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SUMMARY

In decision-making we first make a good-based choice then transform it into action to harvest the 

good. To elucidate neural circuit mechanism for such transformation, we investigated a neural 

circuit model with three modules, representing choice, integration of choice with response target 

and motor command, respectively. We examined three scenarios of how action could be resolved 

in the model and compared their implications with experimental data. Our model predicts three 

types of neurons with distinct functional significance, which is confirmed by a novel analysis of 

neural activity in lateral prefrontal cortex (LPFC) of behaving monkeys. The classification of 

functional neural types is much more distinct in the ventral than the dorsal region of LPFC, 

suggesting that action plan is initially generated based on choice outcome in ventral LPFC. Our 

model offers a biologically plausible neural circuit architecture that implements good-to-action 

transformation during economic choice.

INTRODUCTION

In our daily life, we often face choices among multiple available goods. We decide 

according to our subjective preference and then perform the necessary action to retrieve the 

choice outcome (Padoa-Schioppa and Cai, 2011; Cai and Padoa-Schioppa, 2014). Neurons 

in the orbitofrontal cortex (OFC, Brodmann area 13) encode both pre- (offer value) and post-

decision variables (chosen value and chosen juice), suggesting together with lesion studies 
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that OFC may be the brain locus for implementing economic choice (Padoa-Schioppa and 

Assad, 2006; Cai and Padoa-Schioppa, 2014). Importantly, encoding of value in this area is 

independent of visuospatial contingencies and motor responses (Padoa-Schioppa and Assad, 

2006; Cai and Padoa-Schioppa, 2014; Grattan and Glimcher, 2014). Cai and Padoa-

Schioppa (2014) demonstrated that such abstract choice outcome encoded in the OFC may 

be transformed into an action plan (good-to-action transformation) through the lateral 

prefrontal cortex (LPFC), a major output target of OFC (Saleem et al., 2014). In their study, 

a delay was introduced between presentation of the offers and the saccade targets and the 

spatial location of the offers is dissociated from the saccades necessary to obtain them. A 

substantial fraction of OFC neurons encoded the choice outcome but the encoding was 

transient and faded away during the memory period before the saccade targets were revealed 

to the animal. Thus, OFC neurons did not appear to maintain the memory of choice 

outcome. On the other hand, the choice memory trace was observed in the LPFC, where 

neuronal activity undergoes a transition from encoding choice outcome in goods space to 

representing the action plan for obtaining the chosen offer (good-to-action transformation).

In this computational work, we developed and investigated a neural circuit model for good-

to-action transformation that is not only capable of realizing such transformation in a 

valuebased decision making task but also recapitulates the neuronal dynamics observed in 

LPFC, which putatively carries out the transformation. We started out with a minimal circuit 

model based on task demand (Figure 1), with two different scenarios to accomplish the 

transformation. Scenario I assumes that ultimate action selection takes place in a motor 

command circuit, whereas Scenario II posits that action selection is reached through 

consensus building in a circuit where good-based choice signal is integrated with response 

target input. These two different scenarios predict the presence of distinct functional neuron 

types. Scenario I predicted the presence of visual target encoding (TG) neurons and motor-

like chosen target (CT) neurons while Scenario II predicts the existence of transition (TS) 

neurons which first encode target location and then transition to encode chosen target 

location. However, we found in the LPFC all three types of neurons, which cannot be 

produced by Scenario I or II alone. By enriching the circuit model with heterogeneity in 

network connectivity, the enhanced model Scenario III yielded all three functional neuron 

types under a single scenario. Moreover, the count statistics of neuron types produced by the 

model could match that in the LPFC. Our model provided a novel biologically plausible 

neural circuit that implements good-to-action transformation during economic choice. 

Furthermore, our computational work provided complimentary evidence that further 

supports the hypothesis in experimental studies that LPFC, LPFCv in particular, is a 

potential neural substrate for transforming choice outcome into an action plan during 

economic decision-making.

RESULTS

A neural circuit model of good-to-action transformation

To investigate the neural mechanism underlying good-to-action transformation, we 

developed a neural circuit model based on the behavioral and neurophysiological data in an 

economic choice task that was designed to study such transformation. Figure 1A shows the 
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design and timeline of the original task (Cai and Padoa-Schioppa, 2014). At the beginning of 

the trial, the monkey fixated a center point on the monitor. After 1.5 s, two offers appeared 

to the left and right of the fixation point. The offers were represented by sets of colored 

squares, with the color indicating the juice type and the number of squares indicating juice 

amount. The offers remained on the monitor for 1 s, and then they disappeared. The monkey 

continued fixating the center point for another 1 s. At the end of this delay, two saccade 

targets appeared (target on). The location of the saccade targets was randomly selected on a 

circle centered on the fixation point (eight possible locations), with the two saccade targets 

on opposite side of the fixation point. The color of the saccade targets matched those of the 

squares representing each offer. The monkey maintained fixation for a randomly variable 

period of 0.6-1.2 s before the center fixation point was extinguished (“go” signal), at which 

point the monkey indicated its choice with a saccade. The dissociation between the 

presentation of the offers and their associated saccade targets provided a window for 

observing generation of an action plan from the choice outcome (Cai and Padoa-Schioppa, 

2014).

Our model is a minimal circuit model for implementing the transformation based on the 

experimental discoveries. Since in the monkey experiment the final action is a saccade to the 

chosen target located on a circle with a fixed eccentricity, a basic model circuit has a “ring” 

structure where neurons are selective for a directional angle ranging from 0° to 360°. Our 

model has three modules. The first module is a working memory (WM) module that 

maintains the chosen juice signal, the second module consists of two integration (IN) rings 

that integrate the chosen juice input and the visual input of saccade target locations, and the 

third module is a readout (RO) ring for action plan (Figure 1B). The WM module is modeled 

by a two-pool attractor network, whereas the IN and RO rings are modeled by ring networks. 

As in previous works (Ben-Yishai et al., 1995; Zhang, 1996; Camperi and Wang, 1998; 

Compte et al., 2000; Engel and Wang, 2011), in each ring, neurons are labeled by their 

preferred directions. Excitatory connection between a pair of neurons depends on the 

difference in their preferred directions, whereas lateral inhibition is uniform. The detailed 

network architecture and parameters are described in EXPERIMENTAL PROCEDURES.

In model simulation, the chosen juice input is presented during offer on as currents of 

different amplitudes (Figure 1C) since the chosen juice neurons in OFC exhibit binary 

activity pattern (Padoa-Schioppa and Assad, 2006; Cai and Padoa-Schioppa, 2014). The 

visual input for each of the two targets is represented by a Gaussian profile current which 

peaks at the direction of the target cue (Figure 1D). The two peaks have the same amplitude 

and are 180° apart. Here inputs associated with chosen juice A (B) project to IN-A (IN-B) 

ring during target on lasting for 1 s, which is long enough to reveal the economic choice 

signal that had occurred within 0.6 s (minimum target on duration in the experiment) after 

target onset. An example activity profile of the WM module in response to the chosen juice 

input is shown in Figure 1E, which exhibits the typical winner-take-all (WTA) attractor 

dynamics (Wang, 2002; Wong and Wang, 2006). We first considered a homogeneous 

synaptic connectivity model in which the level of excitatory interaction between the IN rings 

gave rise to different subsets of functional neuron types. To define two contrasting scenarios, 

we introduced a scaling parameter a such that the ratio of within- to between-ring excitatory 

contribution is 1 – α/2 to α/2, which implies that the total synaptic weight within the dual-

Yim et al. Page 3

Neuron. Author manuscript; available in PMC 2020 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ring network is constant. We first tested two distinct scenarios: (I) no excitatory interaction 

between the two IN rings (α = 0); (II) equal strength for between- and within-ring excitatory 

interaction (α = 1). Examples of the two scenarios are displayed in Figures 2B and C, when 

juice A is chosen and target A is presented at 90° and B at 270°. In Scenario I, two IN rings 

operate independently of each other. An activity bump appears at 90° in ring A and at 270° 

in ring B. With the stronger juice signal in A, WTA competition takes place in the 

downstream RO ring which results in the emergence of chosen target signal (location of 

target A) which directs saccade. In Scenario II, the net interaction between two neural units 

with similar preferred direction in different rings is excitatory. Under such scenario, the two 

IN rings cooperate. In detail, the stronger activity bump in ring A excites its counterpart in 

ring B which, in turn, suppresses the original activity bump in B. Such process is manifested 

as a transition of activity bump (Figure 2C). As a result, the chosen target signal emerges in 

both IN rings after such transition, thus providing a parsimonious circuit for good-to-action 

transformation. We further tested the robustness of the model performance against noise by 

doubling the background noise level σn in the two scenarios. As shown in Figure S1, the 

between-ring coupling in Scenario II gives smaller absolute errors in direction decoding in 

the RO ring upon higher noise level and thus has the advantage of enhancing networks 

robustness against noise. Figure 2D shows the snapshots of activity profile of the IN-B ring 

under Scenario II in three different time windows: the early window before the transition if 

any, the mid window during transition and the late window after transition. The activity 

bump of the IN-B ring under Scenario II initially peaks at target B location until the bump at 

the opposite direction grows strong enough with the support of the excitation from ring A to 

suppress the initial bump, leading to a transition of the peak and the ultimate emergence of 

the chosen target signal.

To examine how the relative strength of within- and between-ring excitatory interaction may 

affect transition, we varied α from zero (within-ring excitation only) to one (equal excitatory 

coupling). We used the inverse of transition time 1/Ttran to characterize the transition (see 

EXPERIMENTAL PROCEDURES). If transition does not happen during target on, 1/Ttran 

is set to 0. We consider three conditions: reference (J = 0.35 nA, J+ = 1.9 nA), stronger 

inhibition (J = 0.6 nA, J+ = 1.9 nA) or stronger excitation (J = 0.35 nA, J+ = 2.02 nA) 

relative to reference. When inhibition is strong, no transition occurs during target on (Figure 

2E, blue triangle and Figure S2, left column). When excitation is sufficiently strong, 

transition takes place at α ≥ 0.8 (orange “+”). As excitation grows, transition occurs with 

lower threshold for α (green “x”, α ≥ 0.7). In general, the stronger the excitation between 

the IN ring networks (that is, the larger the value of α), the earlier the transition occurs 

(Figure S2), giving rise to a larger 1/Ttran. Therefore, both restricted global inhibition and 

sufficiently strong excitation set the stage for the cooperation between the IN rings for the 

action signal to emerge.

Model predictions on functional neuron types

In the previous section, we demonstrated how chosen target signal emerges under a 

particular set of inputs (juice A is chosen and target A is located at 90°). The time evolution 

of network activities suggests that there are different types of neurons in our model that may 

serve different functions during good-to-action transformation. To characterize neurons of 

Yim et al. Page 4

Neuron. Author manuscript; available in PMC 2020 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



potential functional types, we further simulated the model with either juice A or B chosen 

and target A located at any of the eight possible locations. Such simulations enable us to 

construct tuning curves for each neuron based on the location and identity of the chosen 

target. As a result, Scenario I predicts the existence of visual target encoding (TG) neurons 

and motor-like chosen target (CT) neurons while Scenario II predicts the existence of 

transition (TS) neurons which first encode target location and then transition to encode 

chosen target location.

To characterize the property of the above three functional neuron types, we analyzed how 

neuron’s spatial tuning curves develop as the transformation unfolds. In accordance with Cai 

and Padoa-Schioppa (2014), the chosen target signal increases sharply from 200 to 400 ms 

after target onset and sustained for a few hundred milliseconds. In this regard, we consider 

two chosen juices (A and B), as well as two time windows (early and late). The early and 

late time windows are defined as 0 - 200 ms and 400 - 600 ms after target onset, 

respectively. For each neuron, we constructed four tuning curves, corresponding to the 

following four conditions: juice A chosen, early time window; juice B chosen, early time 

window; juice A chosen, late time window; and juice B chosen, late time window. The 

spatial tuning was constructed and is based on the location of target A, which is the abscissa 

of the tuning curve (see EXPERIMENTAL PROCEDURES). To further characterize 

neurons of different functional significance, we derived from the four tuning curves four 

peak values and constructed four independent peak differences for each neuron (see 

EXPERIMENTAL PROCEDURES). Each neuron can thus be represented in the 4-

dimensional space of peak differences. According to the model, specific sets of values of the 

peak differences for the three functional types of neurons are listed in Figure 3A. Figures 

3B-D demonstrate the spatial tuning curves as well as the temporal evolution of the peak of 

the tuning curves. TG neurons respond maximally to its preferred direction regardless of 

which juice was chosen and the time window considered. The peaks of the two tuning 

curves remain invariant over time and the two tuning curves completely overlap. CT neurons 

have different tuning curves for different chosen juice, with their peaks 180° apart, but the 

tuning does not change over time. The peak locations for the two tuning curves are constant 

and 180° apart. Finally, TS neurons behave like TG neurons in the early window, and CT 

neurons in the late time window. There is a 180° peak location shift for one of the two 

tuning curves, depending on which IN ring the neuron belongs to. The prediction of the 

existence of distinct classes of neurons by the two model scenarios provided us a reference 

to examine which scenario provides a better account for the underlying mechanism of good-

to-action transformation in the LPFC.

At the population level, TG and CT neurons each occupy one location in the 4-dimensional 

space, whereas TS neurons occupy two locations depending on whether it belongs to ring 

IN-A or B. Figure 3E shows the locations of all 3N (N neurons in each ring) simulated 

neurons in the three rings of Scenario I according to the peak differences defined above. 

Data in the 4-dimensional space are projected onto two 2-dimensional sub-spaces for 

visualization. Clearly, there are two groups of neurons in the sub-space ΔLate versus ΔEarly, 

and two overlapping groups in the subspace ΔB versus ΔA. Therefore, we can identify two 

distinct groups in the 4-dimensional space of peak differences and the counts are 2N for TG 

neurons and N for CT neurons (Figure 3F). Similar to Figure 3D, Figure 3G shows all the 
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neurons under Scenario II. There are three distinct groups of neurons in the 4-dimensional 

space. One group corresponds to CT neurons, and the other two groups that overlap in the 

subspace ΔLate versus ΔEarly are TS neurons. We label the group of neurons with (ΔA, ΔB) 

located at (180° , 0°) as TS1, and the other group at (0°,180°) as TS2. TS1 neurons belong to 

ring IN-B representing target B location and the peak of their spatial tuning curve goes 

through a transition when A was chosen while TS2 neurons are located in ring IN-A and the 

peak of their spatial tuning curve goes through a transition when B was chosen. Figure 3H 

illustrates N neurons for each group, mapped onto each of the three rings: CT neurons on the 

RO ring and TS neurons on the two IN rings.

Functional classification of neurons in LPFC

It is intriguing that our model predicts that good-to-action transformation can be 

implemented by the interaction among functional groups of neurons under different model 

scenarios. Was LPFC operating under either scenario or a mixture of both? To answer this 

question, we performed similar analysis focusing on the time evolution of tuning curves of 

1078 neurons recorded from LPFC. We constructed the spatial tuning curves of each neuron 

conditioned upon the chosen juice at different time windows after target onset. Tuning 

curves were constructed from 0 to 700 ms after target onset using sliding time window (200 

ms) in steps of 50 ms. Tuning curves of example TG, CT and TS-like neurons in early 

(0-200 ms), mid (200-400 ms) and late (400-600 ms) windows and the time evolution of 

their peaks are shown in Figure 4. The classification of all example neurons was later 

verified to be consistent with the outcome of population level classification. The time 

evolution of tuning peaks display similar characteristics as those of simulated neurons in 

Figure 3. Some neurons appear to have two peaks that are opposite to each other, and in 

most cases, one peak has substantially higher amplitude. For consistency across neurons, we 

identified the peak with higher amplitude as the neurons preferred spatial direction 

according to the approach outlined in EXPERIMENTAL PROCEDURES. Computational 

study and analysis on bimodally-tuned neurons are presented in the next subsection. Since 

spatial tuning is a characteristic feature for neurons in the ring model, we applied a 4-way 

ANOVA to identify spatially selective neurons in LPFC (see EXPERIMENTAL 

PROCEDURES). Overall, 665 neurons were found to be spatially selective, and each of 

them can be represented in the 4-dimensional space of peak difference. Figure 5A shows the 

distribution of neurons mapped onto 2-dimensional sub-spaces. We applied DBSCAN, an 

unsupervised density-based clustering algorithm, to search for clusters in the 4-dimensional 

space (see EXPERIMENTAL PROCEDURES). The analysis yielded four valid clusters, 

each of which is labeled by a different color (Figure 5A). The histograms of peak differences 

also demonstrated significant bimodal distribution for each of the four dimensions (Figure 

5B). We further computed the mean and standard error for data along each dimension, 

represented by xs and ellipses in Figure 5C. The theoretically predicted locations of neurons 

are marked with +s for comparison. Strikingly, the centers of the four clusters computed 

from experimental data match well with the four locations predicted by the model. 

Importantly, all three types of neuron are well represented. Fraction for each category is 

displayed in Figure 5D and the number of neurons classified as TG, CT and TS are 65 

(9.8%), 120 (18.0%) and 166 (25.3%), respectively. We repeated the analysis for all 1078 

LPFC neurons and obtained qualitatively similar results (Figures S3A and B). As a control, 
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the same analysis was applied to 1078 pairs of randomly generated tuning curves with firing 

rate values drawn from a uniform distribution. No clear pattern and no significant bimodal 

distribution of peak differences is observed as shown in Figures S3C and D.

Cai and Padoa-Schioppa (2014) reported that during good-to-action transformation, spatial 

and action-related signal emerges earlier in LPFCv than that in LPFCd suggesting different 

functional roles of these two LPFC sub-regions. Therefore, we separated neurons recorded 

from LPFCv and LPFCd. For LPFCv, both the clustering and the bimodal distribution along 

each dimension are very distinct (Figures 6A and B), but such pattern was much less 

prominent for LPFCd (Figures 6C and D). To further characterize potential functional 

difference between LPFCv and LPFCd, we compared the fraction of different types of 

neuron identified through the clustering analysis based on 395 and 270 spatially selective 

neurons in LPFCv and LPFCd, respectively. Proportions of TG, TS and CT neurons are all 

higher in LPFCv (TG 8.0%, TS 19.1% and CT 12.7%) than that in LPFCd (TG 3.8%, TS 

11.3% and CT 9.4%), with the former two showing significant difference in proportion (p 
<0.05, two-sample t-test) (Figure 6E). Difference in proportion of all neuron types became 

significant when we performed clustering analysis with stricter criteria (Figure S5, p <0.05 

for all neuron types). These results corroborate with the findings by Cai and Padoa-Schioppa 

(2014), which suggested that LPFCv likely plays a more important role in good-to-action 

transformation.

Heterogeneity in network interactions reproduces heterogeneous neuron classes

As our model simulation demonstrated, in Scenario I (Figure 2B), each of the two IN rings 

encodes only target location throughout the trial. In Scenario II (Figure 2C), when juice A 

was chosen, the IN-A ring encodes the location of target A, which is also the chosen target, 

throughout the trial while IN-B ring first encodes target B location but then switches to 

encode the chosen target location. The finding that neuron types predicted by Scenario I and 

II coexist in the data suggests that the LPFC circuit underlying good-to-action 

transformation may operate under a hybrid mode of Scenarios I and II, named Scenario III.

Based on the rationale that physiologically the connectivity between neurons is likely to be 

heterogeneous (Renart et al., 2003), Scenario III was set by introducing heterogeneity in 

both within and between ring connectivity, characterized by β (see EXPERIMENTAL 

PROCEDURES). Note that the Gaussian-profiled relationship still persists albeit noisier. An 

example connectivity profile of one neuron to all neurons in the same (top) and opposite ring 

(bottom) is illustrated in Figure 7A. The solid line represents the mean Gaussian-profiled 

connection strength and the shaded area marks one standard deviation from the mean. As a 

result of such heterogeneous connectivity, some neurons receive stronger within-ring 

excitation that supports target encoding, whereas some receive stronger between-ring 

excitation that facilitates transition thus eventually encode the location of chosen target. 

When juice A was chosen, as shown in Figure 7B, while the inputs are exactly the same as 

that in Scenario I, in Scenario II two activity bumps coexist in ring IN-B after transition, one 

encoding target B location (270°) throughout and the other encoding the chosen target 

location (90°). Snapshots of the activity profile of IN-B ring network at different time after 
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target onset are presented in Figure S6. Another example simulation is displayed in Figure 

7C in which juice B was chosen. In this case, two activity bumps coexist in the IN-A ring.

To compare the tuning features of the recorded neurons and those in the circuit model, we 

performed simulation with various target input directions and different chosen juices. Some 

example spatial tuning curves of simulated neurons that are classified as TG, CT and TS 

neurons and the time evolution of their peak location in different time windows are 

demonstrated in Figure 7D-F. We then performed the same clustering analysis (DBSCAN) 

based on the activity of the simulated neurons and identified four valid clusters (Figures 7G 

and S7). Interestingly, the centers of the four clusters from simulation match well with the 

locations predicted by the theoretical accounts (marked by “+”s) of the three functional 

neuron types produced in Scenarios I and II. The counts of the three types of neurons are 

displayed in Figure 7H. All neurons in RO ring are CT neurons. As for the 512 neurons in 

IN rings, 139 are TG, 336 are TS, 19 are CT and 18 are unclassified. The proportion of TG, 

TS and CT neurons matches that identified in LPFC (Figure 5D) when the level of 

heterogeneity β is set at the appropriate value (2.5 nA).

Some neurons in LPFC exhibit substantial bimodal tuning (Figure 4), whereas the tuning of 

most model neurons is only slightly bimodal (Figure 7). Given that visual input over 

preferred direction of model neurons on IN rings is unimodal (Figure 4), bimodal tuning in 

neurons in IN rings arises from the excitatory interaction between IN rings, while neurons in 

RO ring simply sum input from the two IN rings. However, excitatory interaction between 

IN rings in the model is not sufficient to account for the bimodal tuning of LPFC neurons. 

LPFC neurons are known to be spatially selective and flexibly encode task-relevant 

information. This implies that a neuron responds whenever a target cue appears at its 

preferred direction, and such a response is further modulated by color after the establishment 

of color-juice contingencies. We test whether such a setting could account for the bimodal 

tuning observed in LPFC neurons. To this end, we use bimodal-tuned input as shown in 

Figure S8A. Figures S8B and C display the neural activity in the three ring networks when 

target A and B is chosen, respectively. Stronger traces of two coexisting bumps are noted 

compared with Figures 7B and C. At the single cell level, the bimodal tuning is also more 

obvious (an example TS neuron is shown in Figure S8D). Importantly, the cluster analysis 

yielded four clusters at approximately the same locations in the space of peak differences 

and similar fraction of the three neuron types (Figures S8E and F). To characterize the 

degree of bimodal tuning, the maximum amplitude of the tuning curve and that at the 

diametrical location were plotted for LPFC neurons (Figure S8G) and model neurons 

(Figure S8H) in the early and late time windows. Each data point represents one neuron’s 

bimodal tuning property contingent upon one chosen juice, therefore, each neuron 

contributes two points for each scatter plot. The closer to the diagonal, the more bimodal the 

tuning is. In both LPFC and model neurons, the degree of bimodal tuning spans a wide 

range, with stronger bimodality in the early than late window. These observations are 

possibly the consequences of heterogeneity and convergence of dynamics in the IN rings. To 

conclude, our attractor network model with Gaussian-profile interacting duo-rings shown in 

Figure 1A reproduces the major observations and neuron type statistics with both unimodal 

and bimodal visual input.
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Effects of synaptic interactions on quantitative predictions of neuron classes

One important discovery from experimenting with the synaptic interactions of the circuit 

model is that synaptic interactions can give rise to different mechanisms fulfilling good-to-

action transformation. In Scenario I, IN ring networks encode target location and the chosen 

target signal emerges in the RO ring network through WTA competition. In Scenario II, 

neurons in IN ring networks first encode target location then all transition to encode chosen 

target location due to cooperation between the rings, provided that the synaptic coupling 

between the IN rings are sufficiently strong. As shown in the earlier analysis (Figure 2), 

without heterogeneity (i.e. synaptic coupling between any neuron pairs is only dependent on 

their preferred direction difference and whether or not they appear in the same ring) 

neuronal activity in the IN rings is homogeneous, which gives rise to either TG (Scenario I) 

or TS (Scenario II) neurons exclusively (see gray symbols in Figure 8A). On the other hand, 

in Scenario III with heterogeneity in synaptic connectivity, some neurons in the IN-ring 

networks function as TG neurons while others function as TS neurons.

An intriguing question is under what condition(s) our model reproduces functional neuron 

groups that match quantitatively those discovered in the data. To approach this question, we 

focused on examining how strength α and heterogeneity β of synaptic coupling govern the 

dynamics of the circuit model, which leads to different fractions of TG and TS neurons in 

the two IN rings. We discovered that at a significant level of heterogeneity (β = 2.5 nA), TG 

and TS neurons coexist (Figure 8A). As we increase the between-ring synaptic coupling 

strength α, the fraction of TG neurons decreases while that of TS neurons increases. Note 

that to maintain network stability given the current set of other model parameters, α needs to 

be higher than 0.5, therefore, some data points are omitted for small α. At the same time, β 
must remain below 2.75 nA because strong heterogeneity gives rise to network instability. 

We discovered that within the working range of α and β, irrespective of the heterogeneity 

level, increasing α leads to higher fraction of TS neurons. On the other hand, at a fixed value 

of α, increasing heterogeneity β tends to increase the fraction of TG neurons (Figure 8B). 

For detailed quantification, we focused on investigating how the fraction of TG depends on 

α and β (Figure 8C). In the experimental data, the fraction of TG among the subpopulation 

of TG and TS neurons is 0.28. To obtain the same fraction in the model, increasing coupling 

strength α requires increasing heterogeneity β as indicated by the white line in Figure 8C. 

The behavior of the model changes gradually along the line, modulated by α and β. 

Furthermore, we investigated the effects of intrinsic neuronal heterogeneity κ (see 

EXPERIMENTAL PROCEDURES) on circuit dynamics and TG/TS ratio. As demonstrated 

in Figure 8D, intrinsic neuronal heterogeneity supports the emergence of TG neurons in a 

similar way as network connection heterogeneity. Furthermore, the network with 

heterogeneity in both synaptic connections and intrinsic neuronal properties recapitulate the 

clustering of functional neuron groups (Figure S9) as observed in the model with network 

heterogeneity alone.
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DISCUSSION

Biophysical plausibility of the circuit model

We proposed a circuit model for good-to-action transformation in an economic choice task. 

The model comprises three modules: WM, IN and RO modules. The information 

represented in our modular circuit model presents mixed coding properties similar to that 

observed in the data. Before target presentation, the memorized choice outcome is 

maintained by the WM module, in the meantime, the choice outcome signal can also be 

detected in the IN module which receives direct projection from the WM module. Such 

observation is consistent with mixed coding of target location and chosen juice in LPFC 

under the same task (Cai and Padoa-Schioppa, 2014). The IN module consists of two ring 

networks that integrate chosen juice and target location inputs. Several other studies also 

suggested that LPFC, and LPFCv in particular, carries both spatial information (“where”) 

(Rainer et al., 1998; Kennerley and Wallis, 2009; Hoshi, 2004) and object information 

(”what”) (Rainer et al., 1998). In cases when transition occurs, the IN module also 

represents chosen target signal highlighting the fact that the IN module can carry 

information of multiple task-related features, especially in presence of heterogeneity in 

interneuronal connectivity. Such time evolution of information was also observed in the 

frontal eye field (FEF) (Sato and Schall, 2003), a brain region closely associated with LPFC.

Mechanistically, good-to-action transformation shares similarity with visual search. Both are 

visuomotor processes involving visual attention in identifying and saccading to a visual 

target. In visual search, attention is guided by rules and top-down attention signal is likely 

originated from prefrontal areas such as areas 45A, 12 and 46v (Bichot et al., 2015). 

Whereas in good-to-action transformation, attention is guided by choice outcome signal 

originated in OFC (Padoa-Schioppa and Assad, 2006; Cai and Padoa-Schioppa, 2014). 

Hamker (2005) proposed a model of visual search involving FEF, ventrolateral prefrontal 

(PF) cortex and the ventral visual pathway. In his model, during the delay period, memory 

for visual cues are stored in PF which is feature-selective but not spatially selective. Once 

the search array is on, bottom-up visual input reaches V4 and, at the same time, PF sends out 

top down attention signal to V4 via IT. These two streams of signals are integrated in V4, 

which in turn sends spatial information to FEF while collapsing the feature space. However, 

the property of the PF module is inconsistent with the observations of the LPFC neurons 

integrating both stimulus and spatial information (Rainer et al., 1998; Cai and Padoa-

Schioppa, 2014; Tsutsui et al., 2016). In the meantime, in a visual search task with FEF 

recordings (Sato and Schall, 2003), the authors discovered that out of the 65 FEF neurons 

that discriminated the target from distractors in pro-saccade trials, 21 of them did not 

respond to the target in anti-saccade trials but responded to the endpoint of saccade, which 

share the same property as the CT neurons in our model. 44 responded to the target in anti-

saccade trials, 38 of which also showed transition to respond to the endpoint of saccade, 

which resemble TS neurons. The remaining 6 did not undergo transition, which belong to 

the category of TG neurons. Thus, the same categories of functional neuron types exist in 

both FEF and LPFC, suggesting that a similar circuit mechanism may be implemented in 

FEF subserving visual search.
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Computations with interactive ring networks

Ring network models have been widely adopted in computational work on visuospatial 

working memory (Compte et al., 2000; Engel and Wang, 2011), winner-take-all spatial 

competition (Compte and Wang, 2006; Furman and Wang, 2008) and representation of 

directional features (zhang, 1996; Engel and Wang, 2011; Ardid and Wang, 2013; Engel et 

al., 2015). In general, the interplay between local excitation and global inhibition within a 

ring governs the dynamics of the network. Recently, the interaction between two ring 

networks has been proposed to be able to account for the observations in multisensory 

information segregation and integration (Zhang et al., 2016a,b). In our model, the two 

strongly interacting IN ring network enables cooperation between neurons with the same 

preferred direction but receiving different sources of input (Scenario II). The coupling not 

only allows a more parsimonious circuit for implementation of the task but also enhances 

robustness of the output against noise. If the between-ring interaction is weak or non-

existent, the two IN-ring network operates independently with their dynamics governed by 

within-ring interaction (Scenario I). In that case, the target signal is preserved without being 

overwritten. Whereas in Scenario III, with heterogeneity in the network connections, the 

resulting dynamical activity is a mixture of Scenarios I and II.

Furthermore, without heterogeneity in network connectivity, increase in between-ring 

connection strength α can lead to an abrupt change of operating mechanism in the IN 

module. As shown in Figure 2E, neurons in the IN-ring networks switch from encoding 

target location (Scenario I) to representing chosen target location in the end (Scenario II) 

when α is sufficiently large. However, such change is gradual with heterogeneity in network 

connectivity, rendering the coexistence of TG and TS neurons. In reality, network 

connections are heterogeneous and subject to modification during learning and adaptation. 

To account for the count statistics of neuron types in LPFC, a significant level of 

heterogeneity in connectivity was essential. Furthermore, neurons are biophysically diverse 

and such intrinsic neuronal diversity can further promote the emergence of TG neurons.

Neural substrates of good-to-action transformation

The lack of spatial selectivity in OFC neurons suggests that OFC computes value and 

resolves decisions in an abstract way (Padoa-Schioppa and Assad, 2006; Cai and Padoa-

Schioppa, 2014). The discovery that few OFC neurons encode choice outcome (chosen 

juice) signal during memory period in an economic choice task further implicates that good-

to-action transformation likely occurs outside of OFC. LPFCv, the ventral subregion of 

LPFC is a major anatomical target of the OFC (Saleem et al., 2014), therefore, LPFCv likely 

receives abstract choice outcome signals from the OFC (Cai and Padoa-Schioppa, 2014). 

LPFCv projects to LPFCd (Markov et al., 2014; Takahara et al., 2012), which is densely 

connected with the motor areas (Takahara et al., 2012). On the other hand, LPFCv projects 

strongly to 8m and 8l, both of which are regions in frontal eye field (FEF) associated with 

oculomotor responses (Markov et al., 2014). Although spatial and action related signals 

emerge earlier in LPFCv than that in LPFCd, conjunctive coding of choice outcome and 

action plan, which was considered a signature of transformation, was observed in both 

regions (Cai and Padoa-Schioppa, 2014). Thus, how these two LPFC subregions might play 

different roles in good-to-action transformation remain unclear. Importantly, conjunctive 
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coding of choice outcome and action plan only indicates the presence of input and output 

signals related to the transformation but does not provide insights regarding the mechanisms 

of its implementation.

Guided by our modeling result that good-to-action transformation was carried out by the 

interactive double-ring network that harbors both visual target encoding (TG) and transition 

(TS) neurons, we further analyzed macaque LPFC data from an economic choice task. We 

first discovered that there are more spatially selective neurons in LPFCv. More importantly, 

a significantly larger fraction of TG and TS neurons are found in LPFCv than that in LPFCd. 

Together with the previous findings that all spatial and action-related signals appeared in 

LPFCv earlier than that in LPFCd (Hoshi, 2004; Kennerley and Wallis, 2009; Cai and 

Padoa-Schioppa, 2014), our results advanced the hypothesis that LPFCv is likely to be the 

first stage in the chain of good-to-action transformation (Cai and Padoa-Schioppa, 2014). 

Namely, an action plan is first formed in LPFCv which drives the allocation of spatial 

attention (Asplund et al., 2010; Donahue and Lee, 2015). Such top-down attentional signal 

then informs the oculomotor areas of the proper action for retrieving the chosen good.

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Xiao-Jing Wang (xjwang@nyu.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experimental data are from Cai and Padoa-Schioppa (2014), where experimental 

protocol and recording procedures were described in details. Two rhesus monkeys (B, male, 

9.0 kg; L, female, 6.5 kg) were used in the experiments. Briefly, animals sat in an 

electrically insulated enclosure (Crist Instruments), their head was restrained, and the eye 

position was monitored with an infrared video camera (Eyelink; SR Research). Tungsten 

electrodes (125 mm diameter, FHC) were advanced using custom-built motorized 

microdrives, with a 2.5 micron resolution. Electrical signals were amplified and band-passed 

filtered (high pass: 300 Hz, low pass: 6 kHz; Lynx 8, Neuralynx). Action potentials were 

detected online (Power 1,401, Spike 2; Cambridge Electronic Design). All experimental 

procedures strictly conformed to the NIH Guide for the Care and Use of Laboratory Animals 

and with the regulations at Washington University School of Medicine. At the beginning of 

the trial, the monkey fixated a center point on the monitor, within a tolerance window of 2. 

(In a small subset of sessions, the tolerance was 3°.) After 1.5 s, two offers appeared to the 

left and right of the fixation point. The offers were represented by sets of colored squares, 

with the color indicating the juice type and the number of squares indicating juice amount. 

The offers remained on the monitor for 1 s, and then they disappeared. The monkey 

continued fixating the center point for another 1 s. (In a subset of sessions for monkey L, this 

additional delay lasted only 0.5 s.) At the end of this delay, two saccade targets appeared. 

The location of the saccade targets was randomly selected on a circle (7° radius) centered on 

the fixation point (eight possible locations), with the two saccade targets on opposite side of 

the fixation point. The color of the saccade targets matched those of the squares representing 

each offer. The monkey maintained fixation for a randomly variable period of 0.6-1.2 s 
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before the center fixation point was extinguished serving as the “go” signal, at which point 

the monkey indicated its choice with a saccade. In total, 1082 cells were recorded: 561 cells 

from LPFCv (362 and 199 from monkey B and L, respectively), and 521 cells from LPFCd 

(267 and 254 from monkey B and L, respectively). Four of the recorded neurons were 

omitted from analysis due to very low firing rate. Based on the MRI and on the sequence of 

gray and white matter encountered during electrode penetrations, we defined the regions 

ventral and dorsal to the fundus of the principal sulcus as LPFCv (9/46v) and LPFCd 

(9/46d), respectively.

METHOD DETAILS

The values of all the parameters mentioned below are listed in the tables below.

Neural circuit model

The neural circuit model of the LPFC comprises three interconnected neuronal modules: 

working memory (WM), integration (IN) and readout (RO) modules, as shown in Figure 1A. 

All three are recurrent networks with dynamics governed by local excitation and feedback 

inhibition (Compte et al., 2000; Wang, 2002; Wong and Wang, 2006; Engel and Wang, 

2011). In simulations, a reduced firing-rate model was used, which has been shown to 

reproduce neural activity of a full spiking neuronal network (Wong and Wang, 2006). The 

dynamics of each neuronal unit is described by a single variable s representing the fraction 

of activated N-methyl-D-aspartate receptor (NMDA) conductance, governed by

ds
dt = − s ∕ τs + (1 − s)γr, (1)

with γ =0.641 and τs =60 ms. The firing rate r is a function of the total synaptic current I 
(Abbott and Chance, 2005; Wong and Wang, 2006):

r = f(I) = aI − b
1 − exp[ − d(aI − b)] , (2)

with a =270 Hz nA−1, b=108 Hz and d =0.154 s.

The WM module was simulated by a two-variable attractor network model (Wong and 

Wang, 2006). Each variable represents a neuronal population (juice A and juice B) that 

receives inputs ICJ from the corresponding chosen juice (CJ) module in OFC during offer 

on, and maintains the storage of the choice outcome during the delay period because the 

encoding of chosen juice was observed in LPFC but not in OFC (Padoa-Schioppa and 

Assad, 2006; Cai and Padoa-Schioppa, 2014) (see DISCUSSION). The total current input to 

unit i of the WM module is given by

Ii
W M = J1si

W M + J2sj
W M + Ii

CJ + In, i
W M, (3)

where (i, j) = (A, B) or (B, A), with J1 = 0.3725 nA and J2 = −0.1137 nA. Ii
CJ is set to 0.03 

nA if juice i is the chosen juice, and 0.015 nA otherwise. In, i
W M is the noisy current the WM 
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population i receives. When simulated, activities of the two populations diverge according to 

the winner-take-all dynamics, which is achieved through global inhibition and structured 

recurrent excitation within the attractor network (Wang, 2002; Wong and Wang, 2006).

As for the ring networks, the synaptic input to a neuronal unit i in the population X 
originating from the population Y reads:

Ii
Y X = 1

NY
∑

j ∈ Y
gijY XsjY , (4)

where gijY X is the synaptic coupling between the neuron j in the population Y and the 

neuron i in the population X. The current is normalized by the number of presynaptic 

neurons NY. The two IN and one RO ring networks were each simulated by N = 256 discrete 

units with equally spaced preferred directions from 0° to 360°. The synaptic couplings gij 

between neurons with preferred directions θi and θj are symmetric, and have a periodic 

Gaussian profile. Each IN ring network receives synaptic inputs within the ring as well as 

inputs from the other IN ring. For the basic circuit without heterogeneity, within each IN 

ring network,

gijIN − A IN − A = gijIN − B IN − B = 1
2J− + (1 − α

2 )J+exp −(θi − θj)2 ∕ 2σ2 , (5)

whereas between the two IN ring networks,

gijIN − A IN − B = gijIN − B IN − A = 1
2J− + 1

2αJ+exp −(θi − θj)2 ∕ 2σ2 . (6)

The first terms of the above two equations together give the global inhibition, characterized 

by J−. The second terms correspond to the excitation within the dual interacting ring 

networks, with its maximum strength characterized by J+. The introduction of α conserves 

the total excitatory synaptic couplings and α determines the strength of between-ring 

excitatory contribution. Excitatory contribution in Scenario I (α=0) comes from within 

rings, while the excitatory contribution from within rings in Scenario II (α=1) is halved, 

with the rest coming from another ring. In Scenario II, the peak in another ring is located 

180° away so the overall excitation is weaker relative to Scenario I (the second term in 

Equation (6) is small when the difference of peak direction is big). α was varied to reveal the 

influence of the between-ring interaction, whenever applicable. σ, which characterizes the 

width of the interaction profile, is set to be 43.2°.

Units in the RO ring network receive synaptic inputs within the ring as well as inputs from 

the two IN ring networks. Within the RO ring network,

gijRO RO = J− + J+exp −(θi − θj)2 ∕ 2σ2 . (7)

As for the projections from the two IN rings, we consider an one-on-one interaction 

represented by the Kronecker delta

Yim et al. Page 14

Neuron. Author manuscript; available in PMC 2020 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



gijIN − A RO = gijIN − B RO = JIRδij, (8)

where δij = 1 if i = j and 0 otherwise. The RO ring network functions as the readout of the 

circuit. For simplicity, we use the Kronecker delta, which can be viewed as a Gaussian 

profile with very small σ. JIR is set to be 0.09 nA throughout. Different values of J− and J+ 

are used for different scenarios because, with different network connectivity structures, 

different levels of excitation and inhibition are necessary to maintain the network in an 

active dynamical state. The values of (J−, J+) are set to be (−0.35,2) nA for all three ring 

networks in scenarios I and II, and when compared with the dynamics of Scenario II, we 

additionally explored the effects of stronger inhibition (J− = −0.6 nA, J+ = 2 nA) and 

stronger excitation (J− =−0.35 nA, J+ =2.02 nA) in Figure 2E. The values of (J−, J+) are set 

to be (−0.8,2.32) nA when heterogeneity is introduced.

In addition, the two IN ring networks receive CJ-selective input from the WM module as 

well as spatial- and color-selective input from the visual pathway IV −A. Therefore, the total 

synaptic current a neural population i in the IN-A ring receives is given by

Ii
IN − A = JW IsA

W M + Ii
V − A + Ii

IN − A IN − A + Ii
IN − B IN − A + In, i

IN − A, (9)

and similarly for IN-B. JWI is set to be 0.01 nA for homogeneous networks and 0.03 nA for 

heterogeneous networks. The total synaptic current a neural population i in the RO ring 

receives reads:

Ii
RO = Ii

RO RO + Ii
IN − A RO + Ii

IN − B RO + In, i
RO . (10)

Noisy current represents background synaptic inputs and obeys:

τndIn ∕ dt = − (In − I0) + τnσnη(t), (11)

where η(t) is a Gaussian white noise, τn =2 ms, σn =0.015 nA and I0
W M = I0

TG = I0
RO = I0. 

I0 was set to be 0.3197 nA for homogeneous networks and 0.3297 nA for heteroegenous 

networks.

The CJ input, potentially projecting from OFC, was modeled by a two-level constant current 

during offer on period as shown in Figure 1B: ICJ = 0.03 nA if the corresponding juice is 

chosen, and ICJ = 0.015 nA otherwise. The input for each target cue from the visual area was 

presented as a Gaussian-profiled current which peaks at the direction of the target cue (θA 

for juice A and θB for juice B), and such input is both spatial and color-selective:

Ii
V − A = JV exp − (θi − θA)2 ∕ 2σ2 , (12)

and similarly for IV −B. JV was set to be 0.1 nA. Note that the two target cues are always 

opposite to each other, thus the peaks of the input currents are 180° apart, that is, ∣θA – θB∣ = 

180°.
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Parameters for neural units and networks used in simulations are shown in Tables 1 and 2.

Heterogeneity in network connectivity and biophysical properties of 

neurons

In Scenario III, synaptic heterogeneity is introduced in the connectivity of both within and 

between the two IN ring networks. This was achieved by adding an extra term βR to the 

synaptic couplings in equations (5) and (6), where β is the standard deviation of the coupling 

and R ∼ N(0, 1) is a random number drawn from a normal distribution. β was set at different 

values for different conditions (see Table 2).

The most crucial neuronal parameters that capture the dynamics of a heterogeneous neuronal 

population are the baseline current I0 and the standard deviation of the input noise σn (Yim 

et al., 2013). Therefore, neuronal intrinsic heterogeneity is implemented in the network by 

drawing those two parameters from Gaussian distributions for each neuron in the two IN 

ring networks. Here the mean of both parameters is set to be the same as that of the 

homogeneous neurons whereas the standard deviation of the two Gaussian distributions is 

varied in the same fashion, which scales linearly with κ. More explicitly, the baseline current 

and the standard deviation of the input noise are I0 + κR1 and σn + κR2, respectively, where 

R1, R2 ∼ N(0, 1). The standard deviation of network connectivity β is set to be 2 nA.

Bimodal visual input

The visual input is presented as a Gaussian-profiled current which has a major peak at the 

direction of its target cue and a smaller peak at the direction of the other target cue, located 

at the opposite direction (Figure S8A). Such input for juice A is given by

I i
V − A = JV exp − (θi − θA)2 ∕ 2σ2 + 0.9 × exp − (θi − θB)2 ∕ 2σ2 . (13)

To characterize the bimodal tuning in LPFC neurons, we consider the amplitude of their 

tuning curve at the direction opposite to the maximum versus the maximum. The closer to 

the diagonal, the more bimodal the tuning curve is. The parameters in Figure 7 are adopted 

except the followings for better performance and visual effect: J−=−1.6 nA, J+=2.5 nA, 

JWI=0.05 nA, JV=0.243 nA, I0=0.31 nA, α=0.3 and β=2.0 nA.

Simulation protocol

In accordance with the economic choice task in Cai and Padoa-Schioppa (2014), each 

simulation trial starts with a 1.5 s fixation period (no visual and CJ inputs), followed by a 1 s 

presentation of the offer cues when the WM module receives the chosen juice input. 

Following the offer period is a 1 s delay period when offer cues were turned off. After that, 

two visual targets were presented for 1 s during which the two IN ring networks receive the 

spatially selective visual inputs. Simulations were performed using a customized code 

written in Python implementing Heun integration with a time step of 0.5 ms.

Yim et al. Page 16

Neuron. Author manuscript; available in PMC 2020 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



QUANTIFICATION AND STATISTICAL ANALYSIS

Direction decoding for circular data

In this study, both the direction encoded by a ring network of N neural units and the 

preferred direction of a neural unit (i.e. peak of its tuning curve) are circular. To read out 

such encoded or preferred direction, we defined the following complex quantity z for the 

direction-dependent data (Wimmer et al., 2014):

z = zeiφ = ∑j = 0
K − 1xjeiθj

∑j = 0
K − 1xj

, (14)

where z is the modulus and φ is the encoded or preferred direction, respectively. In case of a 

ring network, K = N and xj is the mean firing rate of neural unit j during the time window 

considered, which has a preferred direction at θj = j/N × 360°. Whereas in case of a neural 

unit, K = 8, xj is the mean spike count during the time window considered in response to 

target A location θj = j × 45°. However, the ring networks in this task are likely to develop 

two activity bumps opposite to each other due to simultaneous presentation of two visual 

targets. We aim to identify the peak with higher amplitude as the index of each neuron’s 

tuning characteristics as the bigger peak would more likely be the chosen target location in 

the downstream circuit. Similar to neurons in the model, some of the tuning curves of the 

recorded LPFC neurons (Cai and Padoa-Schioppa, 2014) have double peaks opposite to each 

other. We accommodated such condition by introducing to equation (14) an additional 

parameter m

z(m) = z(m)eiφ(m) = ∑j = 0
K − 1xjeimθj

∑j = 0
K − 1xj

where m = 1, 2 . (15)

The numerator is the m-th trigonometric moment of the circular data (Berens, 2009). The 

quantity is proportional to the coefficient of the discrete Fourier series of xj. This formula 

with m = 2 has been used as the orientation selectivity index (Ringach et al., 2002; Scholl et 

al., 2013). We consider m up to two because the activity profiles in this study have either 

single or double peaks. To decode the direction of maximal activity, we compare z(1) and 

z(2), which are the “strength” of the corresponding moment. If z(1) is bigger, we take φ(1) 

as the decoded direction. If z(2) is bigger, we compare φ(2)/2 and φ(2)
2 + 180°

, and select the 

one closer to φ(1) as the decoded direction (Ringach et al., 2002).

To track the peak of a neuron’s tuning curve during good-to-action transformation, we 

constructed the tuning curve of each neuron based on target A location, and computed its 

peak for each chosen juice after target onset in a sliding time window of 200 ms with 50 ms 

steps.

Transition time

To determine the transition time of the activity bump in a ring network, we compute the 

decoded direction as described in the section above at every 1 ms time point during target on 
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using a sliding time window of 200 ms and look for the time of sharp transition when the 

change of decoded direction from the previous sliding window is larger than 90°. Ttran is the 

center of the corresponding 200 ms sliding window.

Representation and clustering of neurons in space of peak differences

The chosen target signal, revealed in the explained variance in ANOVA analysis, rose up 

steadily from 150 ms to 350 ms after target onset (Cai and Padoa-Schioppa, 2014). To 

characterize the spatial tuning of neurons during good-to-action transformation, we defined 

the early and late window as 0-200 ms and 400-600 ms after target onset, respectively. At 

the population level, the early window captures mostly the target signal whereas the late 

window contains largely the chosen target information (Cai and Padoa-Schioppa, 2014). We 

grouped neural activity according to the time window (early or late) and chosen juice (A or 

B) thus derived four tuning curves and subsequently four peak values for each neuron, 

namely PEarly
A , PEarly

B , PLate
A  and PLate

B , based on target A location. The peak value can 

range from 0° to 360°, while according to the model prediction, the peak differences are 

more stereotyped and suitable for characterizing different types of neurons. Therefore, we 

defined four independent peak differences:

ΔEarly = PEarly
B − PEarly

A

ΔLate = PLate
B − PLate

A

ΔA = PLate
A − PEarly

A

ΔB = PLate
B − PEarly

B

(16)

where ΔEarly, ΔLate, ΔA, ΔB ∈ [−90°, 270°]. Every neuron can be represented in the 4-

dimensional space of peak differences.

We applied DBSCAN (Density-based spatial clustering of applications with noise), an 

unsupervised density-based data clustering algorithm to identify clusters in the 4-

dimensional space. In brief, a point p is a core point if at least nmin points are within distance 

ϵ, the maximum radius of the neighborhood from p. These data points are said to be directly 

reachable from p. If p is a core point, then it forms a cluster together with all points that are 

reachable from it. For details, see https://en.wikipedia.org/wiki/DBSCAN and Ester et al. 

(1996). There are two free parameters, ϵ and nmin. We applied a self-defined criteria that a 

valid cluster must have at least 5% of the total neuron number. There are 1078 valid LPFC 

neurons, 665 spatially selective LPFC neurons and 768 simulated neurons so the minimum 

valid cluster size is set to be 54, 34 and 39, respectively. We selected ϵ = 65° and nmin = 20 

for the spatially selective LPFC data (Figure 5). Additionally, we applied stricter clustering 

criteria by setting ϵ to a smaller value 55° (Figures S4 and S5), that is, the same nmin data 

points have to be detected in a smaller volume for a cluster to be valid. For simulation, the 

parameter set that best satisfied the above criteria for all simulations were found to be ϵ = 

50° and nmin = 20.
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Hartigan’s dip test

The null hypothesis of the test is that the distibution is unimodal (Hartigan and Hartigan, 

1985). The uniform distribution is the asymptotically least favorable unimodal distribution. 

The corresponding significance test implemented by Nic Price (the Matlab code is available 

at http://www.nicprice.net/diptest/) was adopted to calculate the DIP statistic from the 

empirical probability density function (PDF), followed by a bootstrap sample of the dip 

statistic for a uniform PDF of the same size as empirical PDF. A distibution with p-value 

less than 0.05 is considered significantly distinct from a unimodal distribution.

Spatial selectivity

The spatial selection analysis was conducted using the same approach as in a previous study 

(Cai and Padoa-Schioppa, 2014). We consider the 600 ms after target onset, which is also 

the minimum duration before the “go” signal. To examine how spatial and action-related 

factors contribute to the activity of neurons in LPFCv/d, we proceeded as follows. First, we 

identified for each cell the preferred hemifield using a subset of trials (approximately 20%, 

with high chosen value). We then submitted each cell to a four-way ANOVA with factors 

chosen juice, chosen value, orientation, and hemifield of A, including all the interactions. 

For this analysis, the factor chosen value was reduced to a binary variable, high or low 

compared to the median. The factor orientation was a categorical variable with four levels 

(since there were eight possible target locations and two targets always appeared in opposite 

locations, there were four possible orientations). The factor hemifield of A was a binary 

variable depending on whether target A was in the cells preferred or antipreferred hemifield. 

Neurons are considered to be spatially selective if p-value is smaller than 0.01 for at least 

one of the following spatial factors or interactions: orientation, hemifield of A, orientation × 

hemifield of A, hemifield of A×chosen juice and orientation × hemifield of A×chosen juice.

DATA AND SOFTWARE AVAILABILITY

Software for modeling and data analysis is written in Python and MATLAB. Requests for 

source code and data should be directed to our Lead Contact.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Task design and basic structure of neural circuit model.
(A) The neural circuit model was constructed based on the behavioral task in Cai and Padoa-

Schioppa (2014). At the beginning of the trial, the monkey fixated a center point on the 

monitor. After 1.5 s, two offers appeared to the left and right of the fixation point. The offers 

were represented by sets of color squares, with the color indicating the juice type and the 

number of squares indicating the juice amount. The offers remained on the monitor for 1 s, 

and then they disappeared. The monkey continued fixating for another 1 s, after which two 

saccade targets appeared. The location of the saccade targets was randomly selected on a 

circle centered on the fixation point out of eight possible locations, with the two saccade 

targets on opposite sides of the fixation point. The saccade targets were of different colors 

corresponding to the colors of the two juices. The monkey maintained fixation for an 

additional randomly variable delay (0.6-1.2 s) before the center fixation point was 

extinguished, which served as the “go” signal. (B) Schematic of the circuit model. The 

working memory (WM) neuronal population in LPFC receives chosen juice input. The 

integration (IN) neuronal population integrate visual input from sensory areas and chosen 

juice input from WM. Finally, IN population project to readout (RO) population where the 

chosen target output is sent to the downstream motor area(s). A filled circle and a ring 

represent a population of homogeneous neurons and a ring network, respectively. Different 

types of arrows stand for different types of synaptic interaction, as specified below the 

circuit schematic.(C) The chosen juice input is presented during offer on period as currents 

of different amplitudes.(D) The visual input is presented as a Gaussian-profiled current 

which peaks at the direction of the target cue. Note that the two target cues are always 

opposite to each other, that is, 180° apart.(E) Activity profile of the WM module when A is 

the chosen juice, which exhibits the typical winner-take-all attractor dynamics. The shaded 

time intervals correspond to offer on and target on periods shown in (A).
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Figure 2. Model scenarios and circuit dynamics.
(A) Model scenarios and circuit dynamics for Scenario I and II. In Scenario I (α = 0)the 

interaction within rings follows a Gaussian spatial profile, while the interaction between 

rings has no spatial dependence. In Scenario II (α = 1), the interaction within and between 

rings follows the same Gaussian profile. The total synaptic weight within the dual-ring 

network is conserved in both scenarios.

(B) Scenario I: spatiotemporal activity pattern of IN and RO population of the circuit model 

from target onset when the chosen target is A, presented at 90°.

(C) Same as (B) but for Scenario II. Note that there is a 180° transition of the activity bump 

in IN-B ring during 200 – 400 ms after target onset.

(D) Activity profile of IN-B ring of Scenario II in different time windows. Early, mid and 

late time windows are defined at 0 – 200 ms, 200 – 400 ms and 400 — 600 ms, respectively, 

after target onset. The activity bump initially appears at 270°, but then another bump at 

chosen target location 90° grows over time and the initial bump is suppressed.

(E) Effect of between-IN ring excitatory interaction on transition time. We consider three 

conditions: strong inhibition (J− = −0.6 nA, J+ = 1.9 nA), reference (J− = −0.35 nA, J+ = 1.9 

nA) and strong overall excitation (J− = −0.35 nA, J+ = 2.02 nA). When inhibition is strong, 

no transition occurs. When excitation is sufficiently strong, transition takes place at large α. 

The stronger the excitation and the larger the value of α, the earlier the transition occurs, 

giving rise to a larger inversed transition time.
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Figure 3. Model predictions of functional neuron types.
(A) Peak differences for the three functional types of neurons according to the model. The 

four independent peak differences are defined to characterize the spatial tuning of every 

neuron during good-to-action transformation (see EXPERIMENTAL PROCEDURES). Note 

that the peak location of spatial tuning curves is identified with respect to target A location. 

TG neurons encode the location of the associated target throughout a trial, independent of 

whether A or B is chosen, therefore all peak differences are 0°. CT neurons carry the chosen 

target signal throughout, that is, ΔA = ΔB = 0°, whereas the peak differences between the two 

tuning curves at different time intervals are 180°. TS neurons behave like TG in the early 

stage and like CT in the late stage. If a TS neuron is in ring A, its peak location for chosen 

juice A is constant over time, giving rise to ΔA = 0° (D, orange) while its peak location for 

chosen juice B experiences a 180° change (D, blue). Vice versa for a TS neuron in ring B. 

Therefore, a TS neuron will take up one of the two locations in the 4-dimensional space of 

peak difference.
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(B-D) Left: Spatial tuning curves contingent upon the identity of chosen juice for units in the 

model categorized asTG, CT and TS neurons. Right: Time evolution of the peak location of 

the spatial tuning curves of the three neuron types.

(E) Representation of neurons in space of peak difference according to Scenario I. The 4-

dimensional space was decomposed into two 2-dimensional subspaces. Note that the 

representations of TG and CT neurons overlap in the subspace ΔA versus ΔB

(F) Number of different neuron types according to Scenario I.

(G) Representation of neurons according to Scenario II as in (E). Note that the 

representations of TS1 and TS2 neurons overlap in the subspace ΔEarly versus ΔLate.

(H) Number of different neuron types according to Scenario II.
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Figure 4. Examples of the three neuron types from LPFC.
Spatial tuning curves and time evolution of their peak location of two putative

(A) TG neurons,

(B) CT neurons,

(C) TS neurons.

The tuning curves were constructed by cubic spline interpolation.
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Figure 5. LPFC neuron type classification.
(A) Representation of spatially selective neurons in the space of peak differences. The 

clusters were detected with DBSCAN. Different clusters were represented by different 

colors with gray as unclassified. The first example neuron of each functional type in Figure 

4 is marked with a black circle.

(B) Histograms for each dimension. The p-values indicate the significance of the dip test.

(C) Representation of neuron clusters in peak-difference space. Each ellipse represents one 

SEM of one cluster. Black pluses indicate theoretically predicted locations of peak 

differences for different neuron types, while gray crosses denote the center (mean) for each 

cluster, which are also the centers of the ellipses.

(D) Fraction of different neuron types among all the recorded LPFC neurons.
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Figure 6. LPFC neuron type classification.
Spatially selective neurons in Figure 5C were plotted separately for LPFCv and LPFCd.

(A) Representation of LPFCv neurons in the space of peak-difference.

(B) Histograms of LPFCv neuron count for each dimension of peak-difference.

(C) Same as (A) but for LPFCd.

(D) Same as (B) but for LPFCd.

(E) Fraction of different neuron types among all recorded neurons in LPFCv and LPFCd. 

Asterisks indicate significant difference in fraction (p < 0.05, two-sample t-test).
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Figure 7. Effects of heterogeneity in network interactions on the properties of the circuit model 
in Scenario III.
(A) An example of interaction profiles within (top) and between (bottom) IN rings for one 

neuron in the ring. The mean interaction strength has a Gaussian profile and the shaded 

boundaries correspond to one standard deviation.

(B) Activity of model neurons when target A which appeared at 90° was chosen.

(C) Activity of model neurons when target B which appeared at 270° was chosen.

(D-F) Spatial tuning curves and time evolution of their peak location of a TG neuron (D), 

CT neuron and TS neuron (F). The tuning curves were constructed by cubic spline 

interpolation.

(G) Representation of neuron clusters in peak-difference space. Each ellipse represents one 

SEM of one cluster. Black pluses indicate theoretically predicted locations of peak 

differences for different neuron types, while gray crosses denote the mean for each cluster, 

or the center of the ellipse.
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(H) Fraction of different neuron types.
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Figure 8. Effects of synaptic interactions on quantitative predictions of neuron types.
(A) Fraction of TG and TS neurons in the two IN rings as a function of between-ring 

excitatory interaction strength α for homogeneous network (β = 0, gray) and heterogeneous 

network (β = 2.5 nA, colored). Heterogeneity in network interactions gives rise to the 

coexistence of TG and TS neurons in the two rings. Larger α favors the existence of TS 

neurons.

(B) Fraction of TG and TS neurons as a function of standard deviation of excitatory 

interaction strength β at α = 0.9. Higher level of heterogeneity, as indicated by higher β 
value, favors the existence of TG neurons at large α.

(C) Fraction of TG neurons as a function of α and β. The white line indicates the fraction of 

TG neurons equal to 0.28, the fraction observed in experiment.

(D) Fraction of TG and TS neurons as the intrinsic neuronal heterogeneity κ varies. Here 

neuronal heterogeneity is implemented by drawing two Gaussian-distributed parameters for 

each neuron. α and β were set to be 0.9 and 2 nA, respectively. Higher level of neuronal 

heterogeneity, as indicated by higher κ value, favors the existence of TG neurons.
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Table 1.

Parameters for Neural Units and Networks Used in All Simulations

Symbol Value Unit Description

γ 0.641 - Scaling constant of gating variable of NMDA receptors

κs 60 ms Time constant of NMDA receptor-mediated synaptic current

a 270 Hz nA−1 Gain factor of total synaptic input in input-output function

b 108 Hz Threshold current in input-output function

d 0.154 s Noise factor in input-output function

J1 0.3725 nA Effective self-coupling constant in WM module, excitatory

J2 −0.1137 nA Effective mutual-coupling constant in WM module, inhibitory

ICJ 0.03 or 0.015 nA CJ input current into WM module

N 256 - Number of discrete units in ring networks

σ 43.2 ◦ Width of interaction profile in ring networks

JIR 0.09 nA Effective coupling constant from IN to RO

κn 2 ms Time constant for background synaptic input

σn 0.015 nA Scaling constant for standard deviation of background synaptic input

JV 0.1 nA Peak current from visual input
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Table 2.

Parameters for Neural Units and Networks Used in Different Scenarios

Symbol Scenario I Scenario II Fig 7 Fig 8D Unit Description

J− −0.35 −0.35 −0.8 −0.8 nA (Mean) effective coupling for inhibition

J+ 2 2 2.32 2.32 nA (Mean) effective coupling for excitation

JWI 0.01 0.01 0.03 0.03 nA Effective coupling constant from WM to IN

I0 0.3197 0.3197 0.3297 0.3297 nA Mean background synaptic input

α 0 1 0.9 0.9 - Between-ring synaptic coupling strength

β 0 0 2.5 2 nA Standard deviation of network connectivity

κ 0 0 0 0.025 nA Intrinsic neuronal heterogeneity
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

DBSCAN clustering algorithm Ester et al. (1996) https://en.wikipedia.org/wiki/DBSCAN

Hartigan’s dip test Hartigan and Hartigan (1985) http://www.nicprice.net/diptest/
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