Table 3.
hold out 80/20 | hold out 70/30 | hold out 60/40 | CV 5 fold | CV 10 fold | CV 15 fold | bootstrap 50 | bootstrap 100 | bootstrap 200 | ||
---|---|---|---|---|---|---|---|---|---|---|
Numerical IHD Dataset | ||||||||||
Logistic regression | Accuracy | 0.7018 | 0.7529 | 0.7368 | 0.7386 | 0.7278 | 0.7207 | 0.6223 | 0.7486 | 0.7470 |
AUC | 0.5374 | 0.6392 | 0.6105 | 0.6096 | 0.5951 | 0.5597 | 0.5388 | 0.6343 | 0.6102 | |
Naive Bayes | Accuracy | 0.7544 | 0.7412 | 0.7719 | 0.7245 | 0.7319 | 0.7312 | 0.6524 | 0.7705 | 0.7590 |
AUC | 0.7392 | 0.7791 | 0.7999 | 0.6591 | 0.6740 | 0.7041 | 0.4966 | 0.6786 | 0.7719 | |
CART | Accuracy | 0.7719 | 0.7059 | 0.6930 | 0.7031 | 0.7036 | 0.7060 | 0.6567 | 0.7377 | 0.7349 |
AUC | 0.6827 | 0.3797 | 0.6999 | 0.6787 | 0.6097 | 0.6587 | 0.4495 | 0.6862 | 0.6694 | |
C4.5 | Accuracy | 0.7193 | 0.7294 | 0.7544 | 0.7563 | 0.7284 | 0.7528 | 0.7167 | 0.7268 | 0.6747 |
AUC | 0.6520 | 0.6792 | 0.7569 | 0.6727 | 0.6991 | 0.7480 | 0.4422 | 0.6151 | 0.6233 | |
C5.0 | Accuracy | 0.6667 | 0.6824 | 0.7544 | 0.7246 | 0.7318 | 0.7493 | 0.6652 | 0.7268 | 0.6747 |
AUC | 0.6478 | 0.7132 | 0.7716 | 0.6514 | 0.7150 | 0.7146 | 0.4847 | 0.3861 | 0.6498 | |
C5.0 boosted | Accuracy | 0.7018 | 0.7882 | 0.7544 | 0.7706 | 0.7499 | 0.7596 | 0.6695 | 0.7268 | 0.7590 |
AUC | 0.6420 | 0.7710 | 0.7686 | 0.7415 | 0.7130 | 0.7510 | 0.6600 | 0.6988 | 0.7849 | |
Random Forest | Accuracy | 0.7544 | 0.7765 | 0.8421 | 0.8023 | 0.8025 | 0.8123 | 0.7639 | 0.8033 | 0.7952 |
AUC | 0.8181 | 0.8524 | 0.8630 | 0.7943 | 0.8268 | 0.8274 | 0.6923 | 0.8538 | 0.8533 | |
Categrical IHD dataset | ||||||||||
Logistic regression | Accuracy | 0.6842 | 0.7411 | 0.7544 | 0.7563 | 0.7493 | 0.7483 | 0.5794 | 0.7377 | 0.7349 |
AUC | 0.5257 | 0.6448 | 0.6220 | 0.6255 | 0.6442 | 0.6322 | 0.5535 | 0.6191 | 0.6179 | |
Naive Bayes | Accuracy | 0.7544 | 0.7412 | 0.7632 | 0.7245 | 0.7319 | 0.7312 | 0.6481 | 0.7650 | 0.7590 |
AUC | 0.7359 | 0.7812 | 0. 7986 | 0.6565 | 0.6745 | 0.7012 | 0.4976 | 0.6580 | 0.7711 | |
CART | Accuracy | 0.7368 | 0.7059 | 0.6930 | 0.7031 | 0.7108 | 0.7097 | 0.6567 | 0.7377 | 0.7349 |
AUC | 0.6653 | 0.3797 | 0. 6999 | 0.6787 | 0.5971 | 0.6575 | 0.4495 | 0.6862 | 0.6694 | |
C4.5 | Accuracy | 0.7193 | 0.7412 | 0.7632 | 0.7456 | 0.7461 | 0.7774 | 0.7554 | 0.6831 | 0.7108 |
AUC | 0.4427 | 0.7037 | 0. 7580 | 0.6784 | 0.6818 | 0.7365 | 0.4641 | 0.5457 | 0.6575 | |
C5.0 | Accuracy | 0.7193 | 0.6706 | 0.7544 | 0.7316 | 0.7459 | 0.7528 | 0.6395 | 0.7268 | 0.6747 |
AUC | 0.6171 | 0.6939 | 0. 7716 | 0.6775 | 0.6983 | 0.6994 | 0.6209 | 0.3861 | 0.6701 | |
C5.0 boosted | Accuracy | 0.7544 | 0.7529 | 0.7719 | 0.7598 | 0.7562 | 0.7943 | 0.6395 | 0.7541 | 0.7470 |
AUC | 0.7575 | 0.7283 | 0. 7084 | 0.7318 | 0.7335 | 0.7947 | 0.6209 | 0.7169 | 0.7596 | |
Random Forest | Accuracy | 0.7719 | 0.7765 | 0.8509 | 0.8093 | 0.8130 | 0.8123 | 0.7811 | 0.8197 | 0.7952 |
AUC | 0.8198 | 0.8597 | 0. 8636 | 0.7782 | 0.8194 | 0.8179 | 0.7064 | 0.8542 | 0.8322 |