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Abstract

High-grade serous carcinoma (HGSC) is the most common and deadliest ovarian cancer (OC) 

type, accounting for 70–80% of OC deaths. This high mortality is largely due to late diagnosis. 

Early detection is thus crucial to reduce mortality, yet the tumor pathogenesis of HGSC remains 

poorly understood, making early detection exceedingly difficult. Faithfully and reliably 

representing the clinical nature of human HGSC, a recently developed triple-knockout (TKO) 

mouse model offers a unique opportunity to examine the entire disease spectrum of HGSC. 

Metabolic alterations were investigated by applying ultra-performance liquid chromatography–

mass spectrometry (UPLC–MS) to serum samples collected from these mice at premalignant, 

early, and advanced stages of HGSC. This comprehensive analysis revealed a panel of 29 serum 

metabolites that distinguished mice with HGSC from controls and mice with uterine tumors with 

over 95% accuracy. Meanwhile, our panel could further distinguish early-stage HGSC from 

controls with 100% accuracy and from advanced-stage HGSC with over 90% accuracy. Important 

identified metabolites included phospholipids, sphingomyelins, sterols, N-acyltaurine, 

oligopeptides, bilirubin, 2(3)-hydroxysebacic acids, uridine, N-acetylneuraminic acid, and 

pyrazine derivatives. Overall, our study provides insights into dysregulated metabolism associated 

with HGSC development and progression, and serves as a useful guide toward early detection.
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INTRODUCTION

Ovarian cancer (OC) is the most lethal gynecologic malignancy and the seventh most 

commonly diagnosed cancer among women in the world.1 The overall 5-year survival rate of 

OC is 47%.2 Due to the lack of specific symptoms, however, ovarian cancer is frequently 

diagnosed in late stages,3,4 where 5-year survival rates are only 29%.2 Among all the OC 

subtypes, high-grade serous carcinoma (HGSC), also known as high-grade serous ovarian 

cancer, is the most common and deadliest type, accounting for 70–80% of OC deaths.2,5,6 

The high mortality of HGSC is largely attributable to advanced-stage diagnosis. 

Approximately 80% of HGSC cases are diagnosed at advanced stage (stage III or IV), in 

which the 5-year and 10-year survival rates are 32.1% and 15%, respectively. Though only 

about 20% of HGSCs are detected at early stage (stage I or II), the early-stage diagnosis of 

HGSC dramatically raises patient survival to 71.4% (5 year) and 53% (10 year).6,7 Hence, 

early detection of HGSC would be crucial to improving OC patients’ survival. 

Unfortunately, the cellular origin and tumor pathogenesis of HGSC still remain poorly 

understood, making early detection difficult.5,8,9

Presently, no diagnostic tests are available for detecting HGSC at an early stage among at-

risk patients, let alone screening tests for asymptomatic women in the general population.
6,10–13 The conventional strategy for OC risk evaluation includes trans-vaginal ultrasound 

and measurement of the serum tumor biomarker cancer antigen 125 (CA125) levels. 

However, this biomarker is of limited use, as serum elevations of CA125 can be observed in 

a number of different conditions unrelated to OC.14 In addition to CA125, there have been 

several biomarker-based tests approved by the FDA in ovarian cancer.15 However, these 

FDA-approved tests are neither diagnostic tests nor screening tests for OC. They are merely 

for referral purposes after ovarian tumor diagnosis is established. For example, the 

multivariate index assay OVA1 test is applied mainly to evaluate the likelihood of 

malignancy in women presenting an ovarian adnexal mass prior to surgery.15,16
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Metabolomics has emerged as a promising tool for biomarker discovery leading to enhanced 

diagnostics as well as providing insight into the molecular underpinnings of disease biology.
17 Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) are the 

two techniques that have been most used for profiling metabolic alterations associated with 

OC in serum,18–23 plasma,24–27 urine,28–31 tissue,32–34 and ovarian cyst fluid.35 

Dysregulation in nucleotide, histidine, tryptophan, mucin,28 phospholipid, and piperidine 

metabolic pathways,24 fatty acid β-oxidation, and glycolysis33 have been associated with 

OC development and progression. The majority of these new metabolic markers, however, 

are non-HGSC related.

One major impediment to HGSC early detection is the lack of knowledge of early tumor 

development and progression. To better understand the pathogenesis of ovarian cancer, we 

developed two mouse models of HGSC: (1) a double-knockout (DKO) mouse 

(Dicer1flox/flox Ptenflox/flox Amhr2cre/+) by inactivating the Dicer1 and Pten genes and (2) a 

triple mutant (TKO) mouse (p53LSL‑R172H/+ Dicer1flox/flox Ptenflox/flox Amhr2cre/+) by 

adding a p53 mutation (R172H), which is equivalent to human p53-R175H mutant, one of 

the frequent p53 mutations found in human OC.36,37 As p53 mutations are observed in 

almost all human HGSC cases (96%),38,39 the TKO mouse model would be genetically 

closer to human HGSC than the DKO model we previously studied.20 These mice develop 

metastatic HGSC that faithfully model human HGSC phenotypically, histopathologically, 

and at the molecular level.37 Remarkably, HGSC from these mice reproduces the clinical 

metastasis of human HGSC in 100% of cases. In these models, HGSC originates and 

develops progressively in the fallopian tube, envelops the ovaries, and then aggressively 

metastasizes throughout the peritoneal cavity, including the omentum, diaphragm, 

mesentery, and peritoneal membrane. These extensive metastases invariably induce massive 

ascites and inevitably kill the mice (100%). These mouse models therefore present a rare and 

unique opportunity to study the entire disease spectrum of HGSC—from inception to early 

progression to metastasis—particularly early-stage progression.

Here, using a “deep” ultra-performance liquid chromatography–mass spectrometry (UPLC–

MS) approach, we characterize serum metabolic profiles of p53-Dicer1-Pten TKO mice at 

the premalignant stage, early stage, and advanced stage of HGSC. Among the identified are 

metabolites closely associated with HGSC, which discriminate HGSC from controls and 

from uterine tumors (UT) with over 95% accuracy, sensitivity, and specificity. The same 

metabolite panel is able to further distinguish early-stage HGSC from advanced-stage HGSC 

with over 90% accuracy, sensitivity, and specificity and distinguish early-stage HGSC 

against control samples with 100% sensitivity, specificity, and accuracy, respectively. The 

biological relevance of the differential metabolites is discussed, gaining insights into disease 

development and progression. This 29-feature panel enables effective detection of early 

stage as well as advanced-stage HGSCs, offering potential to diagnose HGSC at early 

stages.
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MATERIALS AND METHODS

Chemicals

LC–MS-grade methanol, LC–MS-grade 2-propanol, LC–MS-grade acetonitrile, LC–MS-

grade water, formic acid (99.5+%), ammonium acetate, and ammonium hydroxide were 

purchased from Fisher Chemical (Fisher Scientific International, Inc. Pittsburgh, PA) and 

used to prepare mobile phases and solutions.

Mice and Serum Sampling

In this study, triple mutant (TKO) mice (p53LSL‑R172H/+ Dicer1flox/flox Ptenflox/flox 

Amhr2cre/+) were generated by mating p53LSL‑R172H/+ Dicer1flox/flox Ptenflox/flox female 

mice with Dicer1flox/flox Ptenflox/flox Amhr2cre/+ male mice. Serum samples were collected 

from TKO mice at different stages of tumor progression: from premalignant stage to early 

stage to advanced stage. Precursor lesions are in the fallopian tubes at the premalignant 

stage, when no tumors are yet present. TKO mice with precursor (i.e., premalignant stage) 

lesions in the fallopian tubes are referred to as “TKO-Pre”, TKO-ET (early tumor) are TKO 

mice with early stage tumors in the fallopian tubes without evidence of metastasis, TKO-AT 

(advanced stage tumor) are TKO mice with ovarian and peritoneal metastases accompanied 

by ascites, and TKO-Ctrl are control mice (p53LSL‑R172H/+ Dicer1flox/flox Ptenflox/flox) that 

have the same genetic background as TKO mice but develop no tumors. All TKO mice 

developed high-grade serous carcinoma (HGSC, i.e., high-grade serous ovarian cancer). To 

enhance the selectivity for HGSC-specific metabolite markers, a tumor control group was 

also included. These were uterine tumor (UT) mice (p53LSL‑R172H/+ Ptenflox/flox 

Amhr2cre/+) that developed uterine tumors, but not HGSC.

Blood samples were collected via retro-orbital bleeding after anesthesia, from 22 TKO-Pre 

mice (average age, 2.0 months; age range, 1.3–3.1 months), 10 TKO-ET mice (4.8 months, 

2.5–5.9 months), 16 TKO-AT mice (6.4 months, 4.3–10.1 months), 19 TKO-Ctrl mice (3.0 

months, 3.0–8.2 months), and 17 UT mice (5.4 months, 3.7–6.8 months). Blood samples 

were centrifuged at 14 000 rpm for 5 min at room temperature, and serum was collected and 

stored at −80 °C until UPLC–MS analysis.

Sample Preparation

Serum samples were thawed on ice and subject to two different sample preparation protocols 

to obtain profiles of both nonpolar and polar submetabolomes. Reverse phase (RP) and 

hydrophilic interaction liquid chromatography (HILIC) UPLC–MS analysis in both positive 

and negative ion modes were combined for these different polarity metabolite fractions to 

obtain complementary and “deeper” metabolome information. Methanol (for polar) or 2-

propanol (for non-polar) was added to a 50 μL serum sample in a 3:1 ratio to precipitate 

proteins. Samples were vortex-mixed for 10 s and centrifuged at 13 000 rpm for 7 min. 

Then, 150 μL of supernatant was frozen at −80 °C for UPLC–MS analysis. A sample blank 

was prepared with 50 μL of LC–MS-grade water, and a pooled quality control (QC) sample 

was created by mixing a 10 μL aliquot of each serum sample. Both the sample blank and the 

pooled sample were processed with the same procedure as the murine serum samples. 

Samples were run in randomized order on consecutive days. Solvent blanks and sample 
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blanks were analyzed together with murine serum samples. QC samples were analyzed 

every 12 runs to assess UPLC–MS system stability and were used to compensate for time-

dependent batch effects with a QC-based regression curve for each detected compound.

UPLC–MS Analysis

Chromatography was performed with an Ultimate 3000 UPLC (Thermo Fisher Scientific, 

Inc., Waltham, MA) system equipped with a Waters ACQUITY UPLC BEH C18, 2.1 × 50 

mm, 1.7 μm particle column or a Waters ACQUITY UPLC BEH HILIC, 2.1 × 75 mm, 1.7 

μm particle column. A Q Exactive HF Orbitrap mass spectrometer (Thermo Fisher 

Scientific, Inc., Waltham, MA) was used in all cases. For reverse-phase (RP) separations, 

mobile phase A was water/ acetonitrile (40:60 v/v), and mobile phase B was acetonitrile/ 2-

propanol (10:90 v/v). Both mobile phases included 10 mM ammonium formate and 0.1% 

formic acid additives to improve peak shape and ionization efficiency. For hydrophilic 

interaction chromatography (HILIC) separations, mobile phase A was water/acetonitrile 

(95:5 v/v), 10 mM ammonium acetate, and 0.05% ammonium hydroxide. Mobile phase B 

was acetonitrile with 0.05% ammonium hydroxide. Chromatographic gradients are 

described in Table S1 of the Supporting Information (SI). The column temperature was 55 

°C, while samples were maintained at 5 °C in the autosampler. Injection volumes of 5 and 2 

μL were used in RP and HILIC methods, respectively. RP and HILIC chromatographies 

were performed both in positive and negative ion modes, and MS parameters can be found in 

the Supporting Information (Table S2).

For metabolite identification purposes, the top five data-dependent acquisition (DDA) 

experiments were used to collect MS/MS spectra using a stepped normalized collision 

energy (NCE) of 10, 30, and 50 V. For compounds missed by DDA, parallel reaction 

monitoring (PRM) experiments were performed at collision energies ranging from 10 to 40 

V to obtain fragmentation data for identification purposes.

Data Processing

Spectral features were extracted from the raw data using Compound Discoverer v2.1 

software (Thermo Fisher Scientific, Inc., Waltham, MA). This procedure included 

chromatographic alignment, peak picking, peak area integration, and QC-based compound 

area normalization. Features that eluted with the chromatographic solvent front with 

retention times <0.5 min in RP data sets and <0.9 min in HILIC data sets were considered 

unreliable due to potential ion suppression effects40 and were thus removed. Further filtering 

was carried out by removing features that were not present in 50% of at least one of the 

serum sample groups at 10 times the baseline abundance, defined as the peak area of the 

sample blank run. Welch’s t test with a Benjamini Hochberg correction was applied to TKO 

vs TKO-Ctrl mouse groups and to TKO vs UT mouse groups. The union of differential 

features from both control and UT comparisons was chosen for down-selecting HGSC-

specific features. The most useful set of features for classification was produced with genetic 

algorithms41 (GAs, MATLAB R2016a, The MathWorks, Natick, MA, with PLS_Toolbox 

v.8.1.1, Eigenvector Research, Inc., Wenatchee, WA). GAs are evolutionary algorithms that 

generate solutions to optimization problems. They have been widely used in variable 

selection due to their high performance in large-scale variable selection rate and 

Huang et al. Page 5

J Proteome Res. Author manuscript; available in PMC 2020 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



classification accuracy.41 Parameters for GA variable selection are provided in the 

Supporting Information (Table S3). After the GA variable selection process, features were 

chosen on the basis of frequency criteria. Principal component analysis (PCA) and 

orthogonal partial least square discriminant analysis (oPLS-DA)42 were performed to assess 

the discriminating power of metabolite data sets in nonsupervised and supervised manners, 

respectively. Data were preprocessed by autoscaling prior to PCA and oPLS-DA analysis 

and cross-validated using 10 iterations of random sample subsets. Data generated in this 

work are available through the NIH Metabolomics Workbench (http://

www.metabolomicsworkbench.org/) with project ID PR000784 (doi 10.21228/M8BH6F, 

study ID ST001172).

Discriminant Feature Identification

Metabolite identification was attempted for the panel of best discriminant features. Mass 

spectral ion adduct analysis was first performed to ensure the unambiguous assignment of 

the feature of interest in each mass spectrum. Elemental formulas were then generated on the 

basis of exact masses with a maximum mass error of 10 mDa and isotopic patterns using 

Compound Discoverer v2.1. The elements included in the elemental formula search were 

constrained to C, H, N, O, P, and S. Tentative identities were searched against the human 

metabolome database (HMDB),43 Lipid Maps database,44 and Metlin database45 using both 

the accurate mass and generated elemental formulas with a mass error of 10 mDa. Tandem 

MS databases such as Metlin, mzCloud,46 and MassBank47 were used together with 

literature searches to further confirm the identity of the metabolite candidates for which 

tandem MS/ MS data were successfully acquired. Fragmentation patterns were also 

manually analyzed in a few cases to distinguish between different isobaric species.

RESULTS AND DISCUSSION

Multivariate Classification Performance

A data set comprising a total of 5937 spectral features that were above background and 

chromatographically retained was produced by combining the RP ESI(+), RP ESI(−), HILIC 

ESI(+), and HILIC ESI(−) data sets. Initially, the extent by which UPLC–MS metabolic 

profiling could differentiate serum samples of 19 TKO-Pre, 10 TKO-ET, and 16 TKO-AT 

mice, against 22 TKO-ctrl and 17 UT mice was investigated. An unsupervised PCA 

exploration of these data sets showed large overlap between TKO-Pre and TKO-Ctrl mice 

(Figure 1), indicating that, as expected, only subtle differences existed between the two 

groups because TKO-Pre mice had not yet developed any tumors and were phenotypically 

closer to the healthy controls. Thus, for the following data analysis, the TKO mouse group is 

a combination of TKO-ET and TKO-AT mice.

The set of 5937 features was utilized to build an oPLS-DA model that distinguished serum 

samples from TKO mice against TKO-Ctrl and UT mice. Performance characteristics of this 

model (Figure 2A,B) were 88.1, 92.8, and 90.4% for the cross-validated sensitivity, 

specificity, and accuracy, respectively. Five serum samples were systematically 

misclassified, including two TKO-ET mice with ID No. 42 and 51, one TKO-AT mouse 

labeled No. 62, and two UT mice labeled No. 69 and 78. Sample cohort information can be 
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found in the Supporting Information. The model employed a total of four latent variables 

and interpreted 42.1% and 54.48% variance from the X (feature peak area) and Y (sample 

class membership) blocks, respectively. Although this model’s performance was acceptable, 

GA feature selection was used to obtain a smaller, more robust, metabolic feature set that 

could better discriminate TKO mice from TKO-Ctrl and UT mice. GA variable selection led 

to a 29-feature panel (Figure 2C,D) with 96.2, 97.2, and 96.7% cross-validated sensitivity, 

specificity, and accuracy, respectively. In this case, only two serum samples were 

systematically misclassified. The two misclassified samples were collected from a TKO-ET 

mouse labeled No. 42 and a UT mouse labeled No. 68. The TKO-ET mouse was repeatedly 

misclassified as a TKO-Ctrl mouse. This could be due to the age of the mouse, 2.5 months, 

when the sample was collected, which was much younger than the rest of the TKO-ET mice 

(average age 4.8 months) and close to the average age of the TKO-Pre mice (average age 2.0 

months). As TKO-Pre mice were phenotypically closer to the TKO-Ctrl mice, this may 

explain why the young TKO-ET mouse was classified as a TKO-Ctrl mouse in the models. 

The three latent variable model interpreted 58.7% and 56.1% variance from the X and Y 

blocks, respectively. Binary comparisons (TKO vs TKO-Ctrl, TKO vs UT) were also 

performed (Figure 3A,B), indicating that the 29-feature panel was strongly HGSC-specific 

and could differentiate TKO mice from control and UT mice with high performance at the 

same time. In these cases, the classification accuracy ranged from 95.3 to 98.1%, with a 

cross-validated sensitivity of 96.2–96.5% and specificity of 94.1–100%. PCA was utilized to 

further evaluate the discriminant performance of the 29-feature panel in an unsupervised 

manner and rule out any overfitting. Score plots were generated for both the initial 5937-

feature set and the selected 29-feature panel (Figure S1, SI). Good group clustering and 

increased variance captured were observed with the 29-feature panel, even in an 

unsupervised fashion.

As accurate staging and early-stage-disease detection greatly improve clinical outcome, we 

investigated the performance of the 29-feature panel in discriminating early and late stages 

of HGSC. This panel of 29 metabolites distinguished TKO-ET from TKO-AT mice with 

90.0%, 93.8%, and 91.9% for the cross-validated sensitivity, specificity, and accuracy, 

respectively (Figure 3C). Permutation tests with 2000 iterations returned a p-value of 0.017 

measured using group separation distance,48 avoided overfitting, and further validated the 

model. We further explored the potential of the 29-feature panel in disease early detection. 

The oPLS-DA model successfully discriminated TKO-ET against TKO-Ctrl mice with 

100% cross-validated sensitivity, specificity, and accuracy, respectively. This panel, however, 

was indistinguishable between precursors and controls. We used the 22 precursor (TKO-Pre) 

samples as an unknown sample set, and input into this classification model, 18 out of 22 

TKO-Pre samples were predicted as being similar to TKO-Ctrl samples (Figure 4), echoing 

our previous statement that the TKO-Pre mice were phenotypically closer to the TKO-Ctrl 

mice. Nevertheless, this 29-feature panel enabled effective detection of early stage as well as 

advanced-stage HGSCs, offering potential to diagnose HGSC at early stage.

Discriminant Metabolite Identification

Following multivariate analysis, metabolite identification was carried out for the species in 

the 29-feature panel. Twenty-four of the 29 metabolic features were identified by both high-
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resolution MS and MS/MS (Table 1). Table S4 (SI) provides detailed MS/MS fragmentation 

information and confidence level for each identified species. Metabolites in the panel 

included lipids, oligopeptides, and other small molecules, such as bilirubin, uridine, 

hydroxysebacic acids, and N-acetylneuraminic acid (NeuAc). For features that did not yield 

informative MS/MS information, tentative assignments were made on the basis of high-

resolution MS and isotopic relative ion abundances only (Table 1, italicized) and should be 

considered tentative until further research is pursued.

HGSC-Related Metabolic Alterations

Understanding the biological role of specific metabolites is also crucial to enhance our 

understanding of HGSC metabolism. Discussed below is the potential role of the differential 

metabolites that were altered in different HGSC stages (Ctrl, Pre, ET, and AT). The 

biological roles of the remaining identified metabolites can be found in the Supporting 

Information.

Alterations in metabolism of phosphatidylcholine (PC) and its ester-bond hydrolysis 

product, lysophosphatidylcholine (LysoPC), have been reported in several gynecological 

cancers, including ovarian cancer studies,49–53 cervical cancer,54 and breast cancer.55 Our 

findings of decreased PC(P-40:6) (Table 1; fold change −0.36) and elevated LysoPC(20:0) 

(Table 1; fold change +0.93) serum levels in TKO-AT mice are in agreement with published 

ovarian cancer studies.51,53 The alterations are likely due to the activation of PC-cycle 

enzymes, including choline kinase (ChoK) and PC-specific phospholipase C (PC-plc).50,56 

Moreover, the significantly decreased PC and elevated LysoPC alterations were found in 

advanced-stage cancer (Figure 5), suggesting that these changes were related to tumor 

metastasis and progression. This observation awaits further validation and investigation.

Cardiolipins (CLs) are a unique mitochondrial phospholipid class that regulates bioenergetic 

processes and signaling events related to apoptosis and aging.57,58 An increase of CL(67:2) 

serum levels in TKO-ET mice was observed (Figure 5). However, further studies are still 

needed to understand the role of CL in cellular function and signaling pathways as they 

relate to ovarian cancer.

One of the identified features in the 29-metabolite panel was the sphingomyelin (SM) 

SM(d32:1) (Table 1). SM is an essential element of plasma membrane structure and plays 

important roles in cancer biology, with the hydrolysis by sphingomyelinases resulting in the 

formation of ceramides, key players in cellular proliferation, growth, and apoptosis.59,60 

Consequently, changes in SM levels can have a profound effect on the biophysical properties 

of cellular membranes and signaling.61 We observed decreased levels of SM(d32:1) in 

HGSC mice, especially in the advanced stage (Table 1, Figure 5; fold change −1.75). Along 

the same lines, Braicu et al. have detected a decrease of SM levels in serum samples from 

ovarian cancer patients,62 strengthening the findings of our study.

Sterol metabolites derived from the cholesterol biosynthetic pathway are important structural 

components of cell membranes.63 They regulate membrane fluidity and permeability as well 

as biological activities, including lipid synthesis, cell growth, and apoptosis.64 One 

discriminant feature was identified as a sterol metabolite, cholesteryl ester [CE(20:5)]. CEs 
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are formed by the esterification of cholesterol with long-chain fatty acids and are transported 

through the blood by lipoproteins. Overexpression of CEs has been reported in multiple 

malignant tumors,65 including ovarian cancer.66 We observed a significant increase in serum 

levels of CE(20:5) in TKO-AT mice (Table 1, Figure 5; fold change +1.26), which is in line 

with these findings. Another cholesterol derivative, C27H43O [7-dehydrodesmosterol, 5a-

cholesta-8,24-dien-3-one, or cholesta-4,6-dien-3-one], was identified in our 29-feature 

panel. Gradually decreased serum levels of 7-dehydrodesmosterol (and/or its isomers) were 

detected in TKO with different stages (Table 1, Figure 5; fold change −1.06). 7-

Dehydrodesmosterol (and/or its isomers) is an intermediate in the cholesterol biosynthesis 

pathway. The decrease can be attributed to the enhanced biosynthesis activity of cholesterol, 

as an increased serum cholesterol level is associated with ovarian cancer.67

N-Acyltaurines (NATs) are molecules with fatty acids conjugated to taurine. We observed 

decreased serum levels of NAT(30:1) in HGSC mice, especially in the advanced stage (Table 

1, Figure 5; fold change −0.84). Limited research has been reported on these species, and 

their biological role remains largely unexplored. In support of our findings, Chatzakos et al. 

found that NAT reduced proliferation in human prostate cancer cells.68 Therefore, one likely 

explanation is the diminished antiproliferative effect with decreased levels of NAT, resulting 

in further disease progression.

A tripeptide (Glu-His-Leu or Glu-His-Ile) was found to be higher in TKO-ET mice (Table 1, 

Figure 5; fold change +0.80). Literature searches revealed no known roles for small peptides 

in ovarian cancer. Some proteases such as protease M, however, have been reported to be 

overexpressed in serum of ovarian cancer patients69–72 and could, therefore, increase the 

levels of small circulating peptides in HGSC.

Bilirubin, the end product of heme catabolism in mammals, exhibits antioxidant properties 

by scavenging peroxyl radicals.73,74 Increased serum bilirubin concentration has been found 

to be associated with decreased risk for cancer mortality.75 We observed decreased serum 

levels of bilirubin in HGSC mice, with further decrease in the advanced stage (Table 1, 

Figure 5; fold change [M − H]− −0.88). This finding agrees with previous work by our 

group, showing lowered concentration of bilirubin for early-stage ovarian cancer in Dicer-
Pten double-knockout (DKO) mice compared with controls.20 One likely explanation of this 

finding is the diminished protection of bilirubin against oxidative stress in ovarian cancer, 

leading to further disease progression.

2(3)-Hydroxysebacic acids have been found to be important diagnostic markers for impaired 

peroxisomal fatty acid oxidation disorders.76 Their levels are regulated by medium-chain 

acyl-CoA dehydrogenase in the fatty acid β-oxidation pathway. Increased excretion of 2(3)-

hydroxysebacic acids is associated with acyl-CoA dehydrogenase deficiency and decreased 

β-oxidation of fatty acids.76–78 Our experiments reported lower serum levels of 2(3)-

hydroxysebacic acids in TKO-AT mice (Table 1, Figure 5; fold change −0.90), suggesting 

increased activity of acyl-CoA dehydrogenase and fatty acid β-oxidation. In support of this 

hypothesis, both Fong et al. and Ke et al. have observed increased fatty acid β-oxidation in 

ovarian cancer patients.24,33
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We observed significantly decreased serum levels of uridine in HGSC mice, especially in the 

early stage (Table 1, Figure 5; fold change −2.21). The level of circulating uridine is a 

reflection of de novo pyrimidine biosynthesis and the utilization of uridine by tissue via the 

salvage pathway.79 As cell proliferation in tumors requires a large pool of pyrimidines for 

rapid DNA and RNA synthesis, the observed relative decrease in serum uridine levels could 

be due to either tissue uridine uptake or rapid uridine catabolism in ovarian cancer.

N-Acetylneuraminic acid (NeuAc), also known as sialic acid (SA), is a major constituent of 

glycoproteins and glycolipids.80 We observed significantly increased serum NeuAc levels in 

TKO-AT mice (Table 1, Figure 5; fold change 0.94). In agreement with this finding, 

increased SA serum levels have been reported in ovarian cancer patients compared to 

healthy controls.81,82 This elevation of NeuAc serum levels could be attributed to high levels 

of glycoprotein and glycolipid release due to the high turnover of malignant tumor cells.80,83 

Moreover, the detected elevation of NeuAc levels in TKO-AT mice suggests its strong 

association with disease progression, confirming its potential application as a diagnostic 

indicator for HGSC malignancy.81,84,85

One feature in the discriminant metabolite panel was identified as C6H8N2, likely a pyrazine 

derivative, with lower abundance in TKO-AT mice (Table 1, Figure 5; fold change −0.19). 

Many pyrazines are exogenous metabolites that originate from food sources, such as cereals, 

soybeans, potatoes, cocoa products, and other natural products,86 and have been reported to 

exhibit anticancer activities.87 Although all mice in this study were fed the same diet, it is 

plausible that altered metabolism in HGSC mice led to differences in abundance of dietary 

metabolites following disease progression.

CONCLUSIONS

Serum from TKO p53-Dicer1-Pten mice with both early- and advanced-stage HGSC tumors 

was successfully profiled using a UPLC–MS-based, nontargeted metabolomics strategy. 

Identified are a panel of 29 metabolites that distinguishes TKO mice from TKO-Ctrl and UT 

mice and further distinguishes TKO-ET from TKO-AT and TKO-Ctrl. Metabolic alterations 

in TKO mice—mainly characterized by aggressive fatty acid β-oxidation; abnormal 

metabolism of phospholipids, glycoproteins, and glycolipids; heme catabolism; cholesterol 

biosynthesis; and pyrimidine biosynthesis—were found to be associated with HGSC 

development and progression. Identified biomarkers that differentially expressed in early and 

advanced stages of HGSC were phospholipids, sphingomyelin, sterols, N-acyltaurine, 

oligopeptide, and other small molecules, including bilirubin, 2(3)-hydroxysebacic acids, 

uridine, N-acetylneuraminic acid, and pyrazine derivatives. Taken together, our deep 

metabolomics study provided insights into dysregulated metabolism in HGSC, which could 

aid in disease diagnosis, as well as support our understanding of disease development and 

progression. In particular, this panel of 29 metabolites will serve as a useful guide toward 

early detection of high-grade serous ovarian cancer.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
PCA score plot including all sample groups using the total initial set of 5937 spectral 

features. The clustering of samples in this plot reveals clear separation between TKO-ET 

mice from TKO-AT mice and UT mice, a moderate separation between TKO-ET mice and 

TKO-Ctrl mice with some overlap, and complete overlap of TKO-Pre and TKO-Ctrl mice. 

Pooled QC samples, represented by orange stars, clustered toward the center of the plot, 

indicating that the technical variance was minimal.
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Figure 2. 
(A) oPLS-DA score plot depicting clustering of samples using the initial set of 5937 spectral 

features. (B) oPLS-DA cross-validated classification plot using 5937 spectral features. The 

x-axis represents randomized sample number, and the y-axis represents the cross-validated 

predicted scores of the oPLS-DA classification model. (C) oPLS-DA scores plot using the 

GA-selected 29-feature panel. (D) oPLS-DA cross-validated classification plot using the 29-

feature panel. TKO, TKO-Ctrl, and UT samples are represented by black squares, red 

circles, and blue triangles, respectively. The threshold for sample classification is 

represented by the green dashed line. Cross-validated sensitivity, specificity, and accuracy 

values are given for each model. TKO samples are a combination of TKO-ET and TKO-AT 

samples.

Huang et al. Page 18

J Proteome Res. Author manuscript; available in PMC 2020 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
oPLS-DA scores plot depicting clustering of samples between (A) TKO and TKO-Ctrl 

samples, (B) TKO and UT samples, and (C) TKO-ET and TKO-AT samples using the 29-

feature panel. Variance between classes is captured across the x-axis. TKO, TKO-Ctrl, UT, 

TKO-ET, and TKO-AT samples are represented by black squares, red circles, blue triangles, 

green diamonds, and pink triangles, respectively. Cross-validated sensitivity, specificity, and 

accuracy values are given for each model. TKO samples are TKO-ET and TKO-AT samples 

combined.
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Figure 4. 
oPLS-DA cross-validated classification plot between ET and Ctrl samples using the 29-

feature panel. The x-axis represents the randomized sample number, and the y-axis 

represents the cross-validated predicted scores of the binary oPLS-DA classification model. 

ET and Ctrl samples are represented by green diamonds and red circles, respectively. 

Precursor (Pre) samples projected into the model are represented by orange triangles. The 

threshold for sample classification is represented by the green dashed line. Cross-validated 

sensitivity, specificity, and accuracy values are given for the model.
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Figure 5. 
Box plots showing changes of the selected identified metabolites in Ctrl (n = 19), Pre (n = 

22), ET (n = 10), and AT (n = 16) samples. The mean, median, upper and lower quartiles, 

outliers, and minimum and maximum (whiskers) values are displayed. *Features have 

isomers.

Huang et al. Page 21

J Proteome Res. Author manuscript; available in PMC 2020 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Huang et al. Page 22

Ta
b

le
 1

.

A
nn

ot
at

io
n 

of
 M

et
ab

ol
ite

s 
in

 th
e 

29
-F

ea
tu

re
 P

an
el

, I
nc

lu
di

ng
 th

e 
A

cq
ui

si
tio

n 
M

od
e,

 R
et

en
tio

n 
T

im
e,

 O
bs

er
ve

d 
E

xa
ct

 M
as

s 
an

d 
M

as
s 

E
rr

or
, T

he
or

et
ic

al
 

M
as

s,
 P

re
di

ct
ed

 E
le

m
en

ta
l F

or
m

ul
a,

 O
bs

er
ve

d 
A

dd
uc

t, 
p-

V
al

ue
 o

f 
A

bu
nd

an
ce

s 
be

tw
ee

n 
T

K
O

 a
nd

 T
K

O
-C

tr
l S

am
pl

es
 a

nd
 b

et
w

ee
n 

T
K

O
 a

nd
 U

T
 S

am
pl

es
, 

an
d 

Fo
ld

 C
ha

ng
es

m
/z

F
ea

tu
re

 
no

.
A

cq
ui

si
ti

on
 

m
od

e
re

te
nt

io
n 

ti
m

e 
(m

in
)

ex
pl

th
eo

r
E

le
m

en
ta

l 
fo

rm
ul

a
ad

du
ct

 t
yp

e

m
as

s 
er

ro
r 

(p
pm

)

F
ol

d 

ch
an

ge
a

p-
va

lu
eb  H

G
SC

 v
s 

co
nt

ro
l/H

G
SC

 v
s 

U
T

m
et

ab
ol

it
e 

id
en

ti
ty

c

20
8

H
IL

IC
 E

SI
(+

)
4.

96
10

9.
07

65
10

9.
07

60
C

6H
8N

2
[M

 +
 H

]+
4.

58
−

0.
19

0.
00

3 
47

/8
.4

5 
×

 1
0−

7
di

m
et

hy
py

ra
zi

ne
, 

et
hy

lp
yr

az
in

e,
 2

-p
ic

ol
yl

am
in

e

20
2

H
IL

IC
 E

SI
(+

)
2.

67
27

1.
11

51
27

1.
11

49
C

9H
14

N
6O

4
[M

 +
 H

]+
0.

74
1.

08
0.

00
0 

26
1/

1.
52

 ×
 1

0−
6

–

38
5

H
IL

IC
 E

SI
(−

)
1.

65
51

6.
75

24
–

–
[M

 +
 B

r]
−

–
0.

68
0.

00
1 

16
/2

.8
6 

×
 1

0−
6

–

27
7

R
P 

E
SI

(−
)

1.
02

58
3.

25
76

58
3.

25
62

C
33

H
36

N
4O

6
[M

 −
 H

]−
2.

40
−

0.
88

1.
10

 ×
 1

0−
7 /

5.
57

 ×
 

10
−

6
bi

lir
ub

in

49
4

H
IL

IC
 E

SI
(−

)
1.

58
51

4.
75

45
–

–
[M

 +
 B

r]
−

–
1.

33
0.

00
0 

76
2/

2.
51

 ×
 1

0−
5

–

36
3

H
IL

IC
 E

SI
(+

)
2.

21
39

8.
20

22
39

8.
20

34
C

17
H

27
N

5O
6

[M
 +

 H
]+

−
3.

01
0.

80
0.

00
1 

48
/3

.1
3 

×
 1

0−
5

G
lu

-H
is

-L
eu

 G
lu

-H
is

-H
e

42
7

R
P 

E
SI

(+
)

8.
15

69
3.

55
67

69
3.

55
81

C
47

H
74

O
2

[M
 +

 N
a]

+
−

2.
02

1.
26

0.
00

1 
04

/0
.0

00
 1

12
C

E
(2

0:
5)

30
3

R
P 

E
SI

(+
)

1.
42

55
2.

40
15

55
2.

40
24

C
28

H
58

N
O

7P
[M

 +
 H

]+
−

1.
63

0.
93

0.
00

5 
46

/0
.0

00
 1

14
Ly

so
PC

(2
0:

0)

75
1

H
IL

IC
 E

SI
(+

)
1.

28
69

6.
49

93
69

6.
50

12
C

76
H

14
4O

17
P 2

[M
 +

 2
H

]2+
−

2.
73

0.
57

0.
01

16
/0

.0
00

 1
24

C
L

(6
7:

2)

37
H

IL
IC

 E
SI

(−
)

2.
20

21
7.

10
75

21
7.

10
81

C
10

H
18

O
5

[M
 −

 H
]−

−
2.

76
−

0.
42

0.
00

6 
97

/0
.0

00
 1

37
2(

3)
-h

yd
ro

xy
se

ba
ci

c 
ac

id

57
2

H
IL

IC
 E

SI
(+

)
4.

56
45

4.
89

05
–

–
[M

 +
 H

]+
–

−
1.

50
9.

44
 ×

 1
0−

7 /
0.

00
0 

14
9

–

65
1

H
IL

IC
 E

SI
(−

)
1.

27
28

1.
03

58
28

1.
03

60
C

9H
12

N
2O

6
[M

 +
 C

l]
−

−
0.

71
−

0.
22

0.
00

9 
34

/0
.0

00
 3

51
ur

id
in

e 
(i

so
to

pi
c 

pe
ak

)

55
7

H
IL

IC
 E

SI
(−

)
3.

22
30

8.
09

88
30

8.
09

87
C

11
H

19
N

O
9

[M
 −

 H
]−

0.
32

0.
94

0.
00

3 
16

/0
.0

00
 3

60
N

eu
A

c

88
R

P 
E

SI
(+

)
1.

22
60

7.
25

22
60

7.
25

27
C

33
H

36
N

4O
6

[M
 +

 N
a]

+
−

0.
82

−
1.

10
1.

34
 ×

 1
0−

6 /
0.

00
0 

49
1

bi
lir

ub
in

27
4

R
P 

E
SI

(+
)

1.
25

54
0.

44
65

54
0.

44
45

C
32

H
63

N
O

4S
[M

 +
 H

 −
 H

20
]+

3.
70

−
0.

84
3.

19
 ×

 1
0−

6 /
0.

00
0 

71
8

N
A

T
(3

0:
1)

69
6

H
IL

IC
 E

SI
(−

)
1.

27
27

9.
03

87
27

9.
03

89
C

9H
12

N
2O

6
[M

 +
 C

l]
−

−
0.

72
−

2.
21

9.
20

 ×
 1

0−
14

/0
.0

00
 

86
5

ur
id

in
e

44
9

R
P 

E
SI

(−
)

6.
88

67
3.

52
72

67
3.

52
90

C
37

H
75

N
2O

6P
[M

 −
 H

]−
−

2.
67

−
1.

75
0.

00
0 

20
9/

0.
00

1 
21

SM
(d

32
:1

)

18
9

R
P 

E
SI

(+
)

1.
20

58
5.

27
00

58
5.

27
08

C
33

H
36

N
4O

6
[M

 +
 H

]+
−

1.
37

−
0.

21
0.

01
61

/0
.0

01
 5

2
bi

lir
ub

in

21
0

H
IL

IC
 E

SI
(+

)
4.

31
61

9.
19

76
–

–
[M

 +
 H

]+
–

0.
18

0.
00

9 
58

/0
.0

02
 1

4
–

98
H

IL
IC

 E
SI

(−
)

2.
68

24
7.

11
84

24
7.

11
87

C
11

H
20

O
6

[M
 −

 H
]−

−
1.

21
−

1.
98

3.
57

 ×
 1

0−
10

/0
.0

02
 3

7
fa

tty
 a

cy
l g

lu
co

si
de

19
1

R
P 

E
SI

(+
)

4.
47

81
8.

60
49

81
8.

60
58

C
48

H
84

N
O

7P
[M

 +
 H

]+
−

1.
10

−
0.

36
0.

01
45

/0
.0

03
 8

4
PC

(P
-4

0:
6)

J Proteome Res. Author manuscript; available in PMC 2020 July 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Huang et al. Page 23

m
/z

F
ea

tu
re

 
no

.
A

cq
ui

si
ti

on
 

m
od

e
re

te
nt

io
n 

ti
m

e 
(m

in
)

ex
pl

th
eo

r
E

le
m

en
ta

l 
fo

rm
ul

a
ad

du
ct

 t
yp

e

m
as

s 
er

ro
r 

(p
pm

)

F
ol

d 

ch
an

ge
a

p-
va

lu
eb  H

G
SC

 v
s 

co
nt

ro
l/H

G
SC

 v
s 

U
T

m
et

ab
ol

it
e 

id
en

ti
ty

c

48
5

R
P 

E
SI

(+
)

6.
27

97
8.

71
03

97
8.

71
58

C
56

H
10

0N
O

10
P

[M
 +

 H
]+

−
5.

62
0.

16
0.

00
0 

30
6/

0.
00

4 
13

PS
(5

0:
5)

, P
S(

O
-5

0:
6(

O
H

))
, 

PS
(P

-5
0:

5(
O

H
))

70
0

R
P 

E
SI

(−
)

1.
06

47
2.

15
59

47
2.

15
86

C
20

H
23

N
7O

7
[M

 −
 H

]−
−

5.
72

0.
75

0.
00

1 
16

/0
.0

06
 8

0
fo

lin
ic

 a
ci

d,
 1

0-
fo

rm
yl

te
tr

ah
yd

ro
fo

la
te

, 
pt

er
oy

l-
D

-g
lu

ta
m

ic
 a

ci
d

22
R

P 
E

SI
(−

)
3.

70
49

1.
34

19
49

1.
34

12
C

26
H

52
O

6S
[M

 −
 H

]−
1.

42
3.

03
0.

00
2 

25
/0

.0
07

 1
1

fa
tty

 a
ci

d 
es

te
r d

er
iv

at
iv

es

64
4

H
IL

IC
 E

SI
(+

)
3.

93
27

6.
11

90
27

6.
11

90
C

10
H

17
N

3O
6

[M
 +

 H
]+

0.
00

2.
93

0.
00

2 
93

/0
.0

08
 6

7
no

ro
ph

th
al

m
ic

 a
ci

d,
 γ

-
gl

ut
am

yl
 g

lu
ta

m
in

e

72
5

H
IL

IC
 E

SI
(−

)
1.

25
21

9.
01

87
21

9.
01

93
C

5H
8N

4O
4S

[M
 −

 H
]−

−
2.

74
−

0.
29

0.
01

20
/0

.0
08

 9
0

ta
ur

in
e 

de
riv

at
iv

es

48
R

P 
E

SI
(−

)
0.

93
46

2.
05

94
46

2.
06

16
C

14
H

25
N

O
11

[M
 +

 B
r]

−
−

4.
76

2.
78

0.
00

2 
69

/0
.0

09
 6

3
N

-a
ce

ty
lla

ct
os

am
in

e,
 β

-1
,4

-
m

an
no

se
-N

-
ac

et
yl

gl
uc

os
am

in
e,

 la
ct

o-
N

-
bi

os
e 

I

77
2

H
IL

IC
 E

SI
(−

)
3.

61
21

7.
10

75
21

7.
10

81
C

10
H

18
O

5
[M

 −
 H

]−
−

2.
76

−
0.

90
0.

00
1 

14
/0

.0
11

7
2(

3)
-h

yd
ro

xy
se

ba
ci

c 
ac

id

29
R

P 
E

SI
(+

)
3.

27
38

3.
33

06
38

3.
33

08
C

27
H

42
O

[M
 +

 H
]+

−
0.

52
−

1.
06

1.
25

 ×
 1

0−
9 /

0.
01

27
7-

de
hy

dr
od

es
m

os
te

ro
l, 

5a
-

ch
ol

es
ta

-8
,2

4-
di

en
-3

-o
ne

, 
ch

ol
es

ta
-4

,6
-d

ie
n-

3-
on

e

a Fo
ld

 c
ha

ng
e 

(F
C

) 
w

as
 c

al
cu

la
te

d 
as

 th
e 

ba
se

 2
 lo

ga
ri

th
m

 o
f 

th
e 

av
er

ag
e 

ab
un

da
nc

e 
ra

tio
s 

be
tw

ee
n 

T
K

O
 a

nd
 T

K
O

-C
tr

l s
am

pl
es

).
 P

os
iti

ve
 F

C
 v

al
ue

s 
in

di
ca

te
 in

cr
ea

se
d 

ab
un

da
nc

e 
in

 T
K

O
 s

am
pl

es
, w

hi
le

 
ne

ga
tiv

e 
va

lu
es

 in
di

ca
te

 h
ig

he
r 

ab
un

da
nc

e 
in

 T
K

O
-C

tr
l s

am
pl

es
.

b A
ll 

p-
va

lu
es

 a
re

 c
al

cu
la

te
d 

us
in

g 
an

 F
D

R
-c

or
re

ct
ed

 t-
te

st
. F

or
 a

dd
iti

on
al

 f
ra

gm
en

ta
tio

n 
in

fo
rm

at
io

n 
an

d 
le

ve
l o

f 
co

nf
id

en
ce

 f
or

 e
ac

h 
id

en
tif

ic
at

io
n,

 p
le

as
e 

re
fe

r 
to

 T
ab

le
 S

4 
(S

I)
.

c A
bb

re
vi

at
io

ns
: G

lu
, g

lu
ta

m
ic

 a
ci

d;
 H

is
, h

is
tid

in
e;

 L
eu

, l
eu

ci
ne

; I
le

, i
so

le
uc

in
e;

 C
E

, c
ho

le
st

er
yl

 e
st

er
; L

ys
oP

C
, l

ys
op

ho
sp

ha
tid

yl
ch

ol
in

e;
 P

C
, p

ho
sp

ha
tid

yl
ch

ol
in

e;
 C

L
, c

ar
di

ol
ip

in
; N

A
T,

 N
-a

cy
lta

ur
in

e;
 S

M
, 

sp
hi

ng
om

ye
lin

; P
S,

 p
ho

sp
ha

tid
yl

se
ri

ne
; N

eu
A

c,
 N

-a
ce

ty
ln

eu
ra

m
in

ic
 a

ci
d.

J Proteome Res. Author manuscript; available in PMC 2020 July 20.


	Abstract
	Graphical Abstract
	INTRODUCTION
	MATERIALS AND METHODS
	Chemicals
	Mice and Serum Sampling
	Sample Preparation
	UPLC–MS Analysis
	Data Processing
	Discriminant Feature Identification

	RESULTS AND DISCUSSION
	Multivariate Classification Performance
	Discriminant Metabolite Identification
	HGSC-Related Metabolic Alterations

	CONCLUSIONS
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Table 1.

