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Abstract

We present automated continuous evolution (ACE), a platform for the hands-free directed 

evolution of biomolecules. ACE pairs OrthoRep, a genetic system for continuous targeted 

mutagenesis of user-selected genes in vivo, with eVOLVER, a scalable and automated continuous 

culture device for precise, multi-parameter regulation of growth conditions. By implementing real-

time feedback-controlled tuning of selection stringency with eVOLVER, genes of interest encoded 

on OrthoRep autonomously traversed multi-mutation adaptive pathways to reach desired 

functions, including drug resistance and improved enzyme activity. The durability, scalability, and 

speed of biomolecular evolution with ACE should be broadly applicable to protein engineering as 

well as prospective studies on how selection parameters and schedules shape adaptation.
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Continuous evolution has emerged as a powerful paradigm for the evolution of proteins and 

enzymes1–4 towards challenging functions.5,6 In contrast to classical directed evolution 
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approaches that rely on stepwise rounds of ex vivo mutagenesis, transformation into cells, 

and selection,7 continuous evolution systems achieve rapid diversification and functional 

selection autonomously, often through in vivo targeted mutagenesis systems (Figure 1a).
2,7–14 The result is a mode of directed evolution that requires only the basic culturing of 

cells, in theory, enabling extensive speed, scale, and depth in evolutionary search.3 In 

practice, however, developing a continuous evolution method that realizes all three 

properties has been challenging. Recently, our groups made two advances, OrthoRep and 

eVOLVER, that can pair to achieve continuous evolution at significant speed, scale, and 

depth.

OrthoRep is an engineered genetic system for continuous in vivo targeted mutagenesis of 

genes of interest (GOIs).2,14 OrthoRep uses a highly error-prone, orthogonal DNA 

polymerase-plasmid pair in yeast that replicates GOIs at a mutation rate of 10−5 

substitutions per base (spb) without increasing the genomic mutation rate of 10−10 spb 

(Figure 1a). This ~100,000-fold increase in the mutation rate of GOIs drives their 

accelerated evolution (speed). Because the OrthoRep system functions entirely in vivo and 

culturing yeast is straightforward, independent GOI evolution experiments can be carried out 

in high-throughput (scale). In addition, long multi-mutation pathways can be traversed using 

OrthoRep, owing to the durability of mutagenesis over many generations (depth). However, 

to practically realize depth in evolutionary search, in vivo mutagenesis with OrthoRep must 

be coupled with a functional selection that can be tuned over the course of a continuous 

evolution experiment. This tuning is necessary to precisely and efficiently guide populations 

to the desired evolutionary search depth. For example, evolution of novel functions requiring 

long mutational trajectories may demand frequent modification of selection conditions in 

order to maintain strong selection,5,6,15 guide evolution through strategic intermediate 

functions,1,6 or impose periods of neutral drift or alternating selection to promote crossing of 

fitness valleys (Figure 1c).16,17 Yet, selection schedules cannot be determined a priori as the 

generation of beneficial mutations is a fundamentally stochastic process. Therefore, 

selection schedules should be adjusted dynamically based on how populations adapt, 

rendering manual implementation of continuous evolution experiments onerous. Further, 

each functional selection demands its own selection schedule, necessitating empirical 

probing of conditions that are appropriately stringent to generate selection pressures, yet 

sufficiently lenient to allow for mutational accumulation. Previous continuous evolution 

campaigns approached the challenge of optimizing selection schedules by either limiting the 

number of parallel evolution experiments being conducted so that selection can be manually 

tuned on the fly,1,5 or by setting a fixed but conservative selection schedule to buffer against 

variations in adaptation rate across a large number of replicate experiments.2 However, even 

with conservative selection schedules, a proportion of replicates in high-throughput 

evolution studies went extinct when the rate of selection stringency increase outpaced the 

rate of adaption.2 Indeed, streamlining selection schedules for experimental evolution 

remains an open challenge.18–20

To address this challenge, we turned to eVOLVER. eVOLVER is a versatile continuous 

culture platform that enables multiparameter control of growth and selection conditions 

across independent microbial cultures (Figure 1b).21 eVOLVER’s flexible hardware and 

software permit development of “algorithmic selection routines” that apply selective 
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pressures based on real-time monitoring and feedback from culture growth characteristics. 

Additionally, eVOLVER’s robust framework ensures experimental durability over long 

timeframes, and its unique scalable design allows independent control over tens to hundreds 

of cultures. Combining OrthoRep and eVOLVER should therefore enable continuous 

evolution with speed, depth, and scale.

Here we describe this pairing of OrthoRep with eVOLVER to achieve Automated 

Continuous Evolution (ACE) (Figure 1c). By implementing a closed-loop feedback routine 

that dynamically adjusts the strength of selection for a desired function in response to 

growth rate changes of yeast populations diversifying a GOI on OrthoRep, we demonstrate 

completely automated continuous evolution over extended periods of time without manual 

intervention. To illustrate the performance and utility of ACE, we describe its application in 

two model protein evolution experiments, one yielding drug-resistant Plasmodium 
falciparum dihydrofolate reductases (PfDHFRs) and the other yielding variants of the 

thermophilic HisA enzyme from Thermotoga maritima (TmHisA) that operate well in 

mesophilic yeast hosts.

Results and Discussion

Establishment of ACE.

To establish ACE, we first reconfigured eVOLVER Smart Sleeves21 so that each culture vial 

receives two media inputs: (1) ‘no selection’ base media (e.g. media without drug or with the 

maximum concentration of nutrient in our cases) and (2) ‘full selection’ media (e.g. media 

with the maximum concentration of drug or without nutrient in our cases). Using eVOLVER 

software calculations, selection strength can be dynamically tuned by altering the ratios of 

the two media inputs as cultures are diluted over time (Figure 1b,c). We then implemented a 

closed-loop control system that seeks to achieve and maintain a target culture growth rate by 

dynamically adjusting selection strength. Briefly, culture growth rate is continuously 

measured based on real-time recordings of optical density (OD), and a proportional-integral-

derivative (PID) control algorithm22 is used to determine the percentage of full selection 

media to add to the culture in order to minimize error between the actual growth rate and a 

target growth rate (or setpoint) (see Methods). Although simpler feedback algorithms18,19 

have been previously used in microbial evolution experiments, these resulted in growth rate 

oscillations or excessive overshooting in our experiments, frequently driving cultures to 

extinction (Figure S1).

Evolution of PfDHFR resistance using ACE.

To validate ACE, we first repeated a continuous evolution experiment that we previously 

conducted using manual serial passaging. Specifically, we evolved Plasmodium falciparum 
dihydrofolate reductase (PfDHFR) to develop drug resistance to the antimalarial drug, 

pyrimethamine, by encoding PfDHFR on OrthoRep in a yeast strain that relies on PfDHFR 

activity for survival (Figure 2).2 We determined appropriate PID constants to tune the 

concentration of pyrimethamine (Figure 2b, S2) and keep the measured growth rate of cells 

at a target growth rate (Figure 2a, setpoint = dashed black line). This program forced cells to 

continuously experience a strong selection pressure imposed by pyrimethamine, which 
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resulted in the rapid evolution of PfDHFR resistance (Figure 2c). We observed that after 

~550 hours (~100 generations) of continuous hands-free operation of ACE, five out of six 

replicates adapted to 3 mM pyrimethamine, the highest concentration of pyrimethamine 

soluble in liquid media (Figure 2b, S3). ACE maintained cultures near the target growth rate 

over the entire course of the experiment (Figure 2a,b), demonstrating the effectiveness of the 

control loop. In contrast to the use of a fixed selection schedule2 or simpler control 

algorithms for selection (Figure S1) that resulted in occasional extinction caused by too-

rapid increases in pyrimethamine concentration, all six ACE experiments reliably adapted to 

yield multi-mutation pyrimethamine-resistant PfDHFR variants. Validating our method, we 

found that populations converged on strong resistance mutations in PfDHFR – C50R, D54N, 

Y57H, C59R, C59Y, and S108N – as observed and characterized previously2 (Figure 2c). 

Additionally, the monotonically increasing pyrimethamine concentrations we observed for 

most replicates (Figure 2b) are consistent with step-wise fixation of beneficial mutations 

expected for the evolution of PfDHFR resistance under strong selection.2,21 Upon 

examination of one of the evolution replicates (V3), we noted a drop in pyrimethamine at 

~200 hours, likely due to a mechanical error. Nevertheless, the selection self-adjusted, 

resulting in recovery in growth and demonstration of ACE’s control algorithm to robustly 

maintain selection. Finally, ACE demonstrated a substantial increase in speed over our 

previous evolution campaign performed by manual passaging; with ACE, culture growth 

rates in 5/6 vials stabilized at the maximum pyrimethamine concentration after ~550 hours, 

which is over 200 hours faster than for the manual evolution campaign done with serial 

passaging.2 Collectively, these results validate the ACE system and highlight its ability to 

enable reliable and rapid continuous evolution of proteins.

Evolution of TmHisA activity using ACE.

We next applied ACE to evolve the thermophilic Thermotoga maritima HisA enzyme 

(TmHisA) to function in Saccharomyces cerevisiae at mesophilic temperatures. TmHisA, an 

ortholog of S. cerevisiae HIS6, catalyzes the isomerization of ProFAR to PRFAR in the 

biosynthesis of histidine. However, TmHisA does not effectively complement a his6 deletion 

in yeast when expressed from a medium-strength yeast promoter (Figure 3), likely due to the 

different temperature niches of S. cerevisiae and T. maritima (30°C and 80°C, respectively). 

We reasoned that ACE could readily drive the evolution of TmHisA to function in yeast 

Dhis6 strains by selecting for growth in media lacking histidine. This evolution serves as a 

valuable test of the capabilities of ACE for two reasons. First, adapting enzymes from non-

model thermophiles to function in model mesophiles is useful for industrial biotechnology 

whose infrastructure is designed around model organisms like yeast and bacteria. Second, in 

contrast to drug resistance in PfDHFR, which is driven by a small number of large effect 

mutations,2 we reasoned that temperature and host adaptation of enzyme activity would 

involve a large number of small effect mutations, leading to a more complex fitness 

landscape. This would act as a more demanding test of ACE’s ability to achieve precise 

feedback-control during selection.

We encoded TmHisA on OrthoRep in a Dhis6 strain and carried out ACE selection in four 

independent replicates for a total of 600 hours (~100 generations) (Figure 3, S4). At the 

beginning of the experiment, there was no detectable growth in the absence of histidine. At 
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the end of the experiment, all four replicates successfully adapted to media lacking histidine. 

To confirm that TmHisA evolution was responsible for the observed adaptation, TmHisA 

variants were isolated from OrthoRep and characterized for their ability to complement a 

his6 deletion in fresh yeast strains. Indeed, the evolved TmHisA variants we sampled were 

able to support growth in media lacking histidine in contrast to wild-type TmHisA (Figure 

3c). Consistent with a model of a more complex fitness landscape, growth rate traces for the 

four replicate cultures were noisier (Figure 3a) than those of PfDHFR (Figure 2a), full 

adaptation occurred only after a long period of neutral drift (hours ~100–500 in Figure 3b), 

and the sequences of independently evolved TmHisAs were diverse (Figure 3d, Table S1). 

Nevertheless, ACE was able to autonomously adapt TmHisA in all four replicates within 

120 fewer hours than manual passaging experiments (unpublished results). Sequencing of 

sampled clones revealed TmHisA variants harboring between 6 and 15 mutations (Table S1), 

again demonstrating the durability of ACE in carrying out long evolutionary searches to 

discover high-activity multi-mutation enzyme variants.

Conclusion

In summary, we have developed a fully automated, in vivo continuous evolution setup 

termed ACE that couples OrthoRep-driven continuous mutagenesis and eVOLVER-enabled 

programmable selection. We demonstrated the evolution of drug resistance in PfDHFR and 

mesophilic operation of TmHisA, showcasing the ability of ACE to individually control 

selection schedules in multi-replicate GOI evolution experiments based on real-time 

measures of adaptation. We further validate the value and generalizability of a PID 

controlled selection scheme that successfully drives two mechanistically different selections. 

The result is a system that offers unprecedented speed, depth, and scalability for conducting 

evolutionary campaigns to achieve ambitious protein functions.

ACE paves the way for an array of complex evolution experiments that can advance both 

basic and applied protein and enzyme evolution. For example, eVOLVER can be used to 

program multidimensional selection gradients across OrthoRep experiments, test the effects 

of selection strength or different population sizes (and beneficial mutation supply) on the 

outcomes of adaptation, or explore the relationship between timescales of drift and 

adaptation. Real-time feedback on growth metrics to adjust selection stringency can ensure 

that every evolving population is being constantly challenged appropriately or allowed to 

drift, which is especially relevant when evolving biomolecules with rugged fitness 

landscapes where predefined selection strategies are prone to driving populations to 

extinction or local fitness maxima. In the future, many other algorithmic selection routines 

may be implemented with ACE to more efficiently and intelligently navigate fitness 

landscapes. For example, machine learning algorithms can take the outcomes of replicate 

evolution experiments carried out under different selection schedules to train ACE selection 

programs themselves. Finally, the automated, open-source nature of ACE is well-suited for 

integration with other open-source hardware and wetware tools to create larger automation 

pipelines. Overall, we foresee ACE as an enabling platform for rapid, deep, and scalable 

continuous GOI evolution for applied protein engineering and studying the fundamentals of 

protein evolution.
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Methods

Cloning.

All plasmids used in this study are listed in Table S2. Plasmids were cloned using either 

restriction enzymes if compatible sites were available or using Gibson cloning23 with 20–40 

bps of overlap. Primers and gBlocks were ordered from IDT Technologies. Enzymes for 

PCR and cloning were purchased from NEB. Plasmids were cloned into either Top10 E. coli 
cells from Thermo Fisher or SS320 E. coli from Lucigen.

Yeast transformation and DNA extraction.

All yeast strains used in this study are listed in Table S3. Yeast transformations were done 

with roughly 100 ng – 1 μg of plasmid or donor DNA via the Gietz high-efficiency 

transformation method.24 For integration of genes onto the orthogonal plasmid (pGKL1), 

cassettes were linearized with ScaI and subsequently transformed as described previously.
2,14 Standard preparations of YPD and drop-out synthetic media were obtained from US 

Biological. When necessary, the following were supplemented at their respective 

concentrations: 5-FOA at 1 mg/mL, G418 at 400 μg/mL, and Nourseothricin at 200 μg/mL. 

Yeast DNA extraction of orthogonal plasmids were done as previously reported.2,14

eVOLVER feedback control configuration.

ACE experiments were performed using the previously described eVOLVER continuous 

culture system,21 modified to enable an additional media input into each culture. 

Specifically, each vessel consists of three connected pumps (two input, one efflux) and are 

actuated programmatically to implement a so-called “morbidostat” algorithm where the 

selection stringency is adjusted to maintain a particular rate of cell growth. The custom 

script of eVOLVER (custom_script.py) was extensively modified to change the behavior of 

eVOLVER from the default turbidostat to a morbidostat. Briefly, in the new morbidostat 

mode, eVOLVER dilutes the growing cultures after a defined time, which we set to an hour. 

At the time of dilution, the growth rate since the last dilution is calculated by fitting the OD 

measurements to an exponential equation y = A · eBx where B is the growth rate. Using the 

current and historical growth rate, a dilution parameter, r(t) was calculated as described 

below to dilute the morbidostat. The morbidostat algorithm and eVOLVER experimental 

code are written in Python and included in the supplemental files.

The efflux pump for each vessel is actuated whenever either of the influx pumps are 

triggered and stay ON for an additional 5 seconds. Therefore, the volume of the culture 

vessel is determined by the length of the efflux straw and estimated to be at 30 mL. The flow 

rate of each media input was individually calibrated for accurate metering of drug or nutrient 

into the culture.

Before each experiment, 40 mL borosilicate glass vessels (Chemglass), stir bars (Fisher), 

and fluidic straws were assembled and autoclaved. Fluidic lines were sterilized by flushing 

with 10% bleach and 70% ethanol before use. Culture vessel assemblies were connected to 

fluidic lines after sterilization and slotted into an eVOLVER Smart Sleeve for monitoring of 

OD and control of temperature and stir rate.
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PID algorithm development and tuning.

To control the rate of dilution, we used the following equation to determine the percentage 

of selection media to add:

r t = Kpe t + KI∫τ
t
e t dt + KD

de t
dt + KO

where KP, KI, KD, and KO, are empirically determined constant multipliers of proportional 

integral, derivative, and offset terms, and e(t) is the difference between the actual growth rate 

and the target growth rate. To estimate KP, KI, KD, and KO, we used the the Ziegler-Nichols 

method25 for initially tuning the parameters with the pre-evolution strain, ZZ-Y323. KI and 

KD were first set to zero and KP was increased until regular oscillations in growth rate were 

observed (Figure S2). This resulted in a KP = 4.

Using the parameters obtained during the oscillation and the Ziegler-Nichols estimation:

Kp = XOSC ∗ 0.6 = 0.2 ∗ 0.6 = 0.12

KI = 1
TOSC ∗ 0.5 = 1

5 ∗ 0.5 = 0.4

KD = TOSC * 0.125 = 5 * 0.125 = 0.625

These initial values were empirically tuned to achieve the final values of KP = 0.07, KI = 

0.05, KD = 0.2 and KO = 0.

These constants were then used to calculate r(t) at any given point during evolution. r(t) 
would then be used to determine the ratios of media to add during each dilution step by 

controlling the pump runtime. For example, if an r(t) = 0.25 was determined with a pump 

runtime of 5 seconds, the pump for the base media would run for [1 − r(t)] * 5 seconds = 

3.75 seconds while the pump for the full selection media would run for r(t) * 5 seconds 1.25 

seconds.

The integral error ∫τ
te t dt  was reset at every instance the proportional error (e(t)) become 

negative, and the offset (KO) was updated to equal r(t) at that time. This was done to allow 

the PID controller to be more sensitive to the integral error and to avoid the bias that would 

result from the initial conditions having minimal selection pressure.

PfDHFR evolution.

eVOLVER was set to morbidostat mode with the PID settings described above, a target 

doubling time of 8 hours, and one dilution step per hour. A culture of ZZ-Y435 was grown 

to saturation in SC-HW and then inoculated 1:50 in eVOLVER vials. SC-HW served as the 

base media, while SC-HW + 3 mM pyrimethamine served as the full selection media. (3mM 
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was previously determined as the maximum soluble concentration of pyrimethamine in 

media.2) After inoculation, the eVOLVER PID script was initiated and evolution 

commenced. During evolution, the only user intervention was media exchange and periodic 

sampling of cultures. After 725 hrs, all cultures achieved growth rates near wild-type levels 

in the full selection condition (Figure S3), so the experiment was stopped and cultures were 

frozen in glycerol stocks.

TmHisA evolution.

eVOLVER was set to morbidostat mode with the PID settings described above, a target 

doubling time of 8 hours, and one dilution step per hour. A culture of ZZ-Y323 was grown 

to saturation in SC-UL and then inoculated 1:50 in eVOLVER vials. SC-ULH + 7.76 mg/L 

(50 μM) histidine served as the base media, while SC-ULH served as the full selection 

media. After inoculation, the eVOLVER PID script was initiated and evolution commenced. 

During evolution, the only user intervention was media exchange and periodic sampling of 

cultures. After 715 hrs, all cultures achieved growth rates near wild-type levels in the full 

selection condition (Figure S4), so the experiment was stopped and cultures were frozen in 

glycerol stocks.

Bulk DNA sequencing and characterization.

Final evolution timepoints of PfDHFR and TmHisA were regrown in SC-HW and SC-ULH 

media, respectively, from glycerol stocks. The orthogonal plasmids encoding evolved 

PfDHFR or TmHisA were extracted from the bulk cultures as described above, PCR 

amplified, and sequenced via Sanger sequencing. Mutation frequencies were calculated from 

Sanger sequencing files with QSVanalyzer as previously described.2 However, V1 from 

TmHisA evolution could not be revived from the glycerol stock due to a stocking mistake 

and was not included for bulk DNA sequencing.

TmHisA isolated mutant cloning.

Final evolution time-points of TmHisA were streaked onto SC-ULH solid media. Individual 

colonies were regrown in SC-ULH media and the orthogonal plasmid DNA was extracted 

from the cultures as described above. The evolved TmHisA sequences were sequenced and 

cloned into a nuclear CEN6/ARS4 expression vector under control of the pRPL18B 

promoter and with the LEU2 selection marker. Since each colony can have different 

TmHisA mutants due to the multicopy nature of the orthogonal plasmid in OrthoRep, the 

cloned plasmids were sequenced again to determine the exact mutant of TmHisA being 

characterized. The resulting plasmids were transformed into ZZ-Y354, which lacks his6, for 

growth rate measurements.

TmHisA growth rate measurements.

Yeast strains containing each TmHisA mutant, WT TmHisA, S. cerevisiae HIS6, or none of 

the above expressed from a nuclear plasmid were grown to saturation in SC-L and diluted 

1:100 in SC-LH. Three 100 uL replicates of each strain were placed into a 96 well clear-

bottom tray, sealed, and grown at 30 °C. Cultures were continuously shaken and OD600 was 

measured every 30 minutes automatically for 24 hours (Tecan Infinite M200 Pro) according 
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to a previously described protocol.26 A custom MATLAB script (growthassayV3.m), 

included in supplemental files, was used to calculate growth rates from raw OD600 data. The 

script carries out a logarithmic transformation of the OD600 data. The linear region of the 

transformed data as a function of time corresponds to log phase growth. A sliding window 

approach is used to find and fit this linear region in order to calculate the doubling time 

during log phase growth. This doubling time (T) is converted to the continuous growth rate 

plotted in Figure 3c by the formula ln(2)/T.

Statistical analysis.

Statistical analysis was done using GraphPad Prism and one-way ANOVA with multiple 

comparisons versus wild-type TmHisA and corrected for multiple comparisons. Results are 

reported at p < 0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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spb substitutions per base
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Figure 1. 
Automated Continuous Evolution (ACE). (a) OrthoRep enables continuous diversification of 

genes of interest (GOIs) via in vivo targeted mutagenesis in yeast. The basis of OrthoRep is 

an orthogonal DNA polymerase-plasmid pair that mutates GOIs ~100,000-fold faster than 

the genome. (b) eVOLVER is a continuous culturing platform for programmable, 

multiparameter control of selection conditions across many independent cultures. A PID 

control algorithm implemented with eVOLVER dynamically tunes selection pressure of 

populations as they adapt, precisely challenging them to achieve desired functions. PID 

control is achieved by tuning the ratio of full selection and no selection media inputs in 

response to growth rate. (c) By running OrthoRep in eVOLVER with PID control, ACE 

autonomously and rapidly navigates complex fitness landscapes. With a single framework, 

ACE can guide independent cultures through diverse trajectories.
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Figure 2. 
Automated continuous evolution of PfDHFR resistance to pyrimethamine. (a) Top: Growth 

rate traces for six independent OrthoRep cultures (V1–6) evolving PfDHFR resistance to 

pyrimethamine in eVOLVER using PID control. Bottom: A representative time window 

validating PID control. The growth rate (solid line) is controlled by automated tuning of 

pyrimethamine concentration (Figure 2b, bottom) to keep cultures constantly challenged at 

the setpoint growth rate (dashed line). (b) Top: Drug selection schedules for OrthoRep 

cultures evolving PfDHFR. Bottom: A representative time window demonstrating PID-based 

selection tuning. Pyrimethamine concentration autonomously adjusts in response to growth 

rate deviation from the setpoint (Figure 2a, bottom). (c) Promoter and PfDHFR mutations 

identified in six evolved populations. Mutation frequencies are estimated from SNP analysis 

of bulk Sanger sequencing traces.
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Figure 3. 
Automated continuous evolution of TmHisA to operate in mesophilic yeast. (a) Growth rate 

traces of four independent OrthoRep cultures (V1–4) evolving TmHisA to support growth of 

a Dhis6 yeast strain at 30 °C. (b) Nutrient concentration schedule of the four evolving 

cultures controlled via PID. (c) Growth rate analysis of individual TmHisA variants selected 

from adapted cultures. Three to five TmHisA variants were sampled from each replicate 

evolution experiment. The coding regions of the variants were cloned into a low-copy yeast 

plasmid under the control of a medium strength promoter. The ability of the variants to 

support growth of a Dhis6 strain was measured in triplicate in comparison to the ability of 

wt TmHisA and native yeast HIS6 to support growth. Shapes indicate means and error bars 

denote standard deviations. Darkened replicates indicate a p < 0.05 compared to wt TmHisA 

activity by one-way ANOVA. We note that a number of evolved variants sampled from our 

adapted replicates did not support growth, but this is likely because OrthoRep evolves 

TmHisA in the context of a multi-copy orthogonal plasmid, allowing inactive variants to 

hitchhike with active copies in the same cell. Such inactive variants could be sampled during 

the subcloning of TmHisA from orthogonal plasmids into the low-copy plasmids used for 

testing variants in fresh strains. We also note that variants corresponding to a growth rate 

below ~0.05 did not enter log phase growth during the 24-hour experiment. (d) Promoter 

and TmHisA mutations identified in evolved populations from V2–4. Mutation frequencies 

are estimated from SNP analysis of bulk Sanger sequencing traces. V1 Sanger sequencing 

traces are not included due to a technical mistake that rendered stocks of the evolved 

population inviable for revival and sequencing, although individual clones were fully 

analyzed (Figure 3c), as they were sampled before the stocking mistake.
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