

which the crystal structures have not yet reached the R state conformation, displaying 

several intermediate T and R features (Schumacher et al. 1995). Safo et al. (2002b) also 

showed that R state structure of CO-liganded human Hb with a phosphate molecule bound at 

the β-cleft exhibited subtle but significant tertiary T state features at the α1β2 interface. In 

the presence of heterotropic effectors, Yonetani and Tsuneshinge (2003) observed that 

liganded Hb exhibits T state constraint within an R-like quaternary structure.

Other studies have also shown the ligated T state structure with significant changes in the 

heme pockets, as well as changes at the α1β2 interface consistent with the presence of 

intermediate states along the T → R transition (Abraham et al. 1992a; Paoli et al. 1996; 

Song et al. 2008). An ensemble of related T-like quaternary structures induced by mutations 

in a cluster of residues at the αβ interface and centered at βTrp37 has been described by 

Arnone’s group (Kavanaugh et al. 2005). This cluster of residues was previously reported by 

Mozzarelli’s group to be the major region of the quaternary constraint (Noble et al. 2001).

Fully Liganded Hb Structure Trapped in a Tense Conformation

Several of the proposed allosteric models maintain the original MWC tenet that cooperative 

oxygen binding cannot occur in the absence of quaternary transition, consistent with the fact 

that a fully liganded T state hemoglobin heterotetramer, obtained from crystallizing ligated 

hemoglobin in solution, has never been reported. In a recent study, we reported the structure 

of such a uniquely fully liganded variant mammalian Hb ζ2β2
s (formed from Hb S α2β2

s by 

replacing adult α-globin with embryonic ζ-globin subunits), crystallized from CO-liganded 

Hb solution that remains trapped in a quaternary T state-like conformation (Safo et al. 2013, 

2015). Hb ζ2β2
s inhibits polymerization of deoxygenated Hb S in vitro and ameliorates 

pathogenic features of sickle cell disease (SCD) in mouse models (He and Russell 2004a, b). 

The structure displayed a central water cavity, dimer interface and salt-bridge/hydrogen-

bond interactions, β-cleft, etc. that are more typical for a tense conformation (Safo et al. 

2013, 2015). It is clear that ligand binding to Hb ζ2β2
s is effected mostly by tertiary structural 

changes within the larger T- or R state structures, providing insights into the contributions of 

tertiary and quaternary structures to cooperative Hb-O2 ligand binding, as well as validating 

the hypothesis that Hb ligand affinity can be decoupled from overall quaternary structure 

(Henry et al. 2002; Yonetani et al. 2002; Yonetani and Tsuneshige 2003; Yonetani and 

Kanaori 2013). Moreover, the structure explains Hb ζ2β2
s antipolymer activities by favoring 

an alternate T state structure that is excluded from pathological deoxygenated Hb S 

polymers (Safo et al. 2015).
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Multi Relaxed States Beyond the T → R Transition

Several studies by the Safo group and others have unveiled different relaxed Hb states that 

appear to lie beyond the classical T → R transition, suggesting that the relaxed state is not 

unique to the classical R state but is instead an ensemble of fully-liganded states exhibiting 

distinct quaternary conformations (Smith et al. 1991; Doyle et al. 1992; Silva et al. 1992; 

Janin and Wodak 1993; Smith and Simmons 1994; Srinivasan and Rose 1994; Schumacher 

et al. 1997; Fernandez et al. 2000; Mueser et al. 2000; Lukin et al. 2003; Safo and Abraham 

2005; Jenkins et al. 2009; Safo et al. 2011; Abdulmalik et al. 2011). Examples of these states 

are the R2, RR2, R3, and RR3. Assigning these states structurally depends on different key 

parameters, such as rigid-body screw rotation (defined in terms of screw rotation angle, 

screw rotation translation, the direction of the screw rotation axis, and a point on the rotation 

axis) of the α1β1 dimer relative to the α2β2 dimer, interdimer salt-bridge/hydrogen-bond 

interactions, heme–heme distance, size of the distal heme pocket, size of the central water 

cavity, and size of the α-cleft and β-cleft (Baldwin and Chothia 1979; Safo and Abraham 

2005; Jenkins et al. 2009; Safo et al. 2011).

Rigid-body screw rotation to quantify the allosteric movement between the T structure and 

the classical R structure was first reported by Baldwin and Chothia who found an ~14° 

rotation and ~1 Å translation of the α1β1 dimer relative to the α2β2 dimer (Baldwin and 

Chothia 1979). It was later used by several investigators to analyze the quaternary 

differences between several Hb states that were, in some instances, as significant or even 

larger than those between the T structure and the classical R structure (Silva et al. 1992; 

Mueser et al. 2000; Safo and Abraham 2005; Jenkins et al. 2009; Safo et al. 2011). Here, we 

describe some of these structural differences with Figures using more recent high-resolution 

structures of the classical R (PDB ID: 2DN1), T (PDB ID: 2DN2), R2 (PDB ID: 1QXD or 

1QXE) and R3 (PDB ID: 1YZI). Upon the transition from the T state to the classical R state, 

a sliding motion occurs between the β2-subunit and the opposite α1-subunit at a so called 

“switch region,” with a fulcrum, also at a so called “hinge region” (Baldwin and Chothia 

1979; Silva et al. 1992; Lukin et al. 2003; Safo and Abraham 2005; Jenkins et al. 2009; Safo 

et al. 2011). This motion places the β2FG corner residue β2His97 between α1Thr41 and 

α1Thr38 in the R structure (from its location between α1Pro44 and α1Thr41 in the T 

structure), where it forms a hydrogen-bond interaction with α1Thr38 (Fig. 14.3a). Moreover, 

the T → R transition leads to the narrowing of the central water cavity and the α- and β-

clefts (Fig. 14.3b), as well as an increase in α1β2 iron–iron distance and a decrease in the 

β1β2 iron–iron-distance (Baldwin and Chothia 1979; Silva et al. 1992; Lukin et al. 2003; 

Safo and Abraham 2005; Jenkins et al. 2009; Safo et al. 2011).

Interestingly, the T → R2 transition (rotation/translation of ~23°/3.1 Å), and T → RR2 

transition (~17°/2.6 Å) occur approximately in the same direction of the screw rotation axis 

of the T → R transition, in the order of T → R → RR2 → R2 (Safo and Abraham 2005; 

Jenkins et al. 2009; Safo et al. 2011). It is interesting to note that the T → R2 transition was 

first proposed to lie along the T → R transition, with R as the end-state (Silva et al. 1992). 

However, as stated above, further analysis showed that R2 is not an intermediate but rather 

an end-state structure with the T → R2 transition first passing through the T → R transition 

and then the R RR2 transition (Janin and Wodak 1993; Schumacher et al. 1997; Safo and 
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Abraham 2005; Jenkins et al. 2009; Safo et al. 2011). The RR2 → R2 transition is 

characterized by a rotation/translation of ~6°/0.5 Å (Safo and Abraham 2005; Jenkins et al. 

2009; Safo et al. 2011). In both R2 and RR2 structures, the β2FG has further rotated 

perpendicularly from the R structure position, disengaging the hydrogen-bond interaction 

between β2His97 and α1Thr38 (Fig. 14.3a). This has led to widening of the central water 

cavity in these two structures, as well as bringing the two C-termini residues of βHis146 to 

engage in closer interactions, resulting in well-defined βHis146 positions (Fig. 14.3b) 

compared to the highly disordered βHis146 in the R structure (Silva et al. 1992; Lukin et al. 

2003; Safo and Abraham 2005; Jenkins et al. 2009; Safo et al. 2011). This observation, as 

will be discussed later, is significant due to the critical contribution of βHis146 to the Bohr 

effect (Silva et al. 1992).

Unlike the R, RR2 and R2 structures where β2His97 is located between α1Thr41 and 

α1Thr38, a rotation of β2FG corner in the R3 structure has further moved β2His97 away 

from the T state position, placing it between α1Thr38 and α1Pro37 (Fig. 14.3a), resulting in 

the smallest central water cavity and α-cleft (Safo and Abraham 2005; Jenkins et al. 2009; 

Safo et al. 2011). Interestingly a complete closure of the β-cleft is observed in the R3 

structure due to extensive hydrogen-bond interactions between residues from the opposite C-

terminals of the HC segments (Safo and Abraham 2005; Jenkins et al. 2009; Safo et al. 

2011). The T → R3 and R → R3 transitions involve rotation/translation of ~22°/1.7 Å and 

~10°/1.1 Å, respectively, and occur approximately in the same direction, with the R state 

mediating the T → R3 transition (Safo and Abraham 2005; Jenkins et al. 2009; Safo et al. 

2011).

Another uniquely liganded structure, RR3 (PDB ID: 3D17) appears to lie in-between the R 

→ R3 transition and in the order T → R → RR3 → R3 (Safo and Abraham 2005; Jenkins 

et al. 2009; Safo et al. 2011). The transition from the RR3 to either R or R3 is ~6.2°/1.0 Å. 

Interestingly, the RR3 structure shows significant rotation of the distal βHis63(E7) out of the 

distal pocket, forming what is termed a His(E7) ligand channel to the bulk solvent (Fig. 

14.4). A smaller rotation of His(E7) is also observed in the R3 structure (Fig. 14.4). The 

rotated position of the βHis63 in both R3 or RR3 is stabilized by a salt-bridge interaction 

between the imidazole side chain and the β-heme propionate (Safo and Abraham 2005; 

Jenkins et al. 2009). Of interest is that the closest distance between the βHis63 imidazole 

and the bound heme ligand are 6.6 Å and 4 Å in RR3 and R3 structures, respectively, 

compared to the ~3 Å observed in the classical R, R2, and RR2 structures, which allows 

stabilization of the bound ligand (Safo and Abraham 2005; Jenkins et al. 2009; Safo et al. 

2011). Overall, two trajectories have been proposed for the transition between the T and the 

relaxed states (Safo and Abraham 2005; Jenkins et al. 2009; Safo et al. 2011). One trajectory 

suggests R2 to be an end-state with both R and RR2 lying on the T → R2 transition. The 

second shows R3 as another end-state with R and RR3 lying along the T → R3 transition 

(Fig. 14.5). Several other liganded Hb structures have also been reported, such as Gower II 

COHb (PDB ID: 1AJ9), bovine COHb (PDB ID: 1FSX, 1G08, and 1G09), and cross-linked 

forms of human COHb (PDB ID: 1HAB and 1HAC), that have distinct relaxed state 

quaternary structures with intermediate features between the R → RR2 and RR2 → R2 

transitions (Schumacher et al. 1997; Fernandez et al. 2000; Mueser et al. 2000; Safo and 

Abraham 2005; Jenkins et al. 2009; Safo et al. 2011).
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The R and R2 State Controversy

The discovery of the R2 structure in the early 1990s (Smith et al. 1991; Silva et al. 1992; 

Smith and Simmons 1994) initiated a controversy regarding the physiological relevance of 

the R2 or classical R structure, which took several years to resolve. The R structure was 

suggested to be an artifact and/or intermediate trapped between the T → R2 transition, and 

the R2 as the physiologically relaxed end-state (Srinivasan and Rose 1994; Schumacher et 

al. 1997). Other investigators, however suggested the R2 structure to be an intermediate 

between the T → R transition (Smith et al. 1991; Silva et al. 1992; Smith and Simmons 

1994). Later studies and comprehensive analysis of the R and R2 structures, however, 

suggested that the R2 is not an intermediate, but rather an end-state relaxed structure (Doyle 

et al. 1992; Janin and Wodak 1993; Safo and Abraham 2005; Jenkins et al. 2009; Safo et al. 

2011).

The argument for assigning the R2 structure as the physiologically relevant relaxed state, 

and R structure as an artifact was partly due to the former being crystallized with low-salt 

that mimics the in vivo environment, while the latter was crystallized with non-physiological 

high-salt condition. However, Safo and co-workers later crystallized the R2 structure using 

high-salt condition (Safo et al. 2004; Abdulmalik et al. 2011). Of interest is that the R2 

crystals only form in high-salt when co-crystallized with antisickling aromatic aldehydes 

(Safo et al. 2004; Abdulmalik et al. 2011) usually at pH between 6.4 and 6.8. In the absence 

of the aldehyde, only R, RR2, RR3 or R3 or mixture of these crystals form with high-salt, 

and their ratio/formation appears to be a function of pH (Safo and Abraham 2005; Jenkins et 

al. 2009; Safo et al. 2011). The R and R3 crystals predominate at high pH (>6.5) and low pH 

(<6.5), respectively, while the RR2 crystals typically appear at pH around 7 and not as 

abundant as the R and R3 crystals (Safo and Abraham 2005; Jenkins et al. 2009; Safo et al. 

2011). The RR3 crystal has only been observed once and appeared with R and R3 crystals at 

pH 6.4 (Safo and Abraham 2005; Jenkins et al. 2009; Safo et al. 2011). It seems that various 

relaxed states do exist in dynamic equilibrium and their fraction and/or distribution appears 

to be pH-dependent with low energy barrier in changing one state to another. Consistently, 

an NMR study by Lukin et al. showed that liganded Hb exists as a mixture of R and R2, and 

a structure intermediate between the R and R2 (Lukin et al. 2003).

The existence of a multi-relaxed Hb states is appreciated even more when one considers 

crystal structures of liganded Hb in the presence of allosteric effectors. Aromatic aldehydes 

bind to the α-cleft of liganded Hb in the R2 form in a symmetry-related fashion that ties 

together the two α-subunits and stabilizes the relaxed state relative to the T state (Safo et al. 

2004, 2011; Abdulmalik et al. 2011), which as will be discussed later is a potential 

pharmacologic strategy to treat sickle cell disease. As noted above, in high-salt liganded Hb 

without aromatic aldehyde crystallizes in R or RR2 or RR3 form depending on the pH, but 

in the presence of aromatic aldehyde appears to shift the equilibrium to the R2 form that 

crystallizes out. The binding pockets of the R, R3, and RR3 structures are sterically 

crowded, explaining the preferential binding of aromatic aldehyde to the R2 Hb (Safo et al. 

2004; Abdulmalik et al. 2011). Gong et al. (2006) using NMR study reported that liganded 

Hb in the R2 form moves toward the R state in the presence of IHP. Unlike the aldehydes 

which bind at the α-cleft of R2 Hb, IHP binds at the β-cleft of classical R Hb (Song et al. 
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2008). It is interesting to note that the size of the β-cleft in the R structure is significantly 

larger than the other relaxed structures (Safo and Abraham 2005; Jenkins et al. 2009; Safo et 

al. 2011), suggesting preferential binding of IHP to the R structure, consistent with observed 

binding of phosphate at the β-cleft of R structure (Safo et al. 2002b). Thiols and 

imidazolylacryloyls seem to effect their antisickling activities in part by preferential binding 

to classical R and/or R3 structures and forming covalent interaction with βCys93 that lead to 

increase in Hb affinity for oxygen (Nakagawa et al. 2014, 2018; Omar et al. 2015).

Not clear is how the different liganded relaxed states fit in the overall scheme of Hb oxygen 

transport function. Based on the fact that the His(E7) ligand channel in the R, RR2, and R2 

structures are closed, while R3 and RR3 are partially or fully opened, respectively, prompted 

Safo and colleagues to suggest that the R, R2, and RR2 conformations are involved in heme 

ligand transport, while the R3 and RR3 may be involved in ligand release (Safo and 

Abraham 2005; Jenkins et al. 2009; Safo et al. 2011). Perutz has previously predicted such a 

rotation of His(E7) for access of ligand (Perutz 1989). Birukou et al. (2011) replaced the 

distal histidines, αHis58 and βHis63 with Trp in human Hb, which significantly reduced 

ligand access to the hemes, prompting the investigators to propose that over 90% of the 

ligand entry in human Hb is due to the His(E7) ligand channel. The dynamics of the His(E7) 

rotation is likely pH-dependent as relatively low pH appears to stabilize the open ligand 

channel conformation as observed in the RR3 structure, while high pH may favor closure of 

the channel (Safo and Abraham 2005; Jenkins et al. 2009; Safo et al. 2011). Consistently, the 

rate constant for ligand binding to myoglobin increases with a decrease in pH (Traylor et al. 

1983). Not obvious is whether His(E7) rotation out of the distal pocket in the T state is also 

pH-dependent since the pH in the lungs is not expected to be as low as in the tissues. 

Nevertheless, it is suggested that ligand may diffuse into the heme cavity, especially the α-

heme through several hydrophobic pathways between the B, G, and H helices (Czerminski 

and Elber 1991), although not in an agreement by all investigators (Elber 2010).

Hemoglobin Variants with Altered Oxygen Affinity

Over 1000 naturally occurring hemoglobin variants have been identified, and although most 

are yet to be associated with any disease state, significant numbers are implicated in 

pathologies ranging from mild to severe, such as polycythemia or anemia, 

methemoglobinemia, cyanosis, tissue hypoxia and respiratory distress (Reissmann et al. 

1961; Bonaventura and Riggs 1968; Schneider et al. 1975; Winslow and Charache 1975; 

Schoenborn 1976; Efremov et al. 1978; Arous et al. 1981; Dinçol et al. 1994; Kister et al. 

1995; Borg et al. 1997; Marengo-Rowe 2006; Thom et al. 2013). We describe few examples 

of these variants that have mutations located at the surface of the protein, heme pocket, 

α1β2 or α1β1 interface, or the hydrophobic interior that alter hemoglobin structure and 

affect its oxygen binding properties. The most well-known variant is sickle Hb, which 

results from a single point mutation (βGlu6Val) in the β-globin chain of normal Hb to give 

sickle Hb (Bunn 1997). The mutation is located at the surface of the protein. Under hypoxia 

or when HbS is deoxygenated, the pathogenic βVal6 from one deoxygenated HbS molecule 

binds to a hydrophobic pocket on an adjacent deoxygenated HbS molecule, joining the 

molecules together to form insoluble polymers and giving rise to the classical sickle red 

blood cell (RBC) morphology (Eaton and Hofrichter 1990; Bunn 1997; Harrington et al. 
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1997; Ghatge et al. 2016). Sickled RBCs ultimately aggregate causing microvascular 

obstruction leading to SCD crisis (Belcher et al. 2003; Aliyu et al. 2008; De Franceschi 

2009; Akinsheye and Klings 2010). Although the mutation does not directly affect the 

protein oxygen-binding property, a presumed elevation of 2,3-BPG in sickle red blood cells 

has been proposed to worsen the disease progression (Torrance et al. 1970; Grasso et al. 

1975). Under physiological conditions, Hb releases 25–40% of O2 to tissues, aided by 

binding of 2,3-BPG to deoxygenated Hb. Unfortunately, in SCD, the repetitive 

deoxygenation-reoxygenation cycles with cell sickling lead to RBC membrane damage and 

hemolysis, reducing the life span to 10–20 days (from 90 to 120 days for normal RBCs), 

which manifests in chronic anemia (Zago and Bottura 1983; Connor et al. 1994), prompting 

compensatory elevation of 2,3-BPG in sickle RBC that decreases HbS affinity for O2 (P50 of 

34 vs 26 mmHg in normal subjects) to unload more O2 to tissue (Torrance et al. 1970; 

Grasso et al. 1975). This counterproductive response, increases deoxygenated HbS 

concentration, worsening the HbS polymerization and thus the concomitant RBC sickling 

process. In vitro manipulation to reduce 2,3-BPG content has been suggested as a means to 

reduce the hypoxia-induced sickling (Poillon et al. 1986).

As noted above, the α1β1–α2β2 dimer interface (or α1β2 or α2β1 interface) is one of the 

most important structural determinant of the T → R transition (Baldwin and Chothia 1979; 

Safo and Abraham 2005; Jenkins et al. 2009; Safo et al. 2011). It is, therefore, no surprise 

that several mutations affecting this interface have been reported to affect the oxygen affinity 

of Hb (Reissmann et al. 1961; Charache et al. 1966; Botha et al. 1966; Jones et al. 1967; 

Bunn et al. 1972; Lokich et al. 1973; Jensen et al. 1975). Hb Bassett (αAsp94Ala), with the 

αAla94 mutation located at the α1β2 interface is characterized by a markedly reduced 

oxygen affinity (P50 of cell free Hb at pH 7.0 = 22.0 mmHg compared with 10.5 mmHg in 

HbA) and low subunit cooperativity (n = 1.4 vs. 2.6 in HbA) (Abdulmalik et al. 2004; Safo 

et al. 2005). It is one of the few mutations where both the T and R structures of the mutant 

have been elucidated (Safo et al. 2005). The deoxygenated structure is characterized by two 

unique inter-dimer hydrogen-bond interactions (α1Tyr42–β2Asp99 and α1Asn97– 

β2Asp99) that are known to contribute to stabilization of T state Hb. Interestingly, the 

liganded R structure maintains these two hydrogen-bond interactions, in addition to losing a 

native R state stabilizing hydrogen-bond interaction between α1Asp94 and β2Asn102. 

These unique T state features in the R structure explain Hb Bassett low affinity for oxygen 

(Safo et al. 2005). Other low-O2 affinity Hb variants with mutation at the α1β2 interface 

include Hb Kansas (βAsn102Thr), Hb Saint Mande Â (βAsn102Tyr), Hb Setif 

(αAsp94Tyr), Hb Capa (αAsp94Gly) and Hb Titusville (αAsp94Asn) (Bonaventura and 

Riggs 1968; Schneider et al. 1975; Arous et al. 1981; Dinçol et al. 1994; Huisman et al. 

1996; Borg et al. 1997).

Hb Thionville, a variant with a αVal1Glu mutation has been reported to exhibit an increased 

stabilization relative to normal Hb (Vasseur et al. 1992). Structurally, this mutation results in 

the inhibition of the cleavage of the initiator methionine, which becomes acetylated. This 

results in several tertiary structural changes in the form of an extension of the α-chain N-

terminus, the formation of new intra- and inter-subunit contacts in the α1α2 interface that 

stabilize the T state and ultimately result in decreased Hb–O2 binding affinity. However, the 

reduced oxygen affinity was not severe enough to produce any hematological abnormalities 
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in the male carrier (Vasseur et al. 1992). In contrast, a similar mutation in the β chains of Hb 

(βVal1Glu; Hb Doha) resulted in significant anemia in a female carrier upon giving birth, 

who was otherwise healthy (Kamel et al. 1985). The introduction of a glutamic acid residue 

in Hb Doha also prevented the removal of the initiator methionine extending the N-terminus 

by one residue (Kamel et al. 1985). Unfortunately, we are not aware of any structural data 

for Hb Doha.

Several βAsp99 Hb variants, such as Hb Ypsilanti (βAsp99Tyr), Hb Radcliffe (βAsp99Ala), 

Hb Coimbra (βAsp99Glu) are known to exhibit increased affinity for O2 and decreased 

cooperativity (Jorge et al. 2018). These individuals are clinically characterized by 

erythrocytosis (Hardison et al. 1994, 2001; Riemer et al. 1998). The βAsp99 residue is 

located at the switch region of α1β2 dimer interface and forms unique hydrogen-bond 

interactions with α1Tyr42 and α1Asn97, stabilizing the T structure. Mutations of βAsp99 

abrogate these hydrogen-bond interactions, shifting the allosteric equilibrium to the R state, 

and increasing Hb affinity for oxygen (Jorge et al. 2018).

Hb Rothschild is characterized by a mutation (βTrp37Arg) at the hinge region of α1β2 

dimer interface, leading to significant structural perturbation at the α1β2 interface. 

Interestingly, this variant exhibits variable oxygen affinities, including both low and high 

affinity (Sharma et al. 1980; Nienhuis 1987). The T state structure showed a chloride ion 

bound at the α1β2 interface as a counterion to βArg37 (Kavanaugh et al. 1992, 2001). The 

chloride ion was suggested to affect the solution properties of this mutant, especially at 

varying chloride concentration that may explain the variations in oxygen binding properties 

(Kavanaugh et al. 1992, 2001).

Mutations in the heme pocket are also known to affect Hb oxygen binding properties (Thom 

et al. 2013). An example is Hb Kirklareli (αHis58Leu), which is associated with iron 

deficiency and increased CO binding (Bissé et al. 2017). The imidazole sidechain of αHis58 

provides stability to the heme bound O2 through hydrogen-bond interactions, which is lost 

with αLeu58. Indeed, the crystal structure of Hb Kirklareli shows that the bound O2 is no 

longer stabilized, consistent with the observed increased autoxidation and loss of hemin 

~200 times more rapidly than native α subunits (Bissé et al. 2017). Interestingly, Hb 

Kirklareli α subunit has an ~80,000-fold higher affinity for CO than O2, causing it to rapidly 

take up and retain carbon monoxide (Bissé et al. 2017).

Several Hb variants with mutations at the α1β1 (α2β2) interface have been identified, with 

some of these mutations causing significant alterations at the α1β1 interface that manifest in 

changes in Hb oxygen binding properties. Examples are Hb Philly (βTyr35Phe), which is 

characterized by increased oxygen affinity and decreased cooperativity, Hb Peterborough 

(βVal111Phe) and Hb Stanmore (βVal111Ala) also characterized by decreased oxygen 

affinities (Rieder et al. 1969; King et al. 1972; Como et al. 1991; Thom et al. 2013). These 

mutations cause hemolytic anemia and/or reticulocytosis (Thom et al. 2013).

Finally, mutations, deletions or insertions in the core nonpolar regions of Hb have been 

reported to produce unstable hemoglobins (Carrell et al. 1966; Dacie et al. 1967; Murari et 

al. 1977; Sakuragawa et al. 1984; Plaseska et al. 1991) that tend to undergo spontaneous 
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oxidation causing precipitation and the formation of insoluble inclusions called Heinz bodies 

leading to hemolytic anemia.

Hemoglobin Modulators

Endogenous Modulators

2,3-Bisphosphoglycerate (2,3-BPG)—2,3-Bisphosphoglycerate (Fig. 14.6) plays a 

central role in hemoglobin allostery by reducing Hb–O2 affinity and allowing efficient tissue 

oxygenation (Arnone 1972; Perutz et al. 1986; Marden et al. 1990; Richard et al. 1993). Its 

effect on Hb oxygen affinity was first reported by Benesch and Benesch (1967). The atomic 

basis of its mechanism of action was elucidated with the crystal structure of Hb that showed 

2,3-BPG preferentially bind to the β-cleft of deoxygenated Hb making interactions with 

βHis2, βLys82, βHis143, and βHis146, and linking together the two β-subunits to stabilize 

the T state (Fig. 14.7) (Arnone 1972; Richard et al. 1993). In contrast to the T structure, the 

ensemble relaxed structures have relatively smaller β-clefts explaining their lower affinity 

for 2,3-BPG, although liganded R state Hb with the largest β-cleft among the relaxed 

structures is known to bind 2,3-BPG, albeit at a lower affinity than deoxygenated Hb (Gupta 

et al. 1979). Crystallographic and NMR studies with phosphate and IHP (Fig. 14.6) also 

suggest that the R and RR2 structures are capable of binding 2,3-BPG at the β-cleft (Gupta 

et al. 1979; Safo et al. 2002b; Safo and Abraham 2005). It is quite obvious that the R3 

structure, with its completely closed β-cleft due to elaborate β1–β2 inter-subunit hydrogen-

bond interactions should preclude 2,3-BPG binding (Safo and Abraham 2005). As noted 

above 2,3-BPG has been proposed to be involved in the pathogenesis of sickle cell disease 

by its elevation in sickle RBC, which leads to further decrease in Hb affinity for oxygen to 

increase the concentration of the polymer forming deoxygenated HbS.

Sphingosine-1-Phosphate (S1P)—S1P (Fig. 14.6) is an important signaling molecule 

that is enriched in erythrocytes and is known to regulate diverse biological processes through 

activation of cell surface S1P receptors and/or by interaction with critical regulatory proteins 

within cells (Spiegel and Milstien 2003; Hänel et al. 2007; Ito et al. 2007). Interaction 

between S1P and hemoglobin was first uncovered by the Xia group after a metabolomic 

screen identified the pathological role of elevated S1P in SCD (Zhang et al. 2014). S1P at 

μM concentrations was found to regulate binding of deoxygenated Hb to the membrane 

protein Band 3 (cdB3) and ultimately resulting in metabolic reprogramming in SCD (Sun et 

al. 2017). The crystal structure of deoxygenated Hb in complex with S1P showed S1P to 

bind to the surface of the protein close to the heme pocket (making hydrophilic/hydrophobic 

interactions at the switch interface) (Fig. 14.8) (Sun et al. 2017). S1P only binds to the 

surface of Hb upon binding of 2,3-BPG at the β-cleft. The ternary complex leads to a 

significant conformational change that not only increase the T state character of the T 

structure but also sterically impede diffusion of diatomic ligands (O2) into the heme pocket 

(Sun et al. 2017). These structural changes have been proposed to in part explain the 

observed decrease in Hb–O2 affinity of HbS and the concomitant sickling of RBC (Sun et al. 

2017). An interesting structural observation is that the last 3–4 carbon atoms of the bound 

S1P do not make any interaction with the Hb residue but hang out in the bulk solvent. These 

carbon atoms are hypothesized to mediate the hydrophobic interactions with cdB3, to also 

Ahmed et al. Page 12

Subcell Biochem. Author manuscript; available in PMC 2020 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



promote SCD pathogenesis (Sun et al. 2017). These findings add significant new insight to 

erythrocyte pathology and physiology, which paves the way for novel therapeutic 

interventions in SCD.

The Bohr Effect—Carbon Dioxide, Proton, and Chloride—For most mammalian 

hemoglobins, the heme affinity for ligands is dependent upon ambient pH (Bohr effect), due 

to tertiary structural perturbations (Shibayama and Saigo 2001; Yonetani et al. 2002; 

Yonetani and Tsuneshige 2003; Yonetani and Kanaori 2013), as well as the equilibrium 

between the quaternary T and R structures (Perutz 1972a, b; Perutz et al. 1998). In 1904, 

CO2 was discovered by Christian Bohr to lower the oxygen affinity of Hb, allowing efficient 

delivery of oxygen to tissues (Bohr et al. 1904). In the tissue, where CO2 concentration is 

high, its conversion to carbamate and/or bicarbonate releases hydrogen ions which in turn 

lowers the pH causing the oxygen affinity of Hb to decrease. Max Perutz and others have 

proposed a molecular basis for this proton-dependent Bohr effect that involves the C-

terminal residues of both the α- and β-chains (αArg141 and βHis146, respectively) (Perutz 

1976; O’Donnell et al. 1979; Mozzarelli et al. 1991; Kavanaugh et al. 1992; Perutz et al. 

1993, 1994, 1998; Bettati and Mozzarelli 1997; Bettati et al. 1998; Safo and Abraham 2005; 

Jenkins et al. 2009; Safo et al. 2011). At high pH in deoxygenated Hb, βHis146 makes intra-

subunit and inter-subunit salt-bridge interactions with βAsp94 (Fig. 14.3b) and αLys40, 

while αArg141 also participates in a separate inter-subunit salt-bridge interactions with 

αLys127 and αAsp126 (Fig. 14.9). These interactions stabilize the low-affinity T structure, 

consequently, facilitating O2 release. At low pH especially in the tissues, these salt-bridge 

interactions are broken (Figs. 14.3b and 14.9), which increases the mobility of both 

αArg141 and βHis146, facilitating the T → R transition, and consequently increasing Hb 

oxygen affinity. Other residues, such as αVal1, αHis122, βHis2, βLys82, βHi143, are also 

known to contribute to the Bohr effect through deoxygenation-linked proton binding (Perutz 

et al. 1969; Kilmartin et al. 1978; Perutz 1983; Lukin and Ho 2004; Berenbrink 2006).

Excess positively charged residues, such as αVal1 and βLys82 in the central water cavity 

mutually repel each other, increasing the free energy of Hb (Bonaventura et al. 1994; Perutz 

et al. 1998). Chloride ions contribute to the Bohr effect by neutralizing these positive 

charges to stabilize Hb (Perutz et al. 1993, 1994; Fronticelli et al. 1994). More chloride ions 

are found in the larger T structure central water cavity when compared to the smaller R 

structure central water cavity, leading to greater stabilization of the T state with concomitant 

lowering of Hb oxygen affinity. Several Hb surface located histidines have also been 

suggested to contribute to the Bohr effect (Busch and Ho 1990; Sun et al. 1997). For a more 

detailed discussion of the Bohr effect, the reader is referred to a review article by Mairbäurl 

& Weber (2012).

Contribution to the Bohr effect by the various relaxed Hb structures may be different due to 

obvious tertiary and quaternary differences. In the R, R3 and RR3 structures, βHis146 is 

highly disordered, while in the RR2 and R2 structures, this residue is resolved due to close 

proximity of the two symmetry-related βHis146 residues that make interaction with each 

other (Fig. 14.3b) (Silva et al. 1992; Safo and Abraham 2005; Jenkins et al. 2009; Safo et al. 

2011), prompting Arnone and co-workers to suggest that the contribution of βHis146 to the 

Bohr effect are different in the R and R2 states (Silva et al. 1992).
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Exogenous Modulators

Modulators Shifting the Allosteric Equilibrium to the Low-O2 Affinity—A 

fundamental importance of Hb allostery is taking advantage of it to develop therapeutics for 

diseases. The discovery of 2,3-BPG prompted the search for synthetic Hb effectors for the 

treatment of ischemic-related diseases. One of the earliest compounds to be studied was 

inositol hexaphosphate (IHP) (Fig. 14.6), that binds similarly as 2,3-BPG to the β-cleft of 

deoxygenated Hb and was found to be 1000×more potent than 2,3-BPG in decreasing Hb 

affinity for oxygen (Yonetani et al. 2002). IHP has limited absorption profile for a useful 

therapeutic application (Stucker et al. 1985; Biolo et al. 2009). Nonetheless, it has been 

beneficial in investigating the allosteric properties of Hb. Analogs of IHP, such as 

myoinositol trispyrophosphate that are capable of crossing the membrane of erythrocytes, 

have been shown to enhance the exercise capacity in mice with severe heart failure (Biolo et 

al. 2009).

Propionates are a class of synthetic effectors that also induce low-O2 affinity by binding to 

Hb and stabilizing the T state. Examples of these compounds include the antilipidemic drug 

bezafibrate (BZF) and several of its urea derivatives (L35, L345, LR16) (Abraham et al. 

1983a; Perutz and Poyart 1983; Lalezari et al. 1988, 1990; Shibayama et al. 2002; 

Yokoyama et al. 2006), RSR-13 and several of its derivatives (KDD3–138, RSR-40, RSR-4, 

TB-27, etc.) (Fig. 14.10); the latter group of compounds was discovered and studied by 

Abraham and co-workers (Randad et al. 1991; Wireko et al. 1991; Abraham et al. 1992b; 

Khandelwal et al. 1993; Phelps Grella et al. 2000; Safo et al. 2001, 2002a; Youssef et al. 

2002). These compounds, unlike IHP or 2,3-BPG effect their allosteric activity in part by 

binding to the middle of the central water cavity of deoxygenated Hb. RSR-13 (aka 

Efaproxiral), the most well-known propionate was originally synthesized to mimic allosteric 

effects first seen with BZF, but with less protein binding in serum (Randad et al. 1991; 

Abraham et al. 1992b). The mode of atomic interactions of the propionates with 

deoxygenated Hb are very similar. X-ray crystal structures indicated that a pair of RSR-13 

form noncovalent interactions with three subunits of the deoxygenated Hb tetramer within 

the central water cavity in a symmetry-related fashion (Fig. 14.11a), effectively stabilizing 

the T state from transitioning to the R state and thus reducing the affinity of Hb for O2 

(_S1_Reference188Wireko et al. 1991; Abraham et al. 1992a; Safo et al. 2001). Each 

molecule of RSR-13 makes hydrogen-bond and hydrophobic interactions with two α-

subunits and one β-subunit of the protein. Its specific interactions to the protein are 

illustrated in Fig. 14.11b (Safo et al. 2001). The allosteric effects of RSR-13 are additive to 

that of 2,3-BPG, since the compounds have distinct Hb binding sites (Laberge et al. 2005). 

RSR-13 has undergone preclinical testing in hypoxia- and ischemia-induced conditions, as 

well as late-stage human testing as an adjunct to enhance the O2-induced effects during 

whole-brain radiation (Abraham et al. 1992b; Khandelwal et al. 1993; Pagel et al. 1998; 

Woods et al. 1998; Kleinberg et al. 1999; Shaw et al. 2003).

In addition to their interactions with deoxygenated Hb as described above for RSR-13, BZF 

and L35 have also been shown to bind to the central water cavity and/or surface of liganded 

Hb close to the α-heme (in the form of the classical R structure), which sterically impede 

ligand access to the heme (Shibayama et al. 2002; Chen et al. 2005; Yokoyama et al. 2006). 
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Clearly, these effectors are capable of binding to both liganded and deoxygenated Hb, and 

their regulatory effect on Hb allostery appears to result from their interactions with both 

forms of Hb.

Safo’s group recently developed novel nitric oxide (NO)-releasing prodrugs of RSR-13 

derivatives by attaching the NO-releasing moieties nitrooxyethyl, nitrooxypropyl, and 1-

(pyrrolidin-1-yl)diazen-1-ium-1,2-diolate, respectively, to the carboxylate of RSR-13 (Xu et 

al. 2015). Crystallographic studies with the prodrugs showed RSR-13, the hydrolysis 

product of the prodrugs bound to the central water cavity of deoxygenated Hb (as described 

above) that explained these compounds ability to decrease Hb affinity for oxygen (Xu et al. 

2015). Moreover, the released NO, was observed exclusively bound to the two α hemes, 

which was suggested to be due to RSR-13 decreasing the protein’s affinity for the ligand at 

the β hemes (Xu et al. 2015).

Aryloxyalkanoic Acids are another class of right-shifting compounds that bind non-

covalently to Hb (Omar et al. 2016). The effect of these compounds on Hb’s oxygen affinity 

depends on the site of interaction. Aryloxyalkanoic acids that bind to the αTrp14 

hydrophobic pocket of Hb have been shown to increase oxygen affinity, while those that 

bind to the central water cavity of the protein to stabilize the T state in most instances 

showed the opposite effect of decreasing the protein affinity for oxygen (Abraham et al. 

1982, 1983b, 1984; Patwa et al. 1987; Mehanna and Abraham 1990).

Recently, a high-throughput screening campaign identified IRL-2500 (Fig. 14.12a), a 

synthetic peptide, that decreased the affinity of Hb for O2 (Goldstein et al. 2018). Structural 

studies with deoxygenated Hb showed this compound to overlap the 2,3-BPG binding site at 

the β-cleft, engaging in water-mediated and direct hydrogen-bond, as well as hydrophobic 

interactions with the β-cleft residues of βHis2, βLys82, βAsn139, and βHis143 (Fig. 

14.12b), which provide additional interactions across the two β-subunit interface of 

deoxygenated Hb leading to further stabilization of the T state (Goldstein et al. 2018).

Modulators Shifting the Allosteric Equilibrium to the High-O2 Affinity—Several 

synthetic and natural compounds have also been shown, in most instances to bind covalently 

to Hb to shift the allosteric equilibrium to the R state and increase the oxygen affinity of the 

protein. Some of these compounds have been clinically evaluated as antisickling agents for 

the treatment of sickle cell disease, as high-O2 affinity sickle Hb molecules are resistant to 

polymer formation.

Aromatic aldehydes (Fig. 14.13), the most well-studied effectors interact with Hb and 

increase the protein affinity for oxygen. The food flavoring agent vanillin was one of the 

earliest to be studied (Fig. 14.13) (Zaugg et al. 1977; Abraham et al. 1991). Although 

relatively non-toxic, its limited bioavailability and the large dose needed to increase Hb 

affinity for oxygen and elicit in vivo therapeutic antisickling effects were not clinically 

acceptable.

Furfural and several of its analogs, such as 5-hydroxymethyl-2-furfural (5-HMF) (Fig. 

14.13) (Safo et al. 2004; Abdulmalik et al. 2005; Xu et al. 2017) have also been shown to 
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interact with Hb and increase its oxygen affinity. 5-HMF showed significant pharmacologic 

improvement over vanillin both in vitro and in vivo and was subsequently studied in phase II 

clinical trials for the treatment of SCD (Abdulmalik et al. 2005; Stern et al. 2012; Kato et al. 

2013). The study was terminated due in part to in vivo bioavailability issue. Nonetheless, the 

study of 5-HMF helped trigger a dramatic increase in commercial interest in developing 

drugs for SCD that show a similar mechanism of action. It is important to note that prior to 

5-HMF studies, the antisickling mechanism of action of aromatic aldehydes was suggested 

to be due to binding to deoxygenated Hb and destabilizing the T state and/or binding to 

liganded Hb and stabilizing the classical R state (Beddell et al. 1984; Abraham et al. 1991; 

Wireko and Abraham 1991). Safo and co-workers, however showed that mechanistically, 5-

HMF, and for that matter, other antisickling aromatic aldehydes increase Hb affinity for O2 

by binding to the R2 structure and not the T or classical R as proposed (Safo et al. 2004; 

Abdulmalik et al. 2005, 2011; Xu et al. 2017; Pagare et al. 2018; Deshpande et al. 2018). 

Two molecules of the aromatic aldehydes bind in a symmetry-related fashion at the α-cleft 

of the R2 structure, each molecule forming Schiff-base interaction between its aldehyde 

moiety and the N-terminal αVal1 nitrogen of the Hb, and through additional hydrogen-bond 

and/or hydrophobic interactions tie the two α-subunits together and restrict the transition to 

the T state (Fig. 14.14) (Safo et al. 2004; Abdulmalik et al. 2005, 2011; Xu et al. 2017; 

Pagare et al. 2018; Deshpande et al. 2018).

To improve on vanillin and 5-HMF left-shifting potency and thus their anti-sickling 

activities, several derivatives of these lead compounds were developed. 5-HMF derivatives 

incorporate different substituents at the alcohol moiety of 5-HMF for additional interactions 

with the protein, which led to a significant increase in their allosteric activity, translating into 

1.5–4.0-fold higher antisickling effects than 5-HMF (Xu et al. 2017).

Several groups have also embarked on structural modification of vanillin for more potent 

high-O2 affinity allosteric effectors. Some of these novel compounds include pyridyl 

derivatives of benzaldehydes that have been studied by Safo and colleagues, and shown to 

exhibit several-fold left-shifting potency over vanillin (Nnamani et al. 2008; Abdulmalik et 

al. 2011; Pagare et al. 2018; Deshpande et al. 2018). The crystal structures of some of these 

compounds, such as SAJ-310, INN-312, INN-298, and TD-7 (Fig. 14.13) complexed to Hb 

have been elucidated (Abdulmalik et al. 2011; Pagare et al. 2018; Deshpande et al. 2018) 

and show the compounds to expectedly bind similarly to the R2 structure as observed with 

5-HMF. Of note is that the covalent bond between the aldehyde and the αVal1 N forced the 

molecules with meta-positioned methoxy-pyridine group, such as in INN-298 to direct down 

the central water cavity (Fig. 14.15), while those with ortho-positioned methoxypyridine, 

such as INN-312 or TD-7 is disposed toward the mouth of the α-cavity (Fig. 14.16) 

(Abdulmalik et al. 2011; Pagare et al. 2018; Deshpande et al. 2018). The latter group of 

compounds make interactions with the solvent-exposed αF-helix to exhibit a second 

antisickling mechanism of direct polymer destabilization that is independent of the primary 

mechanism of increasing HbS-O2 affinity (Pagare et al. 2018; Deshpande et al. 2018). The 

αF-helix has been shown to play an important role in polymer stabilization, and its 

perturbation is thought to destabilize the polymer (Safo et al. 2004, 2011; Abdulmalik et al. 

2011). In line with this hypothesis, the Hb variant Stanleyville (αAsn78 → αLsy78) inhibits 

HbS polymerization (Benesch et al. 1979; Nagel et al. 1980; Rhoda et al. 1983). Four select 
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representatives of these compounds, VZHE-039, PP-6, PP-10, and PP-14, are currently 

undergoing preclinical in vivo studies by Safo and co-workers (Safo, unreported studies).

GBT-440 (Voxelotor; Fig. 14.13) is another synthetic aldehyde analog of vanillin developed 

by Global Blood Therapeutics, Inc. that also increases the oxygen affinity of Hb by 

stabilizing the relaxed state (Oksenberg et al. 2016; Metcalf et al. 2017). GBT-440 similarly 

binds to the N-terminal αVal1 of one of the α-chains of the R2 structure but because of the 

bulky pyrazole substituent, a second molecule is precluded from binding to the opposite α-

chain resulting in a single GBT-440 molecule bound per Hb tetramer, which is in contrast 

with the observed 2:1 stoichiometry of other antisickling aromatic aldehydes (Fig. 14.17). 

GBT-440 is currently being studied in phase III clinical trials for the treatment of SCD 

(NCT03036813) (Oksenberg et al. 2016; Metcalf et al. 2017, p. 440; Vichinsky et al. 2019).

High-throughput screening of a small molecule library has identified thiol-containing 

effectors of hemoglobin, TD-1, and TD-3 (Fig. 14.18) (Nakagawa et al. 2014, 2018). These 

compounds, unlike the aromatic aldehydes, act via covalent disulfide bond formation with 

βCys93 of deoxygenated Hb that inhibits a T state salt-bridge formation between βAsp94 

and βHis146 shifting the equilibrium to the relaxed state and increasing Hb affinity for 

oxygen (Fig. 14.19a) (Nakagawa et al. 2014, 2018). The compounds also bind to the R 

and/or R3 structures that stabilize the relaxed state, contributing to the increase in Hb 

oxygen affinity (Fig. 14.19b) (Nakagawa et al. 2014, 2018).

Allosteric Effectors that Target the Same Site but Induce Opposite Equilibrium Shifts

Above, we described several aromatic aldehydes that increase the oxygen affinity of Hb by 

forming Schiff-base interaction with Hb αVal1 nitrogen at the α-cleft. However, not all 

αVal1 Schiff-base adducts with aromatic aldehydes result in increasing Hb affinity for 

oxygen. Abraham’s group tested several mono-aldehyde-acid effectors of Hb, such as 5-

FSA, 2-BF, and 2-PEF (Fig. 14.20), that were hypothesized to produce a high-O2 affinity Hb 

(Abraham et al. 1995). Unexpectedly, these compounds showed the opposite effect by 

reducing Hb affinity for oxygen, despite forming Schiff-base interaction with the Hb αVal1 

nitrogen. Structural analysis showed that because of the carboxylate substituent on the 

benzene ring (relative to the aldehyde), these compounds preferentially bind to the α-cleft of 

deoxygenated Hb, where they form Schiff-base interaction with αVal1 nitrogen, as well as 

an inter-subunit salt-bridge interaction between the carboxylate and the guanidinium group 

of the opposite αArg141 of Hb, providing additional constraints to the T state (Fig. 14.21) 

(Abraham et al. 1995). The R2 structure does not have αArg141 at the correct position to 

make such salt-bridge interaction with the carboxylate of the compounds, while R, RR2 and 

R3 structures sterically preclude binding at their respective α-clefts. Removal of the 

carboxylate from the compounds abrogates the αArg141 interaction in deoxygenated T 

structure, resulting in these molecules preferentially binding to liganded Hb in the form of 

R2 structure as observed with vanillin and several of its analogs (Abdulmalik et al. 2011; 

Pagare et al. 2018; Deshpande et al. 2018). Nonetheless, these non-carboxylate aromatic 

aldehydes still bind to deoxygenated Hb, albeit significantly weaker because of lack of 

strong inter-subunit interactions (Safo et al. 2004; Abdulmalik et al. 2011). Moreover, 

binding to deoxygenated Hb does not appear to contribute to the stability of the T state but 
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rather further destabilizes it by replacing a T state stabilizing chloride ion in the central 

water cavity (Safo et al. 2004).

The crystallographic result with the mono-aldehyde-acid compounds prompted Abraham et 

al. to design di-aldehyde-acid derivatives by adding a second aromatic aldehyde at the para 

position of the first aldehyde, such as TB compounds (Fig. 14.20), which was expected to 

form a second Schiff-base adduct with αLys99 of the opposite α-subunit to further constrain 

the T structure (Boyiri et al. 1995). Different classes of these compounds were synthesized 

that showed several-fold increase in reducing Hb affinity for oxygen compared to the mono-

aldehyde analogs (Boyiri et al. 1995). Crystallographic studies with the di-aldehyde 

compounds showed a pair of compounds bound to deoxygenated Hb as designed (Boyiri et 

al. 1995). The first aldehyde made a Schiff-base interaction with α1Val1 nitrogen, while the 

second aldehyde made an inter-subunit Schiff-base interaction with the amine of the 

α2Lys99. The meta-carboxylate moiety engaged in an inter-subunit salt-bridge interaction 

with α2Arg141 similar to the parent mono-aldehdye-acid compounds. Overall, these 

interactions provided additional stabilization to the T state, further reducing the oxygen 

affinity of Hb. It is worth noting that effectors with the shortest bridges exhibited the most 

potent effect, suggesting that, the tighter the two α-subunits are held together, the higher the 

degree of constraint on the T-structure. Such covalent cross-linkers of Hb subunits, with 

further optimization of cell permeability, have the potential for being used as cell-free Hb-

based blood substitutes.

Concluding Remarks

Hb is a fascinating molecule that never ceases to amaze scientists. It helped to shape our 

understanding of one of the most complex theories in molecular biology, which is allostery, 

although it is yet to be fully unravelled. The remarkable advances in structural biology 

techniques, such as cryo-electron microscopy and time-resolved spectroscopic methods will, 

hopefully, provide more glimpses into the phenomenon of Hb allostery. In this chapter, we 

provided an overview of the molecular structure of Hb, relating to its primary function of 

oxygen transport. We discussed the concept of allostery and the different models that were 

proposed over the years to explain this phenomenon. It is clear that the oxygen carrying 

function of Hb involves an ensemble of states, although their specific functions, especially 

the relaxed states are yet to be fully understood. Finally, we provided an overview of the 

molecular mechanisms of how different Hb variants, as well as effectors modulate Hb 

oxygen binding property, and the effort being made to harness the latter for therapeutics. 

These allosteric effectors, depending on their mode of interactions with T or relaxed Hb, can 

decrease or increase Hb affinity for oxygen, the later useful for treating sickle cell disease 

and the former for hypoxia- and ischemia-induced conditions. Of interest is that the α-cleft 

of T and R2 structures of Hb act as sinks for aromatic aldehydes, and preferential binding to 

the T or R2 α-cleft can have profound effect on Hb oxygen affinity, given rise to a new 

understanding that an allosteric effector can bind to the same site but produce opposite 

allosteric effects. These studies have uncovered crucial roles played by several Hb residues, 

such as αVal1, αLys99, αArg141, G helix, F helix residues in modulating Hb allostery.
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Fig. 14.1. 
Oxygen equilibrium curve of Hb. The normal P50 value is indicated by dashed lines. The 

left-shift and right-shift in the curves are colored red and blue respectively
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Fig. 14.2. 
Crystal structure of hemoglobin. a Overall quaternary structure of Hb with the two α chains 

and β chains colored grey and tan, respectively. b Structure of oxygenated (R state) Hb 

(magenta) superimposed on the structure of deoxygenated (T state) Hb (blue). Note the 

larger central water cavity in the T structure
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Fig. 14.3. 
Superposed structures of T (blue), R (magenta), R3 (yellow), RR2 (green), R2 (black), and 

RR3 (salmon) on their α1β1 dimers. a Transitions between the different states lead to 

significant changes (sliding motion) at the α1β2 dimer interface switch regions. b 
Transitions from the T state to the relaxed states breaks a T state stabilizing salt-bridge 

interaction between βAsp94 and βHis146. In the R2 and RR2 structures β1His146 makes 

close contact with β2His146, while in the other relaxed structures, βHis146 becomes highly 

disordered. There is also a significant size decrease in the β-cleft of the relaxed structures 

compared to the T structure
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Fig. 14.4. 
Superposed β heme structures of R (magenta), R3 (yellow), RR2 (green), R2 (black), and 

RR3 (salmon) showing the positions of βHis63. Note the rotation of βHis63 out of the distal 

pocket in the RR3 structure, creating a ligand channel to the bulk solvent, while in R, RR2, 

and R2 structures, βHis63 is still located in the pocket making hydrogen-bond interaction 

with the ligand. The R3 structure shows a partially opened ligand channel
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Fig. 14.5. 
Schematic representation of the proposed allosteric pathway between the different Hb states
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Fig. 14.6. 
Chemical structures of IHP, 2,3-BPG and S1P
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Fig. 14.7. 
Binding of 2,3-BPG (purple) at the β-cleft of Hb. The α-subunits are colored in gray and the 

β-subunits are colored in tan
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Fig. 14.8. 
Binding of S1P (purple) on the surface of deoxygenated Hb. The α-subunits are colored in 

gray and the β-subunits are colored in tan. Note that S1P only binds to the surface of the 

protein when 2,3-BPG binds to the β-cleft
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Fig. 14.9. 
Superposed structures of T (blue), R (magenta), R3 (yellow), RR2 (green), R2 (black), and 

RR3 (salmon) on their α1β1 dimers. αArg141 participates in inter-subunit salt-bridge 

interaction with αAsp126 (as well as αLys127—not shown) in deoxygenated Hb stabilizing 

the low-affinity T state and facilitating O2 release. At higher pH, this interaction is broken 

increasing the mobility of αArg141, which facilitates the T → R transition, and increase Hb 

oxygen affinity
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Fig. 14.10. 
Chemical structures of BZF (and derivative L35) and RSR-13 and derivatives (RSR-4 and 

TB-27)
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Fig. 14.11. 
a Binding of a pair of RSR-13 (purple) at the central water cavity of deoxygenated (T state) 

Hb. b Detailed interactions between one of the RSR-13 molecules and the protein. The other 

molecule makes similar symmetry-related interactions. The two α-subunits are colored grey, 

while the β-subunit is colored tan
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Fig. 14.12. 
a Chemical structure of IRL-2500. b Binding of IRL-2500 (purple) at the β-cleft of Hb. The 

α-subunits are colored in gray and the β-subunits are colored in tan
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Fig. 14.13. 
Chemical structures of high-O2 affinity antisickling aromatic aldehydes
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Fig. 14.14. 
Binding of 5-HMF (purple) in a symmetry-related fashion at the α-cleft Hb. The α-subunits 

are colored in gray and the β-subunits are colored in tan. Water molecules are red spheres
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Fig. 14.15. 
a Binding of INN-298 (purple and cyan) in a symmetry-related fashion at the α-cleft Hb. 

Unlike most aromatic aldehydes, four molecules of INN-298 bind per one Hb molecule. The 

molecules in purple make Schiff-base interactions with αVal1 nitrogen (primary), while the 

molecules in cyan (secondary) bind non-covalently and significantly weaker. b Detailed 

interactions of two of the INN-298 molecules (purple and cyan) with Hb. The meta-

positioned methoxy-pyridine group of the primary bound INN-298 disposes further down 

the central water-cavity
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Fig. 14.16. 
Binding of INN-312 (purple) in a symmetry-related fashion at the α-cleft of Hb. The α-

subunits are colored in gray. The ortho-positioned methoxy-pyridine group disposes toward 

the surface of the Hb to make interaction with the αF-helix residue of Pro77
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Fig. 14.17. 
Binding of GBT-440 (purple) at the α-cleft Hb. The α-subunits are colored in gray and the 

β-subunits are colored in tan. Unlike other aldehyde effectors only one molecule of 

GBT-440 binds per one Hb molecule
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Fig. 14.18. 
Chemical structures of antisickling thiol-containing agents
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Fig. 14.19. 
Crystal structure of TD-3 in complex with T and R structures, where TD-3 forms disulfide 

bond with βCys93 sulfur atom. Hb α and β subunits are shown as grey and tan, respectively. 

a The binding of TD-3 with βCys93 in deoxygenated Hb leads to disruption of the T state 

stabilizing salt-bridge interaction between βAsp94 and βHis146. b The binding of TD-3 in 

CO-liganded Hb (R structure) prevents possible interaction between βAsp94 and βHis146 

that is required to shift the allosteric transition to the T state
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Fig. 14.20. 
Chemical structures of right-shifting (low-O2 affinity) aromatic aldehydes
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Fig. 14.21. 
(A) Crystal structures of deoxygenated Hb in complex with the mono-aldehyde-acid 

molecule of 5-FSA

Ahmed et al. Page 50

Subcell Biochem. Author manuscript; available in PMC 2020 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Structure and Function of Hemoglobin
	Allosteric Models of Hemoglobin
	Multi States that Lie Along the T to R Transition
	Fully Liganded Hb Structure Trapped in a Tense Conformation
	Multi Relaxed States Beyond the T → R Transition
	The R and R2 State Controversy

	Hemoglobin Variants with Altered Oxygen Affinity
	Hemoglobin Modulators
	Endogenous Modulators
	2,3-Bisphosphoglycerate (2,3-BPG)
	Sphingosine-1-Phosphate (S1P)
	The Bohr Effect—Carbon Dioxide, Proton, and Chloride

	Exogenous Modulators
	Modulators Shifting the Allosteric Equilibrium to the Low-O2 Affinity
	Modulators Shifting the Allosteric Equilibrium to the High-O2 Affinity

	Allosteric Effectors that Target the Same Site but Induce Opposite Equilibrium Shifts

	Concluding Remarks
	References
	Fig. 14.1
	Fig. 14.2
	Fig. 14.3
	Fig. 14.4
	Fig. 14.5
	Fig. 14.6
	Fig. 14.7
	Fig. 14.8
	Fig. 14.9
	Fig. 14.10
	Fig. 14.11
	Fig. 14.12
	Fig. 14.13
	Fig. 14.14
	Fig. 14.15
	Fig. 14.16
	Fig. 14.17
	Fig. 14.18
	Fig. 14.19
	Fig. 14.20
	Fig. 14.21

