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A large number of genes have been implicated in neurodevelopmental disorders (NDDs), but their contributions to NDD

pathology are difficult to decipher without understanding their diverse roles in different brain cell types. Here, we integrat-

ed NDD genetics with single-cell RNA sequencing data to assess coexpression enrichment patterns of various NDD gene sets.

We identified midfetal cortical neural progenitor cell development—more specifically, the ventricular radial glia-to-inter-

mediate progenitor cell transition at gestational week 10—as a key point of convergence in autism spectrum disorder (ASD)

and epilepsy. Integrated Gene Ontology–based analysis further revealed that ASD genes activate neural differentiation and

inhibit cell cycle during the transition, whereas epilepsy genes function as downstream effectors in the same processes, of-

fering one possible explanation for the high comorbidity rate of the two disorders. This approach provides a framework for

investigating the cell-type-specific pathophysiology of NDDs.

[Supplemental material is available for this article.]

Over the last decade, large-scale exome and genome sequencing
studies have established that hundreds of de novo genetic variants
contribute toneurodevelopmental disorders (NDDs), includingau-
tism spectrum disorder (ASD) (De Rubeis et al. 2014; Iossifov et al.
2014; Krummet al. 2015; Sanders et al. 2015; Yuen et al. 2017), ep-
ilepsy (Epi4K and EPGP Investigators 2013; EuroEPINOMICS-RES
Consortium et al. 2017; Heyne et al. 2018), intellectual disability
(ID) (de Ligt et al. 2012; Rauch et al. 2012; Lelieveld et al. 2016),
and developmental delay (DD) (Deciphering Developmental
Disorders Study 2017). The underlying genetic landscapes of these
disorders are so heterogeneous thatmostNDD-associated genes ac-
count for only a fewcases of a givendisease. Yet the fact that certain
endophenotypes, such as seizures, are common to multiple NDDs
suggests that the disease-associated genes might functionally con-
verge on certain shared events in brain development (Lo-Castro
and Curatolo 2014; Anttila et al. 2018). Identifying these conver-
gences shoulddeepenourunderstandingofNDDpathophysiology
and may lead to viable treatments.

Several systems-level studies have made progress in this re-
gard by integrating NDD genes with functional data. For example,
one study applied weighted gene coexpression network analysis to
identifymodules of coexpressed genes that are enriched for associ-
ation with ASD (Parikshak et al. 2013). This top-down analysis
suggested that at the circuit level, ASD genes are enriched in super-
ficial cortical layers and glutamatergic projection neurons during
fetal cortical development. Another study took a bottom-up ap-
proach by focusing on nine high-confidence ASD genes and
searching for spatiotemporal conditions in which probable ASD
genes coexpress with them; this strategy suggested that glutama-
tergic projection neurons in deep cortical layers of humanmidfetal
prefrontal and primary motor-somatosensory cortex are a key
point of ASD gene convergence (Willsey et al. 2013). Integrating
gene coexpression with protein–protein interaction networks to
identifymodules that enrich for genesmutated in severalNDDs re-
vealed that different NDDs share a major point of gene conver-
gence during early embryonic brain development (Hormozdiari
et al. 2015). Although these and other studies (Chang et al.
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2015; Lin et al. 2015; Krishnan et al. 2016; Shohat et al. 2017) ap-
plied different methods, the main conclusions are similar: A sub-
stantial subset of ASD and/or other NDD genes converge in fetal
cortical development.

The majority of coexpression analyses on NDDs used the
BrainSpan data set, which contains spatiotemporal gene expres-
sion data from the developing human brain (Kang et al. 2011).
Because this data set was collected from bulk brain tissue, it is
hard to investigate cell-type-specific coexpression patterns. The re-
cent publication of single-cell RNA sequencing (scRNA-seq) profile
from the developing human prefrontal cortex (Zhong et al. 2018),
however, provides an unprecedented opportunity to understand
NDD pathophysiology in a cell-type-specific manner. Given that
dysfunction of the prefrontal cortex has been implicated in multi-
ple NDDs (Arnsten 2006; Xiong et al. 2007; Gulsuner et al. 2013;
Parikshak et al. 2013; Willsey et al. 2013), we decided to integrate
this scRNA-seq data set with disease genes from NDDs to see if we
could identify disease-specific convergence of NDD genes in spe-
cific cell types and developmental stages. We accomplished this
and in the process uncovered critical cellular processes affected
in ASD and epilepsy.

Results

Genes associated with specific NDDs are coexpressed in specific

cell types

To identify high-confidence genes associated with risk for each
NDD, we first interrogated genes with de novo protein-altering
variants for the four NDDs in the denovo-db database (Turner
et al. 2017) and nonredundant data for epilepsy (Epi) from two
studies (EuroEPINOMICS-RES Consortium et al. 2017; Heyne
et al. 2018). Nonsense, frameshift, and canonical splice-site muta-
tions generally lead to loss of function, whereas missense muta-
tions can cause hypomorphic, hypermorphic, antimorphic, or
neomorphic effects. Thus, for eachNDD,wedivided the associated
genes into two categories: genes with de novo loss-of-function
(dnLoF) mutations and genes with de novo missense (dnMis) mu-
tations. To select themost relevant genes for eachNDD,we includ-
ed only genes with at least two or three (depending on gene set
sizes) de novo mutations of the same category in each specific dis-
order (Methods). In total, we defined eight high-confidence NDD
gene sets: dnLoF-ASD, dnLoF-Epi, dnLoF-ID, dnLoF-DD, dnMis-
ASD, dnMis-Epi, dnMis-ID, and dnMis-DD (Supplemental Table
S1A). The different gene sets overlap somewhat, as expected
from the high comorbidity among these NDDs (Supplemental
Fig. S1).

To investigate the coexpression dynamics of NDD genes in
specific cell types, we used the scRNA-seq data set from more
than 2300 single cells of the developing human prefrontal cortex
at gestational weeks (GWs) 8–26 (Zhong et al. 2018). This data set
contains six major cell types: neural progenitor cells (NPCs), excit-
atory neurons, interneurons, astrocytes, oligodendrocyte pro-
genitor cells (OPCs), and microglia. We performed coexpression
analyses of the different NDD gene sets using the transcriptomic
data from each of these cell types.

We reasoned thatmutations in different genes that cause sim-
ilar symptoms aremore likely to functionally converge on process-
es, stages in brain development, or specific cell types. This
functional convergence should be reflected by an increase in the
level of coexpression within a particular NDD gene set compared
with the overall coexpression level of all the expressed genes (back-

ground genes) in that cell type (Methods). In brief, we calculated
the pairwise Spearman’s correlation coefficients between back-
ground genes in each cell type and defined the top 0.5% gene pairs
with the highest correlation coefficients as significantly coex-
pressed. We then calculated the fraction of significantly coex-
pressed gene pairs out of all pairs of genes in the NDD gene set
and divided it by 0.5% to get a coexpression fold enrichment score
of the NDD gene set. A high coexpression fold enrichment score
indicates that the genes in the set are more significantly coex-
pressed than background genes. To verify that enrichment is spe-
cific and disease-relevant, we also included several control gene
sets, including genes with dnLoFmutations in unaffected ASD sib-
lings (Turner et al. 2017), genes with LoF mutations in the general
population (Lek et al. 2016), brain-specific gene regulatory factors
(Brain-GRF) (Berto et al. 2016), and synaptic genes (Koopmans
et al. 2019) (Methods; Supplemental Table S1A).

We calculated coexpression fold enrichment scores for the
eight NDD gene sets and four control gene sets across the sixmajor
cell types (Fig. 1A; Supplemental Fig. S2). In general, NDDgene sets
showed significantly higher coexpression than control gene sets
(Fig. 1A; Supplemental Figs. S2, S3). The majority of NDD gene
sets showed high coexpression in NPCs (Fig. 1A), suggesting a con-
vergent involvement ofNPCs indifferentNDDs.Moreover, dnLoF-
ASDanddnMis-Epi genes stoodout ashaving thehighest coexpres-
sion enrichment scores in specific cell types (Fig. 1A; Supplemental
Fig. S4). dnLoF-ASD genes have the highest coexpression in NPCs
(18.8-fold enrichment), suggesting a significant contribution of
NPCs to ASD pathophysiology (Fig. 1A). dnMis-ASD genes showed
low coexpression in the six cell types (Fig. 1A), consistent with pre-
vious estimates that ∼43% of dnLoF mutations (but only ∼13% of
dnMis mutations) contribute to ASD diagnosis (Iossifov et al.
2014). dnMis-Epi genes are highly coexpressed in NPCs, excitatory
neurons, and, more prominently, interneurons (Fig. 1A), in line
with previous findings that dnMis mutations (Hamdan et al.
2017; Heyne et al. 2018) and interneuron dysfunction (Lado
et al. 2013; Noebels 2015) contribute significantly to the etiology
of epilepsy. ID and DD genes did not show comparable coexpres-
sion, suggesting either less functional convergence or perhaps
the need to examine single-cell data from other brain regions.

To determinewhether the observed coexpression enrichment
reflects true biological signals, we systematically tested possible
confounders (Supplemental Methods; Crow et al. 2016; McCall
et al. 2016; Skinnider et al. 2019). We found that coexpression en-
richment is robust to changes in the coexpression threshold (Sup-
plemental Figs. S5, S6) and correlation-based measures of
association (Supplemental Fig. S7). Coexpression enrichment cal-
culated using Spearman’s correlation can capture known correlat-
ed pathways (Supplemental Fig. S8; Supplemental Table S1C).
Coexpression enrichment remains similar after controlling for
gene set size difference (Supplemental Fig. S9), gene expression
level dependence (Supplemental Fig. S10), and severity of mis-
sense mutations (Supplemental Fig. S11). Because cell numbers
vary across the six major cell types (Fig. 1A; Supplemental Table
S1B), we downsampled the same number of cells for each type to
make the coexpression enrichment scores comparable (Methods).
We found that reducing cell numbers generally decreases the coex-
pression enrichment scores (Fig. 1B,C; Supplemental Fig. S12),
consistent with the previous finding that larger cell numbers facil-
itate the reconstruction of more robust and coherent networks
(Skinnider et al. 2019). Nevertheless, even after downsampling,
dnLoF-ASD genes still had the highest coexpression in NPCs
(Fig. 1B), and dnMis-Epi genes were still highly coexpressed in
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NPCs and interneurons (their highest coexpression was in micro-
glia) (Fig. 1C). Although we used percentile-based cutoff for co-
expression enrichment analysis to mitigate the effect of global

coexpression differences across cell types, the findings are consis-
tent with results from absolute correlation analysis (Supplemental
Figs. S13, S14). Although microglia have been implicated in

A B

C

D

E

Figure 1. Coexpression enrichment analysis of high-confidence NDD genes in six major cell types. (A) Coexpression fold enrichment of eight NDD gene
sets (four with dnLoF mutations and four with dnMis mutations) in six cortical cell types, along with the sample size of each. Gene set size is shown in
parentheses. Circle size is proportional to enrichment score. (B,C) Coexpression fold enrichment of dnLoF-ASD (B) and dnMis-Epi genes (C ) in six major
cell types by downsampling the same number of cells for each cell type. Violin plot shows the mean value (point). P-value indicates whether the mean
coexpression fold enrichment score of the corresponding gene set is higher than that of the background genes (one-sided Fisher’s exact test). (D,E)
Coexpression networks of dnLoF-ASD (D) and dnMis-Epi genes (E) in the six cell types using the original sample size. Node size is proportional to coex-
pression degree.
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epilepsy (Vezzani et al. 2011, 2013), all our subsequent analyses fo-
cus on NPCs and interneurons because of their larger sample sizes.

Supplemental Figures S15 and S16 present several examples
of dnLoF-ASD and dnMis-Epi gene pairs that show higher coex-
pression in NPCs and interneurons, respectively. Figure 1, D and
E, shows the coexpression networks for dnLoF-ASD and dnMis-
Epi genes in the six major cell types using the original sample
size, highlighting the larger number of network edges in the cell
types with higher coexpression enrichment.

ASD and epilepsy genes coexpress at specific developmental

stages in NPCs and interneurons

To determine the specific developmental stages that contribute to
the coexpression of dnLoF-ASD in NPCs and dnMis-Epi genes in
NPCs and interneurons, we performed coexpression enrichment
analysis of these two gene sets at different time points. To over-
come sample size difference and increase the accuracy of coexpres-
sion enrichment score estimation, we focused on cell stageswith at
least 50 cells and downsampled the same number of cells for each
cell stage to make results comparable (Methods; Fig. 2A–C;
Supplemental Fig. S17). We included excitatory neurons for com-
parison (Fig. 2B).

In NPCs, dnLoF-ASD genes were highly coexpressed at GW10
and, to a lesser extent, GW16 (Fig. 2A; Supplemental Fig. S17A). At
GW10, ventricular radial glia (vRG) cells in the subventricular zone
give rise to intermediate progenitor cells (IPCs) (Lui et al. 2011),
which further differentiate into deep-layer neurons (Nowakowski
et al. 2016). We found high coexpression of dnLoF-ASD genes in
GW10 vRG cells and IPCs together, but little to no coexpression
in either cell type alone (Fig. 2D; Supplemental Figs. S18A, S19A,
S20), that is, the high coexpression occurs during the vRG-to-IPC
transition. Consistently, most dnLoF-ASD genes concurrently in-
creased expression during the transition from vRG cells to IPCs
(Fig. 2G; Supplemental Table S2). ASD genes with one or two
dnLoFmutations and all the SFARI curated gene sets except catego-
ry six (Basu et al. 2009) also increased expression during this tran-
sition (Supplemental Fig. S22). Figure 2, H and I, compares the
coexpression networks between individual cell types and the
cell-type transition at GW10 for dnLoF-ASD and dnMis-Epi genes
using the original sample size.

At GW16, vRG cells not only give rise to IPCs in the subven-
tricular zone but also produce outer radial glia (oRG) cells that will
migrate to the outer subventricular zone (Fietz et al. 2010; Hansen
et al. 2010; Lui et al. 2011; Nowakowski et al. 2016), where they
further differentiate into upper-layer neurons. Although GW16
vRG cells did not show coexpression enrichment, oRG cells and
IPCs showed moderate coexpression enrichment (Fig. 2E; Supple-
mental Figs. S18B, S19B). Unlike the GW10 situation, however,
coexpression enrichment was not higher in the combination of
oRG cells and IPCs (Fig. 2F; Supplemental Fig. S19C), and dnLoF-
ASD genes did not show expression change during the vRG-to-
oRG, vRG-to-IPC, or oRG-to-IPC transitions (Supplemental Fig.
S23). Coexpression scores for dnMis-Epi genes were generally low-
er than those of dnLoF-ASD genes but showed similar patterns at
NPC stages and transitions (Fig. 2A,D–G; Supplemental Figs.
S17A, S18, S19, S21, S23).

In excitatory neurons, neither dnLoF-ASD or dnMis-Epi genes
showed much coexpression (Fig. 2B), despite their elevated
absolute correlation at GW16 (Supplemental Fig. S17B). In inter-
neurons, dnMis-Epi genes were highly coexpressed at later devel-
opmental stages, particularly GW23 (Fig. 2C; Supplemental

Fig. S17C), when interneurons are developing axons andmaturing
in the prefrontal cortex (Zhong et al. 2018).

ASD and epilepsy genes during the differentiation from NPCs

to excitatory neurons

To understandwhether dnLoF-ASD or dnMis-Epi genes coordinate
during cell differentiation, we analyzed the coexpression pattern
of these two gene sets during NPC terminal differentiation (Fig.
3A,B). Because of the limited sample size (Supplemental Table
S1B), we focused on NPC-to-excitatory neuron differentiation at
GW10 and GW16 when we could study at least 50 samples in
both NPCs and excitatory neurons. Excitatory neurons sampled
fromGW10 andGW16 aremostly deep-layer and upper-layer neu-
rons, respectively (Supplemental Fig. S24). Both dnLoF-ASD and
dnMis-Epi genes displayed their highest coexpression in NPCs
but not in the combined cells (Fig. 3A,B; Supplemental Fig. S25).
Their coexpression was not the highest in the combined cells of
NPC subtypes and excitatory neurons either (Supplemental Figs.
S26A,B, S27A–C). However, their expression rose during the differ-
entiation, especially atGW16 (Fig. 3C,D; Supplemental Figs. S26C,
D, S27D–F; Supplemental Table S3). These data indicate that as
ASD and epilepsy genes becomemore abundant in excitatory neu-
rons, they also become more specialized in function.

ASD and epilepsy genes are associated with the transition at GW10

To identify the functions of dnLoF-ASD and dnMis-Epi genes dur-
ing the vRG-to-IPC transition at GW10, we developed a Gene
Ontology (GO) correlation analysis to determine the correlation
between a given gene set and anyGO term in a context-dependent
manner (Methods).We found that ASD and epilepsy genes are pos-
itively correlated with genes involved in neurogenesis and neural
differentiation (Fig. 4A,B; Supplemental Table S4A,B) but negative-
ly correlated with genes involved in cell cycle and cellular respira-
tion (Fig. 4C,D; Supplemental Table S4C,D).

Like ASD and epilepsy genes, genes in GO terms that show
positive correlation increase their expression during the transition
(Fig. 4A,B; Supplemental Table S4A,B). Genes in GO terms that
shownegative correlations, especially those involved in the cell cy-
cle, tend to decrease their expression during the transition (Fig. 4C,
D; Supplemental Table S4C,D). These observations are consistent
with the fact that IPCs show increased neuronal commitment
and decreased proliferation capacity compared with vRG cells
(Noctor et al. 2004).

ASD and epilepsy genes serve different functions during

the NPC transition

If dnLoF-ASD and dnMis-Epi genes are involved in the same bio-
logical pathways during the NPC transition at GW10, the differ-
ences between ASD and epilepsy suggest that the underlying
mechanisms should differ. We therefore examined the composi-
tion of each gene set. We found that ASD genes are enriched
in GO terms such as chromatin modification and organization,
whereas epilepsy genes are enriched for neurogenesis and neural
differentiation (Fig. 5A,B; Supplemental Table S5A,B). Given that
chromatinmodification and organization are critical for transcrip-
tional regulation, and dozens of ASD-associated chromatin regula-
tors havewell-known regulatory functions in neurogenesis (Ronan
et al. 2013; Ernst 2016; Courchesne et al. 2019), these results sug-
gest that ASD genes serve as upstream regulators to control the
transcription of other genes in these pathways to promote the
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Figure 2. Coexpression enrichment analysis of dnLoF-ASD and dnMis-Epi genes during NPC and neuron development. (A–C) Coexpression fold enrich-
ment of dnLoF-ASD and dnMis-Epi genes at specific stages of NPCs (A), excitatory neurons (B), and interneurons (C) by downsampling the same number of
cells for each cell stage. (D) Coexpression fold enrichment of dnLoF-ASD and dnMis-Epi genes in vRG cells, IPCs, and the transition at GW10 by downsam-
pling the same number of cells for each condition. (E,F) Coexpression fold enrichment of dnLoF-ASD and dnMis-Epi genes in vRG cells, oRG cells, IPCs, and
their transitions at GW16 by downsampling 20 cells (E) and 37 cells (F) for each condition. In A–F, asterisks indicate −log10 P-values for differences in mean
enrichment scores between the gene sets and the background genes (one-sided Fisher’s exact test): (∗) 1≤−log10P<2; (∗∗) 2≤−log10P<5. (G) Expression
of dnLoF-ASD and dnMis-Epi genes significantly increased during the transition from vRG cells to IPCs at GW10. The dashed horizontal line indicates the
median log2(fold change) value of the background genes. P-values indicate differences between log2(fold change) values of dnLoF-ASD or dnMis-Epi genes
and those of background genes during the transition (one-sided Wilcoxon rank-sum test). (H,I) Coexpression networks of dnLoF-ASD (H) and dnMis-Epi
genes (I) in vRG cells, IPCs, and the transition at GW10 using original sample size. Node size is proportional to coexpression degree.
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NPC transition at GW10, whereas epilepsy genes could be down-
stream effectors. Neither ASD nor epilepsy genes showed enrich-
ment in cell cycle–related GO terms with which they negatively
correlate (Fig. 5C,D; Supplemental Table S5C,D). ASD genes might
therefore also serve to repress cell cycle progression.

CHD8 promotes neural differentiation and inhibits cell cycle

To determine whether dnLoF-ASD genes are indeed upstream reg-
ulators in the NPC transition, we studied the chromatin remodel-
ing gene CHD8, a key high-confidence ASD gene (Bernier et al.
2014). CHD8 is a hub gene in the vRG-to-IPC transition network
at GW10 (Fig. 2H). A previous study performed RNA-seq analysis
onChd8haploinsufficientmice using forebrain tissue at five devel-
opmental stages (E12.5, E14.5, E17.5, P0, and adult) (Gompers
et al. 2017). The top 300 down-regulated and top 300 up-regula-
ted genes in Chd8 haploinsufficient mice at each stage were de-
fined as CHD8-activated and CHD8-repressed genes, respectively

(Supplemental Methods; Supplemental Table S6A). We found
that only CHD8-activated genes at E14.5 are both preferentially
bound by CHD8 (Gompers et al. 2017) and enriched for ASD genes
(Supplemental Fig. S28), suggesting that they are more likely gen-
uine CHD8 targets involved in ASD pathology. Thus, we deemed
CHD8-activated and CHD8-repressed genes at E14.5 as CHD8 tar-
gets in ASD for further analysis.

We first analyzed the expression pattern of these CHD8 tar-
gets in human GW10 NPCs. CHD8 doubled its expression during
the vRG-to-IPC transition (Fig. 2H; Supplemental Table S2).
Expression of CHD8-activated genes rose during the transition,
whereas CHD8-repressed genes decreased, compared with back-
ground genes (Fig. 6A; Supplemental Table S6B). CHD8 was more
positively correlated with CHD8-activated genes and more nega-
tively correlated with CHD8-repressed genes than the background
genes (Fig. 6B; Supplemental Table S6C). Moreover, CHD8-activat-
ed genes were enriched for GO terms related to neurogenesis and
neuron development (Fig. 6C; Supplemental Table S6D), whereas
CHD8-repressed genes were enriched for GO terms related to cell
cycle (Fig. 6D; Supplemental Table S6E). These results indicate
thatCHD8promotes thevRG-to-IPC transitionatGW10byactivat-
ing neural differentiation pathways and repressing cell cycle–relat-
ed processes. This would predict that CHD8 haploinsufficiency
shifts vRG cells toward proliferation instead of differentiation.
Indeed,Chd8haploinsufficientmice have a greater number of radi-
al glia cells and fewer IPCs during embryonic development
(Gompers et al. 2017).

Coexpression enrichment of NDD genes faithfully represents

NDD pathophysiology

Our coexpression enrichment analysis assumes that functional
convergences of high-confidence NDD genes represent core path-
ways underlying the diseases. If this assumption is correct, we
would expect that lower-confidence NDD genes would also con-
verge to core pathways. We therefore calculated Spearman’s corre-
lation with dnLoF-ASD genes in NPCs for dnLoF-ASD genes (with
≥3 dnLoFmutations) and ASD genes with fewer dnLoFmutations.
As expected, ASD genes harboring one or two dnLoF mutations
correlate more strongly with dnLoF-ASD genes than genes harbor-
ing no dnLoF mutations, independently confirming that coex-
pression enrichment of dnLoF-ASD genes in NPCs captures ASD
pathology (Fig. 7A; Supplemental Table S7A). Similar results were
obtained for dnMis-Epi genes in interneurons (Fig. 7B; Supplemen-
tal Table S7B).

These results suggest that genes with more mutations tend to
be at the core of the NDD gene coexpression network, and genes
with fewer mutations tend to be in the periphery. To test this hy-
pothesis, we constructed an NPC coexpression network of all the
ASD genes with dnLoF mutations (Fig. 7C; Supplemental Table
S7C) and an interneuron coexpression network of all the epilepsy
genes with dnMis mutations (Fig. 7D; Supplemental Table S7D).
Consistent with our hypothesis, genes with more mutations tend-
ed to occupy the core of the network, as indicated by a significantly
higher coexpression degree (Fig. 7E,F; Supplemental Table S7E,F).
These findings confirm that coexpression enrichment of NDD-
associated genes faithfully reveals biological mechanisms.

Discussion

This study supports the hypothesis that heterogeneous genetic
mutations in ASD and epilepsy converge to disrupt a small set of

A B

C D

Figure 3. Coexpression enrichment analysis of dnLoF-ASD and dnMis-
Epi genes during differentiation from NPCs to excitatory neurons (Ex).
(A,B) Coexpression fold enrichment of dnLoF-ASD and dnMis-Epi genes
in NPCs, excitatory neurons, and the differentiation at GW10 (A) and
GW16 (B) by downsampling the same number of cells for each condition.
Asterisks indicate−log10 P-values for differences inmean enrichment scores
between the gene sets and the background genes (one-sided Fisher’s exact
test): (∗) 1≤−log10P<2; (∗∗) 2≤−log10P<5; (∗∗∗) 5≤−log10P<10; (∗∗∗∗)
10≤−log10P. (C) Expression of dnMis-Epi but not dnLoF-ASD genes signif-
icantly increased during the differentiation from NPCs to excitatory neu-
rons at GW10. (D) Expression of dnLoF-ASD and dnMis-Epi genes
significantly increased during the differentiation from NPCs to excitatory
neurons at GW16. In C and D, the dashed horizontal line indicates the me-
dian log2(fold change) value of the background genes.
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critical neurodevelopmental events in particular cell types, ex-
panding our understanding of NDD pathophysiology and leading
toward comprehensive cell maps in neuropsychiatric disorders
(Willsey et al. 2018). Our study also presents a computational
framework for analyzing disease pathophysiology using scRNA-
seq data sets.

NDD pathophysiology depends on types of genetic perturbations

When analyzing the NDD gene sets, we found that for the same
disorder, genes with different types of mutations display distinct
coexpression patterns. For instance, dnLoF-ASD genes have the
highest coexpression enrichment in NPCs among all the NDD
gene sets, but dnMis-ASD genes showed little coexpression;
dnLoF-Epi genes showed little coexpression in interneurons, but
dnMis-Epi genes had high enrichment in the same cell type.

One possible explanation is that haploinsufficiency is the major
genetic mechanism for highly penetrant ASD genes, whereas
gain-of-function or dominant-negative missense mutations domi-
nate the mutational spectrum of highly penetrant genes in epilep-
sy. Several lines of evidence support this explanation. First, about
three times as many LoFmutations contribute to ASD diagnosis as
missense mutations (Iossifov et al. 2014). Second, missense vari-
ants explain a larger proportion of individuals with epilepsy
than of individuals with ID (Hamdan et al. 2017), and NDD indi-
viduals with missense variants are more likely to have epilepsy
than individuals with LoF variants (Heyne et al. 2018). In fact, doz-
ens of dominant-negative or gain-of-functionmissense mutations
have been reported in epilepsy (Barcia et al. 2012; Veeramah et al.
2012; Lemke et al. 2014; Nava et al. 2014; Orhan et al. 2014; Yuan
et al. 2014; Li et al. 2016b). Finally, at the individual gene level,
missense variants in SCN2A and SCN8A are more strongly
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Figure 4. GO correlation analysis of dnLoF-ASD and dnMis-Epi genes andGOexpression change analysis during the vRG-to-IPC transition at GW10. (A,B)
Scatterplots show the significance values from GO positive correlation analysis of dnLoF-ASD (A) and dnMis-Epi genes (B) on the horizontal axis versus the
significance values from GO expression increase analysis on the vertical axis during the transition. Dots represent individual GO biological process terms.
Each dot has −log10FDR values on both the horizontal axis (how strongly genes annotated under a GO term positively correlate with dnLoF-ASD [A] and
dnMis-Epi genes [B] during the transition) and the vertical axis (howmuch higher the log2[fold change] values are for genes annotated under the GO term
compared to the background genes during the transition). The dashed vertical and horizontal lines indicate −log10FDR at 4 and 2 as significance thresh-
olds. Red denotes GO terms significant in both analyses, green denotes GO terms significant only in GO positive correlation analysis, and blue denotes GO
terms significant only in GO expression increase analysis. Selected representative GO terms are labeled. (C,D) Similar to A and B with GO negative corre-
lation analysis of dnLoF-ASD (C) and dnMis-Epi genes (D) and GO expression decrease analysis during the transition.
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implicated in epilepsy than LoF variants (Heyne et al. 2018), and
althoughgain-of-function variants in SCN2A contribute to seizure,
all ASD-associated variants dampen or eliminate channel function
(Ben-Shalom et al. 2017). Furthermore, we found that ASD genes
tend to regulate the transcription of other genes in neural differen-
tiation pathways, whereas epilepsy genes tend to serve as down-
stream effectors. This helps explain why so many ASDs involve
seizures (Betancur 2011; Sundelin et al. 2016) but most epilepsies
do not involve ASD: A mutation in a single ion channel down-
stream from the differentiation program might severely affect
one electrophysiological property of IPCs and neurons, but a mu-
tation in a transcription regulator upstream of the differentiation
program could broadly and moderately affect multiple aspects of
the cell, such as proliferation, specification, and maturation.
Some ASD genes, like CHD8, might also determine whether to ini-
tiate the transition and/or regulate the balance of NPC prolifera-

tion and differentiation at the early stage of the transition. LoF
mutations in this kind of genes could explain early brain over-
growth in ASD (Courchesne et al. 2007, 2019; Ernst 2016;
Gompers et al. 2017).

NPCs and cell-type transition in ASD and epilepsy

Another finding is the difference in coexpression patterns within a
cell type and during the cell-type transition. Both dnLoF-ASD and
dnMis-Epi genes are more strongly coexpressed at GW10 in the
whole NPC population than within vRG cells or IPCs alone, sug-
gesting that these genes play a critical role in the vRG-to-IPC tran-
sition. This transition is central to cortical development. vRG cells
undergo either symmetric division to proliferate and expand the
radial glia pool or asymmetric division to generate neurons or
IPCs. IPCs migrate out of the ventricular zone to form the SVZ at

A

D

B

C

Figure 5. GOenrichment and correlation analyses of dnLoF-ASD and dnMis-Epi genes during the vRG-to-IPC transition at GW10. (A,B) Scatterplots show
the significance values from GO enrichment analysis on the horizontal axis versus the significance values from GO positive correlation analysis on the ver-
tical axis of dnLoF-ASD (A) and dnMis-Epi genes (B) during the transition. Dots represent individual GO biological process terms. Each dot has −log10FDR
value on the horizontal axis that indicates the statistical significance of the overlap between genes annotated under a GO term and dnLoF-ASD (A) or dnMis-
Epi genes (B), and−log10FDR value on the vertical axis that indicates how strongly genes annotated under the GO term positively correlate with dnLoF-ASD
(A) and dnMis-Epi genes (B) during the transition. Dashed vertical and horizontal lines indicate−log10FDR at 2 and 4 as significance thresholds. Red denotes
GO terms significant in both analyses, green denotes GO terms significant only in GO enrichment analysis, and blue denotes GO terms significant only in
GO positive correlation analysis. Selected representative GO terms are labeled. (C,D) Similar to A and Bwith GO enrichment and negative correlation anal-
yses of dnLoF-ASD (C) and dnMis-Epi genes (D) during the transition.
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the basal side. There, they undergo limited rounds of divisions to
produce multiple neurons. Disruptions in this two-step pattern
of neurogenesis would therefore derail cerebral cortex develop-
ment (Kriegstein et al. 2006; Martínez-Cerdeño et al. 2006;
Shenhav et al. 2012; Mihalas et al. 2016; Krogan et al. 2016; Li
et al. 2016a; Gompers et al. 2017). Moreover, the morphological
and electrophysiological properties of upper-layer neurons depend
on their origins from radial glia cells or IPCs (Haydar et al. 2015).
Thus, gene misexpression during the vRG-to-IPC transition is a
plausible pathogenic pathway for ASD and epilepsy.Without tran-
scriptomic data at the single-cell level, this kind of subpopulation
analysis would be very difficult if not impossible.

Our approach not only yields a list of core genes with a high
coexpression degree but also identifies the most relevant cell types
in which these genes and pathways show convergent function.
Future investigations focusing on these core genes and their
related regulatory pathways in the most relevant cell types and
developmental stages would accelerate ASD and epilepsy gene
discovery and enable a more comprehensive understanding of
their pathophysiology. Development of precise therapies targeting
convergentmechanisms could benefit groups of individuals across
NDDs with similar symptoms (Pang et al. 2014; Ernst 2016;
Sztainberg and Zoghbi 2016; Sestan and State 2018).

Robustness of coexpression enrichment analysis

We have shown that our coexpression enrichment analysis is not
affected by coexpression threshold, correlation-based measures of
association, gene set size, gene expression level, or severity of mis-
sense mutations. Sample size did correlate with coexpression en-
richment score, however, and previous work has also shown that
larger cell numbers facilitate the reconstruction of more robust
and coherent networks (Skinnider et al. 2019). We suggest that
controlling for sample size difference be established as a standard
for coexpression comparison analysis across different conditions.
Previous studies based on coexpression comparison analyses
across different conditions that did not control for sample size dif-
ference (Gulsuner et al. 2013; Willsey et al. 2013; Lin et al. 2015)

probably need to be evaluated for sample size effect. Sample size
effect could also emerge when combining different conditions to
construct a global coexpression network, because the signal would
be dominated by conditions with larger sample sizes. Althoughwe
used percentile-based cutoff for coexpression enrichment analysis
to mitigate the effect of global coexpression differences across cell
types, our findings were consistent with results from the absolute
correlation analysis. The high coexpression enrichment score also
reflects the absolute elevation of coexpression level, especially for
dnLoF-ASD genes in NPCs (Supplemental Fig. S13A), dnMis-Epi
genes in interneurons (Supplemental Fig. S13B), dnLoF-ASD and
dnMis-Epi genes in NPCs at GW10 and GW16 (Supplemental
Fig. S17A), and dnLoF-ASD and dnMis-Epi genes in the vRG-to-
IPC transition at GW10 (Supplemental Fig. S19A).

Last, the relatively small sample size limited our analysis to a
few cell types and developmental stages. Because we used the
scRNA-seq data set from the midfetal stage of the developing hu-
man brain, our analysis focused on transcriptional programs and
cell-autonomous effects that take place early in brain develop-
ment. In the future, it could be fruitful to expand our analysis to
more cell types and developmental stages at both cell-autonomous
and cell–cell interaction levels, as larger scRNA-seq data sets cover-
ing later developmental stages become available.

Methods

High-confidence NDD gene sets

We downloaded de novo mutation data for four NDDs: ASD, epi-
lepsy, ID, and DD from the denovo-db v.1.5 database release
(Turner et al. 2017) (http://denovo-db.gs.washington.edu). For ep-
ilepsy, we also added de novo mutation data from two studies
(EuroEPINOMICS-RES Consortium et al. 2017; Heyne et al. 2018)
not included in the denovo-db v.1.5 database. We extracted genes
with dnLoF (nonsense, frameshift, and canonical splice site) and
dnMis mutations from whole-exome or whole-genome sequenc-
ing data for these four NDDs. The number of dnLoF (dnMis) muta-
tions for a gene in a disorder was defined as the number of distinct
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Figure 6. CHD8 target gene analysis. (A) Expression changes of CHD8-activated and CHD8-repressed genes during the transition from vRG cells to IPCs
at GW10. The dashed horizontal line indicates themedian log2(fold change) value of the background genes. P-values calculated by the one-sidedWilcoxon
rank-sum test indicate whether CHD8-activated (-repressed) genes have higher (lower) log2(fold change) values than the background genes during the
transition. (B) Spearman’s correlation between CHD8-activated/CHD8-repressed genes and CHD8 during the transition. The dashed horizontal line indi-
cates the median Spearman’s correlation with CHD8 for the background genes. P-values calculated by the one-sided Wilcoxon rank-sum test indicate
whether CHD8-activated (-repressed) genes have higher (lower) correlation with CHD8 than the background genes during the transition. (C,D) Top
GO terms enriched with CHD8-activated (C ) and CHD8-repressed genes (D).
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individuals with the disorder harboring dnLoF (dnMis) mutations
in the gene.High-confidence dnLoF (dnMis) genes for ASD, epilep-
sy, ID, and DD were defined as genes with at least three dnLoF
(dnMis) mutations in each disorder. For high-confidence gene
sets with fewer than 20 genes (dnLoF-Epi, dnLoF-ID, dnMis-Epi,
and dnMis-ID), we used geneswith at least two de novomutations.
For comparison, we used several control sets: (1) genes with at least
one dnLoF mutation in unaffected ASD siblings in the denovo-db
database as sibling controls; (2) genes with at least one LoF muta-
tion in the ExAC database (Lek et al. 2016) with known neuropsy-
chiatric cohorts removed as general controls; (3) Brain-GRF, a
literature-curated list of gene regulatory factors that function in

the human brain (Berto et al. 2016); (4) synapse genes from the
SynGO knowledge base (Koopmans et al. 2019). SFARI ASD genes
from the SFARI Gene database (Basu et al. 2009) were grouped into
syndromic genes (category S) and genes with different evidence
levels (categories 1–6; high confidence-low evidence). In addition,
we assessed whether pathogenicity metrics such as CADD score
(Kircher et al. 2014) could improve NDD gene sets with dnMismu-
tations. We focused on ASD and DD genes with a large number of
dnMis mutations and obtained two high-confidence gene sets:
ASD gene sets harboring at least two dnMis mutations with
CADD score > 25, and DD gene sets harboring at least three
dnMis mutations with CADD score > 25.
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Figure 7. Coexpression network organization of ASD geneswith dnLoFmutations in NPCs, and epilepsy geneswith dnMismutations in interneurons. (A)
Spearman’s correlation with dnLoF-ASD genes in NPCs for ASD genes with ≥3, 2, 1, and 0 dnLoF mutations. (B) Spearman’s correlation with dnMis-Epi
genes in interneurons for epilepsy genes with ≥2, 1, and 0 dnMis mutations. (C) Coexpression network of ASD genes with at least one dnLoF mutation in
NPCs. Red, green, and blue nodes indicate ASD genes with ≥3, 2, and 1 dnLoF mutations, respectively. Red, green, and blue edges indicate coexpression
within ASD genes with ≥3, 2, and 1 dnLoF mutations, respectively, and orange edges indicate coexpression between ASD genes with ≥3 dnLoF mutations
and ASD genes with 2 dnLoF mutations. (D) Coexpression network of epilepsy genes with at least one dnMis mutation in interneurons. Red and blue nodes
indicate epilepsy genes with≥2 and 1 dnMis mutations, respectively. Red and blue edges indicate coexpression within epilepsy genes with≥2 and 1 dnMis
mutations, respectively. In C andD, node size is proportional to coexpression degree. (E) Coexpression degree in the NPC network of ASD genes with≥3, 2,
and 1 dnLoF mutations. (F) Coexpression degree in the interneuron network of epilepsy genes with ≥2 and 1 dnMis mutations. In A,B,E,F, P-values were
calculated using the one-sided Wilcoxon rank-sum test.
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Processing scRNA-seq data according to cell type and stage

Human fetal prefrontal cortical scRNA-seq data (Zhong et al. 2018)
were downloaded from theNCBIGene ExpressionOmnibus (GEO)
under the accession number GSE104276. The transcript counts of
each cell were normalized to transcripts per million (TPM), in
which TPM is the transcript count of each gene divided by the total
transcript count of the cell and multiplied by one million. Gene-
level TPM expression values were further transformed to log2
(TPM+1) values.

Based on the sample annotation file, cells were first divided
into six major types: NPCs, excitatory neurons, interneurons, as-
trocytes, OPCs, and microglia. For each type, genes were consid-
ered to be expressed in that type if the expression level was >0 in
at least 10% of cells for that type. Samples in each major cell
type were further divided into cell stages based on developmental
time points, and only the cell stages containing at least 50 samples
were used for analysis. Only the time-matched cell stages contain-
ing at least 50 samples in bothNPCs and excitatory neurons (astro-
cytes or OPCs) were used to study the differentiation fromNPCs to
excitatory neurons (astrocytes orOPCs). Samples inNPCswere fur-
ther divided into three cell subtypes: vRG cells, oRG cells, and IPCs
according to the clustering result of NPCs (Zhong et al. 2018), in
which vRG cells correspond to clusters 1, 2, and 6; oRG cells corre-
spond to clusters 7, 8, and 9; and IPCs correspond to clusters 3, 4,
and 5. Samples in excitatory neurons at GW16 were also divided
into three cell subclusters: Ex_C3, Ex_C4, and Ex_C5 according
to the clustering result of excitatory neurons (Zhong et al. 2018).
P-values for the expression difference of layer marker genes be-
tween GW16 excitatory neuron subclusters and GW10 excitatory
neurons were computed using DESeq2 on unnormalized counts
(Love et al. 2014). P-values for the overlap between eight NDD
gene sets were calculated by the one-sided Fisher’s exact test using
genes expressed in at least one major cell type as background
genes.

Construction of coexpression networks

To construct a coexpression network for each of six major cell
types, we used genes expressed in the cell type as background
genes.We first computed the pairwise Spearman’s rank correlation
coefficients between background genes and sorted all the pairwise
Spearman’s correlation coefficients in descending order. Then, we
determined the correlation threshold for the top 0.5% highest
pairwise Spearman’s correlation coefficients (commonly used to
construct coexpression networks) (Lee et al. 2004; Crow et al.
2016), and the value 0.5% was defined as coexpression network
density for the background genes. Next, we used the same correla-
tion threshold to construct a coexpression network for a given
gene set.

For cell stages divided based on developmental time points in
eachmajor cell type,we used genes expressed in themajor cell type
as background genes. For three cell subtypes of NPCs: vRG cells,
oRG cells, and IPCs as well as their transitions, we used genes ex-
pressed in NPCs as background genes. Genes expressed in either
NPCs or excitatory neurons were defined as genes expressed in
the NPC-to-excitatory neuron differentiation and used as back-
ground genes for the differentiation. The coexpression degree of
a gene in the coexpression network is the number of genes coex-
pressed with the gene. All the coexpression networks were visual-
ized using Cytoscape (Shannon et al. 2003).

Coexpression enrichment analysis

When constructing a coexpression network for the background
genes in one cell type, the value 0.5% used for selection of correla-

tion thresholdwas defined as coexpressionnetwork density for the
background genes. Similarly, the coexpression network density for
a gene set was defined as the number of significant coexpressed
pairs divided by the number of all pairs between genes in the
gene set. Then, the coexpression fold enrichment score for the
gene set was defined as the ratio of the coexpression network den-
sity for the gene set to the coexpression network density for the
background genes. The statistical significance of the coexpression
fold enrichment score of the gene set was assessed in two ways.
First, we compared the coexpression network density for the
gene set against the coexpression network density for the back-
ground genes by the one-sided Fisher’s exact test with R function:

Fisher′s test
A B− A
C D− C

( )
, alternative = "greater"

[ ]
,

where A is the number of significant coexpressed pairs between
genes in the gene set; B is the number of all pairs between genes
in the gene set;C is the number of significant coexpressed pairs be-
tween the background genes; and D is the number of all pairs be-
tween the background genes. Second, we also assessed the
statistical significance of the coexpression fold enrichment score
of the gene set by comparing whether the gene set has a higher
coexpression fold enrichment score than the other NDD gene
sets. Similarly, the one-sided Fisher’s exact test was used to com-
pute the statistical significance of the comparison of the coexpres-
sion network density for the gene set against the coexpression
network density for another NDD gene set.

Downsampling to control for sample size difference

The six major cell types had different sample sizes, and microglia
had a minimum sample size (68 cells). For fair comparison across
the major cell types, we downsampled the same number of cells
(68 cells) 1000 times for NPCs, excitatory neurons, interneurons,
astrocytes, and OPCs to calculate coexpression fold enrichment
score. For fair comparison across the cell stages of the major cell
types, we downsampled the same number of cells (50 cells) 1000
times for each cell stage to calculate a coexpression fold enrich-
ment score. For cell-type transition or differentiation between
one cell type with a small population and another more abundant
cell type: (1) We downsampled the cell type with the larger popu-
lation 1000 times to calculate coexpression fold enrichment score;
(2) we downsampled the combined population through sampling
equal number of cells from each individual cell type and repeated
1000 times to calculate the coexpression fold enrichment score. To
calculate the distribution of average Spearman’s correlation coeffi-
cients of an NDD gene set for each condition by downsampling,
the pairwise Spearman’s rank correlation coefficients within an
NDD gene set were averaged and repeated 1000 times.

Correlation with dnLoF-ASD and dnMis-Epi genes

For the calculation of correlation with dnLoF-ASD genes in NPCs,
we used genes expressed in NPCs as background genes. For any
non-dnLoF-ASD gene expressed in NPCs, the correlation with
dnLoF-ASD genes for the gene was defined as the average
Spearman’s correlation coefficients between the gene and dnLoF-
ASD genes. For any dnLoF-ASD gene expressed in NPCs, the corre-
lation with dnLoF-ASD genes for the gene was defined as the aver-
age Spearman’s correlation coefficients between the gene and the
other dnLoF-ASD genes. Based on the correlation with dnLoF-ASD
genes for any gene expressed in NPCs, we then obtained the distri-
bution of correlations with dnLoF-ASD genes for different types of
ASD genes. Differences in correlations between different ASD gene
sets were estimated using the one-sidedWilcoxon rank-sum test. A
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similar analysis was performed to compute the correlation with
dnLoF-ASD genes during the transition from vRG cells to IPCs at
GW10 using genes expressed in NPCs as background genes. A sim-
ilar analysis was performed to compute the correlation with
dnMis-Epi genes in interneurons and the transition fromvRG cells
to IPCs at GW10 using genes expressed in interneurons and NPCs
as background genes, respectively.

GO enrichment analysis of dnLoF-ASD and dnMis-Epi genes

To perform GO enrichment analysis, the ontology and human
annotation files were downloaded from the GO database
(http://www.geneontology.org). To compute the overlap between
dnLoF-ASD genes andGObiological process terms during the tran-
sition from vRG cells to IPCs at GW10, we used genes expressed
in NPCs as background genes. Genes that are annotated under
the GO terms but not expressed in NPCs were removed. Only GO
termswith the remaining gene number between 10 and 1000 after
filtering were used for GO enrichment analysis. P-values of the
overlap between dnLoF-ASD genes and GO terms were computed
using the one-sided Fisher’s exact test and corrected for multiple
hypothesis testing using false discovery rate (FDR) (Benjamini
and Hochberg 1995). For GO enrichment analysis of dnMis-Epi
genes, the same process was repeated.

GO correlation analysis of dnLoF-ASD and dnMis-Epi genes

during the cell-type transition

Based on the correlation with dnLoF-ASD genes during the vRG-
to-IPC transition at GW10 for any background gene expressed in
NPCs, we then obtained the distribution of correlations with
dnLoF-ASD genes during the transition for genes annotated under
a GO biological process term. Only GO terms with the remaining
gene number between 10 and 1000 after filtering by the back-
ground genes were used. Then, we computed, by the one-sided
Wilcoxon rank-sum test, the P-value for whether genes annotated
under the GO term have higher correlations than the background
genes. We used this P-value to measure how strongly the GO term
positively correlates with dnLoF-ASD genes during the transition.
We used the one-sided Wilcoxon rank-sum test to compute P-val-
ue forwhether genes annotated under theGO termhave lower cor-
relations than the background genes. We used this P-value to
measure how strongly the GO term negatively correlates with
dnLoF-ASD genes during the transition. The P-values for all GO
terms from GO positive or negative correlation analysis of
dnLoF-ASD genes during the transition were adjusted using the
Benjamini–Hochberg method. For GO correlation analysis of
dnMis-Epi genes during the vRG-to-IPC transition, the same pro-
cess was repeated.

Expression change of dnLoF-ASD and dnMis-Epi genes during

cell-type transitions

To compute the log2(fold change) value for a gene during the tran-
sition fromvRG cells to IPCs atGW10, gene expression TPMvalues
of the gene in the vRG and IPC samples at GW10 were added by 1.
Then, the average expression of the gene across samples in IPCs at
GW10 was divided by the average expression of the gene across
samples in vRG cells at GW10 and then log2 transformed.
Based on the log2(fold change) value for any gene, we then ob-
tained the distribution of log2(fold change) values for dnLoF-
ASD or dnMis-Epi genes. Next, we used the one-sided Wilcoxon
rank-sum test to compute the P-value to determine whether
dnLoF-ASD or dnMis-Epi genes have higher log2(fold change) val-
ues than the background genes (genes expressed in NPCs) during
the transition. A similar analysis was performed to compute the

statistical significance of expression change for dnLoF-ASD and
dnMis-Epi genes during the differentiation at GW10 from NPCs,
vRG, and IPCs to excitatory neurons, and during the differentia-
tion at GW16 from NPCs, vRG, oRG, and IPCs to excitatory neu-
rons.

GO expression change analysis during the cell-type transition

Based on the log2(fold change) value for any gene during the tran-
sition from vRG cells to IPCs at GW10, we obtained the distribu-
tion of log2(fold change) values for genes annotated under a GO
biological process term. We used only GO terms with between
10 and 1000 genes remaining after filtering by genes expressed
in NPCs. We used the one-sided Wilcoxon rank-sum test to com-
pute P-values for whether genes annotated under the GO term
have higher (expression increase) or lower (expression decrease)
log2(fold change) values than the background (NPC) genes. The
P-values for all GO terms fromGO expression change analysis dur-
ing the transition were adjusted using the Benjamini–Hochberg
method.

Software availability

Code used in this study is available at GitHub (https://github.com/
kpang/CEA) and as Supplemental Code.
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