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Abstract

There are approximately 4 million intensive care unit (ICU) admissions each year in the United 

States with costs accounting for 4.1% of national health expenditures. Unforeseen adverse events 

contribute disproportionately to these costs. Thus, there has been substantial research in 

developing clinical decision support systems to predict and improve ICU outcomes such as ICU 

mortality, prolonged length of stay, and ICU readmission. However, the data in the ICU is 

collected at diverse time intervals and includes both static and temporal data. Common methods 

for static data mining such as Cox and logistic regression and methods for temporal data analysis 

such as temporal association rule mining do not model the combination of both static and temporal 

data. This work aims to overcome this challenge to combine static models such as logistic 

regression and feedforward neural networks with temporal models such as conditional random 

fields(CRF). We demonstrate the results using adult patient records from a publicly available 

database called Multi-parameter Intelligent Monitoring in Intensive Care – II (MIMIC-II). We 

show that the combination models outperformed individual models of logistic regression, 

feedforward neural networks and conditional random fields in predicting ICU mortality. The 

combination models also outperform the static models of logistic regression and feedforward 

neural networks for the prediction of 30 day ICU readmissions when tested using Matthews 

correlation coefficient and accuracy as the metrics.

I. INTRODUCTION

The modern intensive care unit (ICU) is a costly component of the national health care 

budgets accounting for 13.7% of hospital costs and 4.1% of national health expenditures 

[1-4]. These costs are largely explained by adverse outcomes such as prolonged length of 

stay in the ICU and ICU readmissions [5, 6]. For these reasons, there has been substantial 

research in developing clinical decision support systems to predict and prevent ICU 

outcomes, including ICU mortality, and ICU readmission.
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Current research on the use of critical care data has focused on the use of either static data 

(these are generally fixed variables like gender, socioeconomic status, weight on 

admission) , temporal data (such as heart rate, blood pressure, lab tests) or continuous data 

(such as ECG, ECG).

Conventional static data analysis using methods such as Cox regression and logistic 

regression though very useful for finding risk factors associated with a specific disease, do 

not incorporate the temporal nature of the clinical data. Similarly, temporal models such as 

sequence analysis and association rule mining [7-9] and temporal Cox regression [10-12] 

generate models using the temporal nature of data. However, most of the current work suffer 

from challenges such as the lack of data analytics that can make sense of patient conditions 

using a combination of static and temporal data (sequential and continuous).

In a recent study, we performed a temporal analysis using conditional random fields (CRF) 

to predict ICU mortality and 30 day ICU readmissions using adult patient data from a 

publicly available database called MIMIC II [13]. We compared our methods using 

conventional analysis of logistic regression (LR) and neural networks (NN). From our 

analysis we found that more temporal features were selected by CRF models and included 

features such as arterial BP, central venous pressure, creatinine, arterial PaCO2. In contrast, 

the LR and NN models picked features such as max sequential organ failure assessment 

(SOFA) score, metastatic cancer, minimum simplified acute physiology score (SAPS) I and 

presence of neurological symptoms. In addition, the data in the ICU itself is collected at 

higher sampling rates, though this can also vary.

In this study we extend our previous work to demonstrate a framework with which we can 

combine data from multiple sources, sampled at different sampling frequencies (e.g. static 

and temporal models (sampled at 6 hour intervals)) using ensemble techniques such as hard 

and soft voting. The static models include logistic regression and feed-forward neural 

networks, and the temporal models include conditional random fields. We combined the 

decisions from these individual classifiers and demonstrate our results using adult data from 

Multi-parameter Intelligent Monitoring in Intensive Care (MIMIC) –II.

II. METHODS

In this work, we perform a retrospective analysis of ICU data for adult patients to 

demonstrate the advantages of the combination of static and temporal data mining. After 

data preprocessing, we perform static data analysis using logistic regression and feed-

forward neural networks, and temporal data analysis using conditional random fields. We 

then combine the decisions of these different classifiers using hard and soft voting 

techniques (Figure 1.)

A. Data Source – MIMIC-II Database

This study is a retrospective data analysis using data from Multi-parameter Intelligent 

Monitoring in Intensive Care, second version, (MIMIC-II) database. MIMIC-II is a public 

ICU data repository with 32,331 adult and 8,080 neonatal records [14]. The MIMIC II data 

for each patient consists of static (does not change over the entire duration of the patient
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ICU stay, e.g., patient demographics) and temporal (changing in time, e.g., heart rate, blood 

pressure) data. From a total 13,000 features in MIMIC-II database, filtered features by the 

number of available records to include top 2,000 features. From this 2000, we selected 87 

features with the greatest clinical significance (based on clinician input). In the future, we 

will select features using standard feature selection techniques such as mRMR, differential 

expression and relieFF (as opposed to clinician input). The features included physiological 

measures (e.g. heart rate, blood pressure), lab results (e.g. while blood cells, red blood cells, 

cholesterol), administrative data (e.g. length of stay), diagnostic codes (ICD-9), and 

comorbidities (Table I).

B. Data Preprocessing

The pre-processing of data for non-temporal analysis was performed by averaging the 

temporal data over the duration of stay. For temporal analysis, we binned the data into 

intervals of 6 hours to each chosen to reduce the effects of missing data. Then outliers whose 

values were physiologically impossible were removed. If the value is normally distributed, 

then values that deviated by ±3 standard deviations from the mean value were also removed. 

After preprocessing and outlier removal, the total missing data in the dataset was about 

30.05 ± 30.8% (mean ± standard deviation). The missing data in the dataset was imputed 

using the 2 imputation techniques from our previous work [15] (‘Imp-1’ and ‘Imp-2’). 

Missing data imputation was important since most machine learning techniques fail or 

contribute to bias the presence of high missing data seen in EHR data. In this work, we had 

categorized the missing data into three types depending on the data properties (missing 

completely at random, missing at random, and missing not at random). The missing 

completely at random data. and missing not at random data were imputed by first clustering 

the data and using expectation maximization within the clusters. In this analysis, we tested 

two clustering techniques, kmeans (“Imp-1”) and fuzzy-c-means (“Imp-2”). For the missing 

not at random missing data, sampled from a copula function fit using data and the pattern of 

missing data. Sensitivity analysis and evaluation of the imputation techniques are found in 

the work by Venugopalan et. al. [15].

C. Data Mining on Static Data

For the analysis of static data, we use logistic regression and feed-forward neural networks, 

which are the most commonly used models in healthcare, to predict the patient outcomes of 

the study, ICU mortality and 30 day ICU readmission.

A logistic regression model is trained for each of the outcomes using a feature set X = {x1, 

x2 … xn} derived from the clinical measures mentioned above. Logistic regression model 

calculates the probability of adverse ICU outcome given by (1)

ℎθ = eθ0 + θ1x1 + θ2x2 + ⋯θnxn

1 + eθ0 + θ1x1 + θ2x2 + ⋯θnxn
(1)

The outcome group (y) is assumed to be true (1) when the probability hθ exceeds a certain 

threshold. The values of parameters θ = {θ0, θ1, θ2,… θn} are trained from the training data 
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set by maximizing log-likelihood. In order to prevent over fitting we used L2 regularization 

and minimum-redundancy maximum-relevancy (mRMR) for feature selection [16]. Hence 

the hyper parameters to be trained include the regularization parameter and the number of 

features.

Feedforward neural networks (ANN) are essentially mathematical models defining a 

function f ∶ X → Y or a distribution over input (X) or both input (X) and outcome (Y). The 

neural network consists of many interconnected nodes with each input from the input layer 

being fed up to each node in the hidden layer, and from there to each node on the output 

layer. The hyper-parameters of the model include the number of nodes and layers when 

optimizing the neural network. In this study, the number of input layer nodes equaled the 

number of features from which an optimal number was selected using mRMR and the 

number of hidden layers equaled 1. Hence, the hyper parameters optimized were the number 

of hidden layer units and the number of features selected using mRMR. The optimization of 

the hyper parameters for both these techniques were performed using 3×3 nested cross-

validation.

D. Data Mining on Temporal Data

For the analysis of temporal patient data we used conditional random fields (CRF) [17]. 

CRF represents the conditional probability of the outcome,y ∈ Y given a sequence of ICU 

measurements x = {x1, x2 … xT} i.e. p(y∣x, θ), where θ is the set of parameters. In addition 

we also assume certain hidden variables h = {h1, h2 … hm} derived from the combination of 

features at each time point. The hidden states h take a value from a finite set of values given 

in H. The probability P(y, h∣X, θ) is given by (2).

P(y, ℎ ∣ X, θ) = 1
Z e(θφ(y, ℎ, x; θ)) (2)

where θ is the set of parameters estimated during training, φ(y, h, x; θ) is the clique potential 

function, and a clique is a fully connected sub-graph [18]. Cliques in a chain CRF (used 

here) consists of an edge between adjacent labels (yt-1 and yt) as well as the edges from 

those two labels to the set of observations x. As a result, CRFs represent the conditional 

probability as (3-6)

P(y ∣ X, θ) = ∑ℎ
1
Z e(θφ(y, ℎ, x; θ)) (3)

where,

Z = ∑y, ℎ e(θφ(y, ℎ, x; θ)) (4)

φ(X, ℎ, Y ; θ) = ∑j = 1
T ∑l ∈ F fl

1(j, y, ℎj , X)θl
1 + ∑j, k ∈ E ∑l ∈ F fl

2(j, k, y,
ℎj, ℎk, X)θl

2 (5)
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where, E, F are the number of edges and features respectively. And fl
1, fl

2are feature 

transformation functions (analogous to regression here). Hence, the likelihood function is 

given by equation 4

P(Y ∣ X) = 1
Z(X) × ∏i = 1

n exp ∑ℎφ(xi, ℎ, yi ; θ) (6)

The log-likelihood is maximized to learn the parameters θ. The inference is done by 

forward-backward inference to obtain the outcome probability from the graph. Over-fitting 

of the CRF model is prevented by L1 regularization of weights (the absolute values of 

weights are penalized). The optimization of the hyper parameters such as the number of 

hidden states and the L1 regularization coefficient was performed with 3×3 nested cross-

validation [19].

E. Combining Static & Temporal Models using Hard & Weighted Voting

The decision values and decisions from the 3 classifiers were combined using hard and 

weighted voting techniques. We tested a total of four different methods to combine the 

decision or decision values. In the first method (M1), combined the three classifiers by hard 

voting where the majority value of the decision (mode of the three decisions) was used as 

the label. In the second method (M2), we used the mean of the decision values from the 

three classifiers to get a new decision values which was used to compute the label.

The next two methods involved weighted voting, where we first weighted the decisions. The 

weights for each classifier was computed as follows (7)

W eigℎt = log ClPer
1 − ClPer

(7)

where ClPer is the classifier performance (Matthews Correlation Coefficient (MCC) scaled 

between 0 and 1). The decision values (M3) was computed as a weighted average of the 

decisions. This decision value was used to obtain the final label. In the last method (M4), the 

weights for each classifier was obtained using (7). The final decision value was the weighted 

average of the individual classifier decision values. The computed decision value was then 

used to compute the final label.

F. Evaluation of the Classification Methods

The evaluation of all the combination methods was performed using 10-fold cross 

validation. We repeated the process 3 times and report averaged values of Matthews 

correlation coefficient (MCC) and accuracy. We chose MCC as a metric because of its 

relative tolerance to an imbalanced population.

III. RESULTS & DISCUSSIONS

We performed a retrospective data analysis on adult data (32,331 patient records) from 

MIMIC –II to predict two endpoints, mortality in the ICU, and 30-day ICU readmission to 

demonstrate the superiority of the combination models . This dataset contains 2,334 patient 

Venugopalan et al. Page 5

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2020 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



records with mortality during the ICU stay and 29,997 patient records of successful 

discharge from the ICU. Similarly, 7,787 patient records had an ICU readmission within 30 

days and 24,544 patients did not relapse into the ICU within 30 days. As mentioned above, 

we first performed classification using static and temporal classification methods and then 

combined the decision values and decisions using voting methods. The results from 

individual classifiers and the combined models are shown in Tables II and III. Our results 

indicate that the combination models outperformed the individual models when using both 

MCC and accuracy as the metrics for the endpoint of mortality. The methods of combining 

decision values and weighted voting methods have the best MCC. The best performing 

combination models give an improvement in MCC of 6-7% over logistic regression, 2% over 

neural networks and 3-8% over conditional random fields for mortality. The top features for 

static models (LR and NN) for mortality prediction included the SOFA scores, metastatic 

cancer, fluid electrolyte levels, SAPSI scores and presence of neurological symptoms, while 

the features of CRF models included height , SOFA scores, arterial BP, arterial PaCO2 and 

creatinine. For 30 day ICU readmission, all the combination models performed better than 

the static models for both imputation techniques used. For Imp2, the temporal models 

performed better than the combination models. When MCC was used as the metric for 

comparison, the methods of combining decision values and weighted voting methods gave 

the best performance. The best performing combination models give an improvement in 

MCC of 33% over logistic regression, 25-26% over neural networks and 26% over 

conditional random fields for Imp1. The readmission models with Imp-2 performed better 

than combination models for ICU readmission. The top features for static models (LR and 

NN) for ICU readmission prediction included the hospital length of stay, presence/ absence 

of blood loss anemia, renal failure, red blood cell count and the presence or absence of 

congestive heart failure, while the features of CRF models included ICU admit age, calcium 

levels, presence of liver disease, creatinine levels, white blood cell count, overall payer 

group, arterial PaCO2, SaO2, renal failure, arterial PaO2 and blood loss anemia.

IV. CONCLUSION & FUTURE WORK

Prediction models for clinically significant end-points such as ICU readmission remain 

challenging with limited efficacy in a wide variety of patients. In addition, ICUs also collect 

data at different frequency rates. In this work, we combine static models, such as logistic 

regression and feedforward neural networks, with temporal models such as conditional 

random fields(CRF), by hard and weighted voting techniques. The combined models gave a 

better performance as compared to individual models. The weighted models where the 

proportion of the decision making was based on individual performances gave the best 

overall performances. We can conclude that combination of multiple model types with 

different feature types improves the robustness of the model for complex data types and 

hence has the potential to enhance immediate management of a patient and the overall 

resource utilization.

Our work, currently combines data from only adult patients from MIMIC-II and also does 

not include high frequency data such as waveform data. In the future we aim to overcome 

these challenges and demonstrate our results on pediatric data from Children’s Healthcare of 
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Atlanta after IRB approval. We also aim to combine intermediate features using deep-

learning approaches.

REFERENCES

1. Halpern NA and Pastores SM, "Critical care medicine in the United States 2000–2005: An analysis 
of bed numbers, occupancy rates, payer mix, and costs*," Critical care medicine, vol. 38, pp. 65–71, 
2010. [PubMed: 19730257] 

2. Angus DC, Linde-Zwirble WT, Sirio CA, Rotondi AJ, Chelluri L, Newbold RC, et al., "The effect 
of managed care on ICU length of stay: implications for Medicare," Jama, vol. 276, pp. 10751082, 
1996.

3. Wu AW, Pronovost P, and Morlock L, "ICU incident reporting systems," Journal of critical care, vol. 
17, pp. 86–94, 2002. [PubMed: 12096371] 

4. Young M and Birkmeyer J, "Potential reduction in mortality rates using an intensivist model to 
manage intensive care units," Effective clinical practice: ECP, vol. 3, pp. 284–289, 1999.

5. Rapoport J, Teres D, Lemeshow S, Avrunin JS, and Haber R, "Explaining variability of cost using a 
severity-of-illness measure for ICU patients," Medical care, vol. 28, pp. 338–348, 1990. [PubMed: 
2319822] 

6. Rapoport J, Teres D, Lemeshow S, and Gehlbach S, "A method for assessing the clinical 
performance and cost-effectiveness of intensive care units: a multicenter inception cohort study," 
Critical care medicine, vol. 22, pp. 1385–1391, 1994. [PubMed: 8062559] 

7. Yang H and Yang CC, "Using Health-Consumer-Contributed Data to Detect Adverse Drug 
Reactions by Association Mining with Temporal Analysis," ACM Trans. Intell. Syst. Technol, vol. 
6, pp. 127, 2015.

8. Bellazzi R, Ferrazzi F, and Sacchi L, "Predictive data mining in clinical medicine: a focus on 
selected methods and applications," Wiley Interdisciplinary Reviews: Data Mining and Knowledge 
Discovery, vol. 1, pp. 416–430, 2011.

9. Casanova IJ, Campos M, Juarez JM, Fernandez-FernandezArroyo A, and Lorente JA, "Using 
Multivariate Sequential Patterns to Improve Survival Prediction in Intensive Care Burn Unit," in 
Artificial Intelligence in Medicine: 15th Conference on Artificial Intelligence in Medicine, AIME 
2015, Pavia, Italy, June 17-20, 2015 Proceedings, Holmes HJ, Bellazzi R, Sacchi L, and Peek N, 
Eds., ed Cham: Springer International Publishing, 2015, pp. 277–286.

10. Warner JL, Zollanvari A, Ding Q, Zhang P, Snyder GM, and Alterovitz G, "Temporal phenome 
analysis of a large electronic health record cohort enables identification of hospital-acquired 
complications," Journal of the American Medical Informatics Association, vol. 20, pp. e281–e287, 
2013. [PubMed: 23907284] 

11. McCoy TH, Castro VM, Cagan A, Roberson AM, Kohane IS, and Perlis RH, "Sentiment Measured 
in Hospital Discharge Notes Is Associated with Readmission and Mortality Risk: An Electronic 
Health Record Study," PloS one, vol. 10, p. e0136341, 2015. [PubMed: 26302085] 

12. Cai X, Perez-Concha O, Coiera E, Martin-Sanchez F, Day R, Roffe D, et al., "Real-time prediction 
of mortality, readmission, and length of stay using electronic health record data," Journal of the 
American Medical Informatics Association, p. ocv110, 2015.

13. Venugopalan J, Zhang Z, Chanani N, Maher K, and Wang MD, "Time-Series Data Analysis to 
Predict Adverse Events in the Intensive Care Unit " Unpublished, 2017.

14. Saeed M, Villarroel M, Reisner AT, Clifford G, Lehman L-W, Moody G, et al., "Multiparameter 
Intelligent Monitoring in Intensive Care II (MIMIC-II): a public-access intensive care unit 
database," Critical care medicine, vol. 39, p. 952, 2011. [PubMed: 21283005] 

15. Venugopalan J, Chanani N, Maher K, and Wang MD, "Novel Data Imputation for Multiple Types 
of Missing Data in Intensive Care Units," Journal of Biomedical and Health Informatics, 2017 
(Accepted).

16. Peng H, Long F, and Ding C, "Feature selection based on mutual information criteria of max-
dependency, max-relevance, and minredundancy," IEEE Transactions on pattern analysis and 
machine intelligence, vol. 27, pp. 1226–1238, 2005. [PubMed: 16119262] 

Venugopalan et al. Page 7

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2020 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



17. Lafferty J, McCallum A, and Pereira F, "Conditional random fields: Probabilistic models for 
segmenting and labeling sequence data," in Proceedings of the eighteenth international conference 
on machine learning, ICML, 2001, pp. 282–289.

18. Hammersley PCJM, "Markov field on finite graphs and lattices (1971) ".

19. Varma S and Simon R, "Bias in error estimation when using crossvalidation for model selection," 
BMC bioinformatics, vol. 7, p. 91, 2006. [PubMed: 16504092] 

Venugopalan et al. Page 8

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2020 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Combining static and temporal models
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TABLE I.

Feature Types in Dataset

Data Type Examples of Measures

Demographics Gender, Age, Height, Weight, Ethnicity, Comorbidity

Lab Data Urea, Albumin, Bilirubin, Creatinine, Sodium

Chart Data HR, BP, Arterial PH, Arterial PaCO2, Arterial PaO2
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Table II.

Classification Results from ICU Mortality (Mathhews Correlation Coefficient) (LR = Logistic regression, NN 

= Neural networks, CRF = Conditional random fields, M1 = Voting, M2 = Mean of decision values, M3 = 

Weighted mean of decisions, M4 = Weighted mean of decision values)

Imputation LR NN CRF M1 M2 M3 M4

Mortality
Imp1 0.47 ± 0.006 0.52 ± 0.006 0.51 ± 0.033 0.52 ± 0.003 0.54 ± 0.004 0.54 ± 0.006 0.54 ± 0.006

Imp2 0.48 ± 0.009 0.52 ± 0.007 0.46 ± 0.098 0.52 ± 0.002 0.54 ± 0.005 0.54 ± 0.005 0.54 ± 0.006

Readmission
Imp1 0.32 ± 0.005 0.39 ± 0.004 0.39 ± 0.021 0.59 ± 0.039 0.65 ± 0.001 0.65 ± 0.001 0.65 ± 0.001

Imp2 0.33 ± 0.007 0.39 ± 0.003 0.73 ± 0.032 0.58 ± 0.031 0.66 ± 0.003 0.66 ± 0.002 0.66 ± 0.003
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Table III.

Classification Results from ICU Readmission (Accuracy) (LR = Logistic regression, NN = Neural networks, 

CRF = Conditional random fields, M1 = Voting, M2 = Mean of decision values, M3 = Weighted mean of 

decisions, M4 = Weighted mean of decision values)

Imputation LR NN CRF M1 M2 M3 M4

Mortality
Imp1 0.94 ± 0.001 0.95 ± 0.000 0.95 ± 0.003 0.95 ± 0.000 0.95 ± 0.000 0.95 ± 0.001 0.95 ± 0.001

Imp2 0.94 ± 0.001 0.95 ± 0.001 0.94 ± 0.004 0.95 ± 0.000 0.95 ± 0.000 0.95 ± 0.001 0.95 ± 0.001

Readmission
Imp1 0.79 ± 0.001 0.80 ± 0.000 0.80 ± 0.006 0.86 ± 0.013 0.86 ± 0.000 0.87 ± 0.000 0.86 ± 0.000

Imp2 0.79 ± 0.001 0.80 ± 0.001 0.90 ± 0.013 0.85 ± 0.010 0.87 ± 0.001 0.87 ± 0.001 0.87 ± 0.001
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