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NADPH Oxidase Inhibition in Fibrotic Pathologies
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Abstract

Significance: Fibrosis is a stereotypic, multicellular tissue response to diverse types of injuries that funda-
mentally result from a failure of cell/tissue regeneration. This complex tissue remodeling response disrupts
cellular/matrix composition and homeostatic cell–cell interactions, leading to loss of normal tissue architecture
and progressive loss of organ structure/function. Fibrosis is a common feature of chronic diseases that may
affect the lung, kidney, liver, and heart.
Recent Advances: There is emerging evidence to support a combination of genetic, environmental, and age-
related risk factors contributing to susceptibility and/or progression of fibrosis in different organ systems. A
core pathway in fibrogenesis involving these organs is the induction and activation of nicotinamide adenine
dinucleotide phosphate oxidase (NOX) family enzymes.
Critical Issues: We explore current pharmaceutical approaches to targeting NOX enzymes, including repur-
posing of currently U.S. Food and Drug Administration (FDA)-approved drugs. Specific inhibitors of various
NOX homologs will aid establishing roles of NOXs in the various organ fibroses and potential efficacy to
impede/halt disease progression.
Future Directions: The discovery of novel and highly specific NOX inhibitors will provide opportunities to
develop NOX inhibitors for treatment of fibrotic pathologies. Antioxid. Redox Signal. 33, 455–479.
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Introduction

T issue fibrosis is invariably associated with a failure to
maintain a normal epithelial/endothelial barrier in af-

fected organs. This failure in efficient/effective cellular
regeneration at the vascular interface (endothelium) or the
luminal surfaces of the lung (airway epithelium), kidney
(tubular epithelium), or liver (hepatic/biliary epithelium) can
result in the activation of the subtending mesenchyme. This
localized mesenchymal activation typically involves the
expansion of tissue-resident mesenchymal progenitor cells,
which differentiate into contractile cells known as myofibro-
blasts. Although both fibroblasts and myofibroblasts secrete/
remodel the extracellular matrix (ECM), it is the myofibro-
blasts that contribute to tissue contracture and architectural
distortion. The sustained and relentless activation of the mes-
enchyme may be further fueled by immune dysregulation, in-
cluding the profibrotic polarization of tissue-resident/recruited

macrophages. Thus, damage to epithelium/endothelium,
fibroblast/myofibroblast activation, ECM remodeling, and
immune dysregulation are salient and essential features of
fibrosis involving all organs.

Over the past decade, accumulating evidence supports a role
of nicotinamide adenine dinucleotide phosphate oxidases
(NOXs) in tissue inflammation and fibrosis. The NOX family
of enzymes comprises seven family members: NOX1, NOX2,
NOX3, NOX4, NOX5; and dual oxidase (DUOX) homologs,
Duox1 and Duox2. All NOX enzymes generate reactive oxy-
gen species (ROS), either as superoxide anion (O2$-) or as
hydrogen peroxide (H2O2), as the primary product of enzy-
matic catalysis and reduction of molecular oxygen (O2). While
the preponderance of data supports a critical role for NOX4 in
fibrosis across all organ systems, in this review, we will explore
reported functions of other NOX enzymes in the tissue injury,
inflammation, and/or repair process. The homeostatic roles of
NOX enzymes in some tissues/organs are also discussed.
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Finally, we highlight emerging strategies to target NOX en-
zymes in fibrotic pathologies involving different organ sys-
tems.

Lung Fibrosis

Causes and pathogenic mechanisms

Fibrosis involving the lung may be due to known causes
such as occupational exposures, drugs, or an associated sys-
temic connective tissue disease, or represent an ‘‘idiopathic’’
form referred to as idiopathic pulmonary fibrosis (IPF), the
most common and lethal of all the fibrotic lung diseases.
Although a specific ‘‘cause’’ of IPF has not been identified,
there are known risk factors that include genetic and envi-
ronmental factors, as well as aging. Based on this increased
understanding of IPF pathogenesis, there is a growing im-
petus to eliminate the term ‘‘idiopathic’’ and introduce al-
ternative classification schemes (246, 256–258, 264).

Genetic variants have been identified in both sporadic and
familial cases of IPF. Familial cases have been estimated to
account for between 2% and 20% (81, 124, 200); this vari-
ability is likely related to the populations studied as well as
disease definitions. In general, rare variants are highly pen-
etrant and have a large effect size. These variants include
‘‘mutations’’ in genes related to alveolar stability, includ-

ing the surfactant proteins (SFTPs): SFTPC, SFTPA1, and
SFTPA2; and another protein involved in surfactant metab-
olism, ATP-binding cassette-type 3 (ABCA3); and genes
associated with telomere biology: TERT, TERC, DKC1,
TINF2, RTEL1, PARN, and nuclear assembly factor 1 ri-
bonucleoprotein (NAF1) (124). Sporadic cases of IPF have
also been linked to a number of gene variants, which are
more common, but typically with smaller effect sizes; these
include genes linked to telomere maintenance (TERT,
TERC), host defense functions (MUC5B, TOLLIP), and
epithelial integrity (DSP, DPP9) (124). Among these, a
MUC5B risk variant has a relatively high effect size and, due
to its higher prevalence in the general population, may ac-
count for up to 30% of the genetic risk of developing IPF (66).

Environmental factors almost certainly contribute to risk
of developing IPF. Although it is difficult to conduct and
interpret such studies, most evidence supports the concept
that IPF is a heterogeneous disorder caused by a number of
environmental and occupational exposures; such exposures
may include smoking, agriculture/farming, livestock, wood
dust, metal dust, and stone/sand (241).

The pathogenesis of IPF involves the interactions between
different cell types and the emergence of profibrotic phe-
notypes (Fig. 1). Alveolar epithelial cell apoptosis (50, 193,
251), senescence (215, 247), and epithelial-to-mesenchymal

FIG. 1. Cellular interactions in pulmonary fibrosis. Communication between the different cellular effectors of pul-
monary fibrosis involves secreted/paracrine mediators. Injured alveolar epithelial cells secrete proinflammatory factors
that may sustain the recruitment/activation of immune cells to the site of injury. Immune cells amplify the inflammatory
response and may polarize to a more profibrotic response that promotes myofibroblast differentiation and ECM remodeling.
The SASP of epithelial cells and myofibroblasts has also been proposed to alter the phenotype of neighboring cells. AECI,
alveolar epithelial cell type I; AECII, alveolar epithelial cell type II; ECM, extracellular matrix; EMT, epithelial-to-
mesenchymal transition; MMPs, matrix metalloproteinases; ROS, reactive oxygen species; SASP, senescence-associated
secretory phenotype. Color images are available online.
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transition (EMT; 225, 277, 285) are thought to contribute to
the early development of lung fibrosis. Impaired re-
epithelialization, due to exhaustion of epithelial cell pro-
genitors in response to chronic exposure to injury and/or
aging, is likely to be a key driver of the pathogenesis of the
disease (44). A pathological hallmark of lung fibrosis is the
differentiation of lung fibroblasts into myofibroblasts and
their accumulation within fibroblastic foci. The profibrotic
cytokine transforming growth factor beta-1 (TGF-b1) stim-
ulates myofibroblast differentiation (245). Myofibroblast
differentiation is accompanied by enhanced secretion of ECM
components and resistance to apoptosis (102–104). Pulmonary
fibrosis has also been associated with the recruitment of
macrophages and neutrophils at site of tissue remodeling
(78, 89, 94, 172). In addition to profibrotic mediators, re-
cruited macrophages and neutrophils release ROS that may
perpetrate the fibrogenesis via the modulation of ECM syn-
thesis and the polarization of macrophages toward a profi-
brotic phenotype (8, 84, 95, 96). In addition to the pathogenic
mechanisms described above, cellular senescence has been
the focus of numerous studies following the observation that
senescent cells accumulate in the fibrotic lung (98, 215).
Epithelial cells and fibroblasts have been shown to undergo
senescence in IPF lungs (98, 215). One of the mechanisms by
which senescent cells may influence phenotypes of neigh-
boring cells is through secreted mediators referred to as the
senescence-associated secretory phenotype (SASP) (242).
Among SASP components are inflammatory cytokines
(interleukin [IL]-6, IL-8, IL-1a), plasminogen activator
inhibitor-1 (PAI-1), matrix metalloproteinases (MMPs), tis-

sue inhibitors of matrix metalloproteinases (TIMPs), IGF-
binding proteins, monocyte chemoattractant protein 1 (MCP-
1), prostaglandin E2 (PGE2), and nitric oxide (NO) (52). These
SASP-associated factors promote inflammation, tissue re-
modeling, and cell growth (188). The targeting of senescent
cells with senolytics has been shown to ameliorate the se-
verity of lung fibrosis in a murine experimental model of the
disease (215).

Role of NOX enzymes in lung fibrosis

The rationale for targeting NOX4 as a therapeutic target to
ameliorate lung fibrosis is based on the finding of high ex-
pression of this homolog in human IPF and from in vivo
genetic/pharmacological targeting in murine experimental
models of the disease (98, 99) (Fig. 2). NOX4 expression and
activity increase after the stimulation of lung fibroblasts,
in vitro, with TGF-b1 (99). NOX4 expression and activity are
constitutively increased in lung fibroblasts isolated from IPF
patients. NOX4, through the production of H2O2, mediates
tissue-repair functions of myofibroblasts, which are effectors
of ECM production and contraction (99). In addition to its
role in sustaining myofibroblast activation, NOX4 supports
lung fibroblast migration via a ROS-mediated RhoA/Rho
kinase pathway (168).

More recently, we reported that metabolic reprogramming
is required for myofibroblast activation (20, 267). This re-
programming relies on enhanced mitochondrial bioenerget-
ics and biogenesis (20). These studies demonstrated that
NOX4 regulates mitochondrial bioenergetics and biogenesis

FIG. 2. NOX enzyme in-
hibition and antifibrotic
therapies. Compounds that
have proven beneficial in
ameliorating fibrosis in animal
models of organ fibrosis and/
or in cellular models of myo-
fibroblast differentiation. The
discovery of these compounds
resulted from three different
drug discovery strategies: the
development of small mole-
cule inhibitors through high-
throughput screening, appli-
cation of herbal medicines,
and the repurposing of pre-
scription drugs. H2O2, hy-
drogen peroxide; NF-jB,
nuclear factor-kappa B; NOX,
nicotinamide adenine dinu-
cleotide phosphate oxidase;
VSMCs, vascular smooth
muscle cells. Color images
are available online.
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in lung fibroblasts by modulating levels of nuclear factor
erythroid-derived 2-like 2 (Nrf2) (19). The balance between
NOX4 and Nrf2 also influences the fate of myofibroblasts to a
senescent and apoptotic-resistant phenotype (98, 212).

Epithelial cell death and/or epithelial-to-mesenchymal cell
transition are two mechanisms that have been proposed to
contribute to the establishment of lung fibrosis along with
myofibroblast differentiation (126, 127, 138, 165, 259).
NOX4-deficient mice show decrease in epithelial cell apo-
ptosis in response to airway injury with bleomycin (33).
Differential expression analysis of pro-oxidant and antiox-
idant transcripts after EMT of lung epithelial cells also
showed that downregulation of antioxidant transcripts cor-
related with an upregulation of NOX4 expression (196).

Macrophage recruitment and activation respiratory burst
have been associated with the early inflammatory phase of
lung fibrosis (72). Activation of the inflammasome and pro-
duction of IL-1b in response to NOX-dependent release of
ROS have been suggested to link macrophage respiratory
burst and inflammation in lung fibrosis (234).

The progression of lung fibrosis depends on the devel-
opment of comorbidities such as pulmonary hypertension
(PAH) (70). Hypoxia, which may lead to PAH, stimulates
the release of superoxide by endothelial cells via a NOX2-
dependent pathway. NOX2-mediated ROS serve to mobi-
lize endothelial cell progenitors that are necessary for
vascular repair (219). Enhanced NOX activity also con-
tributes to endothelial apoptosis and the remodeling of
pulmonary arteries. In particular, NOX4 promotes the
proliferation of smooth muscle cells involved in vascular
remodeling (58, 63).

Mesenchymal stem cells (MSCs) participate in the repair
process after tissue injury by ‘‘homing’’ to site of injury.
MSCs can differentiate into another cell type to regenerate the
epithelial barrier and/or mediate paracrine actions on resident
cells to promote repair responses. Some evidence suggests
that the self-renewal and recruitment of MSCs depend on a
crosstalk between gp91phox and matrix metalloproteinase-12
(MMP-12) (16). The crosstalk between vascular factors and
perivascular NOX4 has also been implicated in establishing
a favorable environment for engraftment of MSCs in fibrotic
tissues (31). In particular, ectopic upregulation of hepato-
cyte growth factor (HGF) in endothelial cells inhibits peri-
vascular NOX4 and facilitates engraftment of MSCs in
fibrotic tissues of the lung and liver (31). On the contrary,
targeted deletion of HGF in mice endothelial cells induces
perivascular NOX4, and recapitulates the lung and liver fi-
brotic phenotypes (31).

Therapeutic strategies

Two U.S. Food and Drug Administration (FDA)-approved
drugs, pirfenidone and nintedanib, are currently available to
treat IPF patients (128, 204). These two drugs, however, have
a limited efficacy and are not curative. They merely slow
down the progression of IPF without increasing survival and
ameliorating symptoms of the disease (202). Therefore, the
development of alternative treatments remains a priority.
Numerous studies have been undertaken to identify novel
inhibitors of NOXs through drug library screening of small
molecule inhibitors, traditional herbal medicines, and re-
purposing of prescription drugs (Fig. 3).

Small molecule inhibitors of NOX enzymes. The devel-
opment of specific inhibitors of NOX enzymes has proved
challenging due to the structure of NOX enzymes, their
regulatory interactions, and the lack of a crystal structure,
although partial structural information is obtained from
modeling in cyanobacteria (163). The following gives an
overview of the progresses made in the development of small
molecule inhibitors of NOX enzymes.

VAS2870 and VAS3947 are triazolopyrimidine deriva-
tives that have been reported to completely block NOX-
associated activity in a variety of cellular models without
specificity toward any NOX homologs (244, 261).

GKT137831 is the first small molecule inhibitor targeting
NOX1/NOX4 (133). GKT137831 belongs to the pyrazolo-
pyridine chemical series (133, 243). Preclinical studies us-
ing GKT137831 have demonstrated promising effects of
this compound in ameliorating fibrosis in a murine experi-
mental model of the disease (98). Notably, GKT137831 re-
verses age-associated persistent fibrosis in a murine
experimental model of lung fibrosis in aged mice. In these
studies, in vivo targeting of NOX4 decreased accumulation
of myofibroblasts and collagen deposition at sites of re-
modeling. It also downregulated the expression of the se-
nescent markers p16 and p21 (98). These data suggest that
GKT137831 modulates the senescent and apoptosis-resistant
phenotype of myofibroblasts.

Peptidic inhibitors of NOX enzymes have been designed to
block the assembly of the functional NOX enzyme, promote
autoinhibition of the NOX enzyme, or disrupt regulatory
interaction of the NOXs with p22phox, p47phox, or p67phox

(49). Among peptides inhibitory of NOX2, NOX2ds-tat has
been described as isoform specific (49). NOXA1ds targets the
interaction of NOX1 and the activation domain of p67phox

(49). Pep1 and Pep3 target the interaction between NOX5 N-
terminal tail containing the EF domain, responsible for
NOX5 stimulation by Ca2+, and its C-terminal catalytic
dehydrogenase domain (49).

JQ1 is an inhibitor of the epigenetic readers, bromodomain-
containing protein 3 and 4 (Brd3 and Brd4) (3). Pretreatment
with JQ1 prevents TGF-b1-induced activation and differ-
entiation of lung fibroblasts (232). These studies show that
JQ1 treatment reduces NOX4 and SOD2 messenger RNA
(mRNA) expression, thus shifting the imbalance between
NOX4 and SOD2 that results from TGF-b1 stimulation of
fibroblasts.

Herbal medicines. Magnesium isoglycyrrhizinate (MgIG)
is a magnesium salt of 18a-glycyrrhizic acid stereoisomer.
Glycyrrhizic acid is the main active ingredient in licorice,
and has antioxidant and anti-inflammatory properties (145).
MgIG treatment improves radiation-induced pulmonary fi-
brosis by attenuating lung collagen deposition and reducing
levels of TGF-b1. MgIG mediates its effect on radiation-
induced pulmonary fibrosis through a decrease in NOX4
expression, ROS production, and p38 mitogen-activated
protein kinase (MAPK) phosphorylation (276).

Three compounds derived from herbal Chinese medicine
have been reported to attenuate bleomycin or TGF-b1-induced
lung fibrosis in vivo. These compounds restore the redox bal-
ance in myofibroblasts by reducing NOX4 and upregulating
Nrf2 (98). These compounds are as follows: (i) costunolide, a
natural occurring sesquiterpene lactone isolated from Saussurea
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lappa root (152); (ii) a novel gallic acid derivative derived from
Quercus infectoria (206); and (iii) tanshinone IIA (Tan-IIA),
isolated from the root of Salvia miltiorrhiza Bunge (7). Tan-IIa
augments Nrf2 through promoting the degradation of Kelch-
like ECH-associated protein 1 (Keap1). Of note, Tan-IIA-
induced Nrf2 has been reported to increase intracellular gluta-
thione (GSH) by shifting glutamate utilization by the tricar-
boxylic acid cycle toward GSH production (7).

Triptolide (TPL) is a diterpenoid epoxide isolated from
Tripterygium wilfordii. It has been used in Eastern Asia to
treat inflammatory and autoimmune disorders such as sys-
temic lupus erythematosus, psoriasis, rheumatoid arthritis,

and asthma (39). TPL has been reported to reduce the re-
cruitment of alveolar macrophages in a model of irradiation-
induced lung fibrosis in mice. TPL has also been shown to
inhibit NOX2- and NOX4-mediated ROS in alveolar mac-
rophages, thus attenuating effects of paracrine actions of
ROS on myofibroblast activation induced by irradiation (37).

Prescription drugs. Azithromycin is a macrolide-type
antibiotic prescribed for respiratory, dermal, and urogenital
bacterial infections. Because of its immunomodulatory
property, it is also used to treat chronic inflammatory disor-
ders (190). Azithromycin ameliorates bleomycin-induced

FIG. 3. NOX expression and function in lung fibrosis. NOXs are a source of ROS in alveolar epithelial cells, mac-
rophages, neutrophils, myofibroblasts, endothelial cells, and VSMCs. H2O2 and O2$ - participate in determination of cell
phenotype and fate by regulating immune cell recruitment/activation, EMT, myofibroblast differentiation, and ECM re-
modeling, which may all contribute to the pathogenesis of lung fibrosis. H2O2, hydrogen peroxide; Keap1, Kelch-like ECH-
associated protein 1; MAPK, mitogen-activated protein kinase; Nrf2, nuclear factor erythroid-derived 2-like 2. Color images
are available online.
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lung fibrosis in mice and prevents TGF-b1-induced myofi-
broblast differentiation in vitro. These effects of azithro-
mycin have been associated with the stimulation of NOX4
degradation by the proteasome. In these studies, enhanced
proteosomal degradation of NOX4 was shown to result from
increased polyubiquitination of NOX4 after reduction of
autophagy and activation of the unfolded protein response by
azithromycin (248).

Metformin is a FDA-approved drug for treatment of
type 2 diabetes. Metformin or 3-(diaminomethylidene)-1,1-
dimethylguanidine is an AMP-activated kinase (AMPK)
activator. AMPK is a bioenergetics sensor and metabolic
regulator of cell adaptation to low energy conditions. In the
bleomycin-injury model of lung fibrosis, AMPK activity is
lower in fibrotic regions associated with metabolically active
and apoptosis-resistant myofibroblasts (201). Treatment with
metformin attenuates the fibrotic response to injury (201,
214). Sato et al. demonstrated that metformin prevents myo-
fibroblasts differentiation by reducing NOX4-mediated ROS,
which support TGF-b1-induced Smad2/3 phosphorylation.
These studies show that inhibition of NOX4 expression by
metformin leads to reduction in NOX4-mediated ROS (214).

Kidney Fibrosis

Causes and pathogenic mechanisms

Diabetes and hypertension are the most prominent causes
of progressive kidney diseases characterized by renal fibrosis.
Pathological renal fibrosis can affect the glomeruli (glomer-
ulosclerosis), the tubulointerstitium (interstitial fibrosis), and
the vasculature (vascular sclerosis). As described for the
lung, myofibroblasts are responsible for the accumulation
and the contractility of the scar tissue observed in renal fi-
brosis. EMT has been reported to give rise to myofibroblasts
along with the differentiation of mesenchymal fibroblasts,
pericytes, and perivascular fibroblasts into myofibroblasts
upon exposure to profibrotic factors (151, 156, 169). EMT
of podocytes is involved in glomerulosclerosis (253), while
EMT of tubular epithelial cells has been reported in con-
junction with interstitial renal fibrosis (286). Many profi-
brotic factors have been described as mediators of renal
fibrosis in response to injury. However, angiotensin II
(Ang II) drives the fibrogenic process via stimulating the
release of other profibrotic factors such as TGF-b1 (22, 235),
platelet-derived growth factor (PDGF) (107), connective-
tissue-derived growth factor (CTGF) (274), NOX (199),
PAI-1 (170), tumor necrosis factor-alpha (TNF-a) (198),
osteopontin (263), and vascular cell adhesion molecule-1
(VCAM-1) (130). Mesangial cell-, macrophage-, and ECM-
derived TGF-b1 sustains ECM deposition through stimula-
tion of ECM synthesis and inhibition of its degradation (24,
91). TGF-b1 also promotes EMT of tubular epithelial cells
(156). CTGF contributes to the pathogenesis of renal fibrosis
through the modulation of matrix-degrading metalloprotei-
nases (275). PAI-1 has been suggested to promote fibrogen-
esis via upregulation of fibronectin and type III collagen in
the kidney (183). In addition to the release of profibrotic
mediators, Ang II induces nuclear translocation of the tran-
scription factor nuclear factor-kappa B (NF-jB), which in-
duces gene expression of a number of proinflammatory and
profibrotic mediators (129, 158, 268, 272). Ang II-mediated
activation of NF-jB has been described to support the ex-

pression of tissue transglutaminase (153). Ang II-mediated
expression of tissue transglutaminase in the fibrotic kid-
ney may participate in the activation of ECM-bound latent
TGF-b1 (217). TGF-b1-induced oxidative stress responses in
mesangial and endothelial cells have been implicated in the
pathogenesis of renal fibrosis (34). One proposed mechanism
may be oxidative-stress-mediated neutralization of the pro-
tective role of mesangial NO against renal fibrosis (155). In
the unilateral ureteral obstruction (UUO) model of renal fi-
brosis, alteration of renal hemodynamics is an early event
triggered by increased activity of vasoconstrictor systems
such as the renin–angiotensin system (73). Mesangial cells
have been implicated in the regulation of the kidney tubu-
loglomerular feedback (203). Notably, mesangial cells have
been suggested as a source of ROS that enhance tubuloglo-
merular feedback by quenching NO, thus counteracting NO-
mediated vasodilation of glomerular afferent arterioles (155).
TGF-b1 treatment of primary mouse mesangial cells has been
shown to upregulate the production of ROS via augmenting
the activity of NOX2, NOX4, and Duox2 (34). Of note, as
opposed to the antifibrotic role of NO suggested above, some
studies have reported an association between high levels of
inducible nitric oxide synthase (iNOS) and the progression of
kidney remodeling in UUO mice (230).

Role of NOX enzymes in kidney fibrosis

NOX enzymes have been implicated in the regulation of
the kidney function through their role in gluconeogenesis
(262), glucose transport (93), tubuloglomerular feedback
(260), renal hemodynamics (218, 222), and electrolyte trans-
port (112, 226) (Fig. 4). NOX4 is the NOX isoform that is
most abundantly expressed in the renal cortex. NOX4 lo-
calizes to mesangial cells, podocytes, tubular epithelial cells,
and endothelial cells. p47phox and p22phox are expressed in
tubular epithelial cells along with NOX4 (85). NOX2,
p67phox, p47phox, and p22phox mRNA are also expressed in
podocytes (90). NOX1 is localized with NOX2 and NOX4 in
different regions of the nephron (thick ascending limb,
macula densa, apical area of distal convoluted tubules) as
well as in the vasculature and glomeruli (35, 36). NOX5 has
been localized to the tubular and glomerular regions in bi-
opsies of human kidney tissue (113), and NOX3 has been
reported to be expressed in the fetal kidney (42).

NOX4 has been shown to play a role in diabetes-induced
renal fibrosis in mice and rats. In these experimental mod-
els, hyperglycemia increases the expression and activity of
NOX4. This increase in NOX4 expression has been linked to
the upregulation of TGF-b1 levels, phosphorylation of p38
MAPK, and fibronectin deposition in the kidney (220).
Transient receptor potential cation channel 6 (TRPC6), a
member of the family of transmembrane Ca2+ channels, is an
important modulator of glomerular dynamics, alterations of
which have been associated with the development of renal
fibrosis (106). NOX4-generated ROS have been implicated
in the downregulation of TRPC6 expression in mesangial
cells (88). Cannabinoid receptor type 1 (CB1) is Gi/G0

protein-coupled receptor that is activated upon binding of
endocannabinoids such as anandamide and 2-arachidonyl
glycerol (160). While identified as one of the most abundant
G-protein-coupled receptors in the brain (101), CB1 is also
expressed in adipocytes (207), liver (55), skeletal muscle
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(105), and kidney (137). In the kidney, CB1 has been local-
ized in podocytes (118), mesangial cells (149), proximal
tubule cells (136, 250), distal tubule cells (136), and intercalated
cells (136). In the murine model of cisplatin-induced renal fi-
brosis, upregulation of NOX4 gene expression has been linked
to the activation of the CB1 (175). In this experimental model,
CB1 antagonists or genetic deletion of CB1 receptors have been
shown to reduce the expression of NOX2 and NOX4, thus re-
ducing oxidative stress induced by cisplatin (175). Evidence of
NOX2 involvement in renal fibrosis comes from the use of
experimental models of diabetes-induced renal fibrosis. NOX2
expression is upregulated in the renal cortex of diabetic mice,
and its inhibition has been linked to lower oxidative stress,
enhanced superoxide dismutase (SOD) activity, and ameliora-
tion of renal fibrosis (77). However, contrary to these studies,
NOX2 expression has been reported to remain unchanged in the
renal cortex of db/db mice, a widely used experimental model of
type 2 diabetes (220). NOX1 upregulation in the glomeruli and
cortical tubules of diabetic mice has been associated with larger
glomerular volume, increased mesangial matrix, and upregu-
lated levels of the DNA double-strand break markers p27 and
cH2AX; these effects on glomerular structure, ECM deposition,
and senescence were attenuated in NOX1 KO mice (288). Data
related to the role of NOX5 in renal fibrosis in vivo come from
studies using a humanized murine model of NOX5 over-

expression (113). In these studies, overexpression of NOX5 in
mesangial cells and vascular smooth muscle cells (VSMCs) was
associated with enhanced ROS production, deposition of col-
lagen IV and fibronectin, immune infiltration, mesangial cells
expansion, and glomerulosclerosis (113).

Therapeutic strategies

In the following sections, we discuss pharmacological
approaches that have proven beneficial in the amelioration of
experimental renal fibrosis through the inhibition of NOX-
mediated oxidative stress and/or expression.

Small molecule inhibitors. Lysophosphatidic acid (LPA)
is a proinflammatory mediator that is elevated in the serum
of diabetes patients and in the kidney of a murine model of
type 2 diabetes mellitus (281). LPA acts through binding/
activation of its G protein-coupled receptors (LPAR1–6)
(233). AM095 is a specific inhibitor of LPAR1 (237). Studies
using the streptozotocin (STZ)-induced murine model of
diabetic nephropathy showed that treatment with AM095, a
specific antagonist of LPAR1, reduces inflammation through
the modulation of the TLR4/NF-jB pathway; this is associ-
ated with a reduction in ROS levels, in part by decreasing
NOX2 expression (139).

FIG. 4. NOX expression
and function in kidney fi-
brosis. NOXs constitute a
major source of ROS in the
kidney. Renal NOXs modu-
late a variety of cell functions
that are involved in kidney
fibrosis such as inflammation,
ECM deposition, myofibro-
blast differentiation/contrac-
tion, and EndMT. Renal
NOXs have also been shown
to regulate vascular tone, he-
modynamics, inflammation,
and remodeling. EndMT, en-
dothelial to mesenchymal;
SOD, superoxide dismutase.
Color images are available
online.
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NOX1, NOX2, and NOX4 expression is augmented in
diabetic end-stage kidney disease (132). Oral administration
of APX-115, a pan-inhibitor of NOX enzymes, attenuates
fibrosis associated with diabetic end-stage kidney disease in a
murine model of STZ-induced kidney disease. Treatment
with APX-115 decreases the expression of profibrotic mark-
ers such as TGF-b1, a-smooth muscle actin (SMA), fibro-
nectin, and collagen IV (132). Restoration of peroxisomal
function and mitochondrial biogenesis are among the
mechanisms suggested to mediate effects of APX-115 on
kidney fibrosis downstream of NADPH inhibition (132).
APX-115 also reduces kidney remodeling in a rat model of
diabetic kidney disease by reducing inflammation, evidenced
by decreases in the expression of the proinflammatory marker
CD68, and reduced levels of IL-6 and MCP-1 (61).

Fluorofenidone or [1-(3-fluorophenyl)-5-methyl-2-(1H)-
pyridone] (FD) is a derivative of the antifibrotic drug,
pirfenidone (157). FD treatment reduces NOX2 and NOX4-
mediated oxidative stress as well as p47phox expression in rat
proximal tubular epithelial (NRK-52E) cells in vitro and in
the kidney of a rat model of UUO-induced renal fibrosis
in vivo (199). In this model, hampered oxidative stress upon
FD treatment is associated with a reduction in the expression
of collagen Ia1 and fibronectin as well as lower levels of the
oxidative stress marker, malondialdehyde, and MAPK sig-
naling. FD has also been shown to decrease the expression of
the profibrotic markers, collagen I and TGF-b1, via inhibition
of NOX4 in NRK-52E cells (192). Of note, most studies used
high concentrations of FD (2 mM for in vitro studies and
500 mg/kg/day for in vivo studies), thus raising concerns re-
lated to the specificity of this compound toward NOXs.

Tissue expression of NOX4, p22phox, and p47phox is up-
regulated in the renal cortex of db/db mice. Treatment of
db/db mice with GKT136901, a NOX1/NOX4 inhibitor,
blocks NOX4-dependent fibrotic signaling in the kidney after
exposure to high glucose. Notably, GKT136901 inhibits
high-glucose-mediated ROS, prevents phosphorylation of
p38 MAPK, and decreases the expression of TGF-b1/2 and
fibronectin (220).

Herbal medicines. Resveratrol (3,5,4¢-trihydroxy-trans-
stilbene) is a phytoestrogen that has been identified in >70
species of plants and their products such as grapes, wine, and
berries (209). Resveratrol is an activator of sirtuins (23) that
mediates antisenescence (144), antioxidant (141), and anti-
inflammatory properties (51, 143). Studies using dietary
resveratrol showed that resveratrol ameliorates renal func-
tion and tubulointerstitial fibrosis in the kidney of aged
mice (111). These beneficial effects of resveratrol appear to
be through the modulation of the renin–angiotensin system.
Resveratrol downregulates the angiotensin-converting
enzyme/Ang II/angiotensin II type 1 receptor (ACE/Ang II/
AT1R) signaling axis and upregulates the ACE2/Ang 1–7/
Mas axis that is protective against kidney remodeling. Re-
sveratrol also reduces the expression of the oxidative stress
markers NOX4, 8-hydroxy 2¢-deoxyguanosine (8-OHdG), 3-
nitrotyrosine in the aged murine kidney. Of note, in these
studies, resveratrol had no significant effect on the expression
of NOX2 (111). In diabetic nephropathy, interstitial fibrosis
results, in part, from the proliferation of interstitial fibro-
blasts and their activation to myofibroblasts. The prolifera-
tion of interstitial fibroblasts depends on the activation of

extracellular signal-regulated protein kinases 1 and 2 (ERK1/2)
by NOX4-mediated ROS. Studies using the rat kidney fi-
broblast cell line (NRK-49F) and db/db mice demonstrate
that resveratrol attenuates interstitial fibrosis by inhibiting
fibroblast proliferation through activation of AMPK and
subsequent downregulation of NOX4 expression (97).

Rosmarinic acid is an ester of caffeic acid and 3, 4-
dihydroxyphenyllactic acid. Rosmarinic acid is a component
of plants of the Lamiaceae family, including Rosmarinus
officinalis (rosemary), Perilla frutescens (perilla), Salvia offi-
cinialis (sage), Mentha arvense (mint), and Ocimum basilicum
(basil) (142). It has antioxidant and anti-inflammatory proper-
ties, and is used to treat reactive airway diseases, in particular
asthma (210). Rosmarinic acid attenuates CdCl2-induced
renal inflammation and fibrosis through reduction of the
TGF-b1/SMAD3 signaling pathway and associated NOX
activity. Overall decreases in H2O2 and NO production have
been observed in response to rosmarinic acid treatment in vitro
(studies using renal mesangial cells) and in vivo (studies in a
murine experimental model of cadmium-induced nephrotoxi-
city) (116). P. frutescens has also been reported to reduce high-
glucose-induced kidney remodeling via the suppression of
NOX4 and NOX2 activity in association with the activation of
the metabolic regulator AMPK (125).

Icariin is a bioactive constituent isolated from the Chinese
medicine, Ying Yang Huo. It is a prenylated flavonol glyco-
side with reported potent cardiovascular protective functions
(265). Icariin treatment reduces inflammation and fibrosis in
the UUO model of renal fibrosis in mice. Icariin mediates its
effect by decreasing the proinflammatory mediators, NF-jB,
cyclooxygenase-2, and IL-1-b. Icariin also restores the renal
oxidant/antioxidant balance through inhibition of TGF-b1-
induced NOX4 activity and increases in the expression of the
antioxidant enzymes, catalase and SOD (38).

Punica granatum (pomegranate) is rich in phenolic com-
pounds, such as tannins (gallotannins and ellagitannins) and
anthocyanins (rutinosides, pentosides, and glucosides of cy-
anidin, pelargonidin, and delphinidin) (6, 74). Pomegranate
peels contain higher amounts of bioactive compounds than
those found in the juice (135, 185); these peels are recognized
as dietary antioxidants with antimicrobial, anticancer, anti-
obesity, antidiabetic, antiulcerogenic and antihypertensive,
and antimutagenic properties (15, 17, 62, 65, 92, 185, 231).
In vivo studies using pomegranate peel extract-stabilized
gold nanoparticles (PPE-AuNP) have been shown to attenu-
ate nephropathy and associated kidney fibrosis in the murine
model of STZ-induced diabetic nephropathy. In this model,
STZ-induced hyperglycemia sustains the production of
NOX4-mediated ROS via the formation of advanced glyca-
tion end products (AGE). The binding of AGE to the receptor
for advanced glycation end products (RAGE) increases
NOX4 expression and leads to phosphorylation of p47phox.
Beneficial effects of PPE-AuNP on diabetic nephropathy are
mediated, in part, by a decrease in AGE-RAGE stimulation of
NOX4 expression and p47phox phosphorylation. In addition,
PPE-AuNP reduces inflammation through modulation of the
MAPK/NF-jB/STAT3 axis and promotes antioxidant de-
fenses via activation of the PI3K/AKT/Nrf2 signaling (164).

Peptides/amino acids. Chronic activation of the renin–
angiotensin system via stimulation of the ACE/Ang II/type 1
angiotensin receptor (AT1) signaling pathway leads to
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hypertensive kidney disease (HKD), characterized by glo-
merular sclerosis and interstitial fibrosis (289). The hepta-
peptide Ang1–7 is derived from the hydrolysis of Ang II by
the angiotensin-converting enzyme ACE2 (29). Ang1–7
mediates vasodilation through its binding to the G protein-
coupled receptor, Mas, and this ACE2/Ang1–7/Mas axis
counteracts profibrotic effects of ACE/Ang II/AT1 activation
(290). Aldosterone-induced HKD in rats recapitulates the
glomerular damage/fibrosis associated with the disease; in
this HKD model, infusion of Ang1–7 decreases levels of the
profibrotic factors, TGF-b1, TIMP-1/TIMP-2, FGF-1 and
downregulates NOX2 mRNA expression in the kidney (40).
The protective effect of Ang1–7 against kidney remodeling
has also been demonstrated in Akita mice, a murine model
of type 1 diabetes. Ang1–7 administered to Akita mice re-
duces kidney oxidative stress and NOX4 expression, in as-
sociation with decreased expression of the profibrotic
markers, TGF-b1 and collagen IV (223).

Glycine is a nonessential amino acid that is a precursor of
reduced GSH, the most abundant intracellular antioxidant
(167). Glycine is also used for the synthesis of creatine, pu-
rines, and heme (26, 68, 82). Glycine treatment has been
shown to attenuate tubular interstitial fibrosis in the murine
model of STZ-induced diabetes. In this model, amelioration
of kidney remodeling in response to glycine treatment was
associated with a decrease in renal oxidative stress and NOX4
mRNA expression (255).

Prescription drugs. Sitagliptin is a dipeptidyl peptidase 4
inhibitor that is approved for the treatment of type 2 diabetes
mellitus (79). Sitagliptin ameliorates tubulointerstitial fibrosis
associated with doxorubicin (DOX)-induced nephropathy in
rats. This effect of sitagliptin results from a decrease in the
expression of the NLRP3 inflammasome, and a decrease in
the mRNA expression of NOX2, p47phox, and p67phox (115).

Aliskiren is a renin inhibitor that causes vasodilatation and
is prescribed to treat hypertension (221). Paricalcitol is a
synthetic vitamin D analog that is prescribed to treat hyper-
parathyroidism (179). Administration of aliskiren (via a
miniosmotic pump) or paricalcitol (intraperitoneal injection)
decreases the expression of the profibrotic markers, a-SMA
and collagen IV, in a murine experimental model of UUO-
induced kidney fibrosis (47); antifibrotic effects of these
drugs are associated with a decrease in NOX1 and NOX2
expression and a decrease in levels of p-Erk, p-p38 MAPK,
and NF-jB activation. Administration of aliskiren alone de-
creases the expression of NOX1 and NOX2 in the kidneys of
UUO mice without having a significant effect on NOX4 ex-
pression; in contrast, paricalcitol alone significantly reduces
NOX4 expression in the obstructed kidney. Monotherapy
with either drug reduces the number of apoptotic cells de-
tected by TUNEL in the fibrotic kidney (47).

Candesartan, approved for the treatment of hypertension,
blocks Ang II receptors (87). Pioglitazone is a peroxisome
proliferator-activated receptor-gamma (PPAR-c) agonist (56)
that restores insulin sensitivity and is a prescribed drug for
treatment of type 2 diabetes (59). The administration of can-
desartan and pioglitazone to db/db mice decreases glomerulo-
sclerosis and glomerular oxidative stress. This effect of
candesartan and pioglitazone on renal fibrosis is associated with
a decrease in the expression of NOX2 and p22phox and enhanced
expression of Cu/Zn-SOD and extracellular SOD (77).

Liver Fibrosis

Causes and pathogenic mechanisms

Liver fibrosis results from chronic exposure to injuries of
diverse etiology (249). Sources of such injury may include
viral infections, alcoholism, xenobiotic intoxication, and sys-
temic metabolic diseases such as diabetes, obesity, nonalcoholic
fatty liver disease, and nonalcoholic steatohepatitis (NASH)
(25). As described for other organs, liver fibrosis is thought to
result from common fibrogenic pathways linked to a dysre-
gulated tissue-repair response (191). Epithelial injury may
initiate this dysregulated repair process (53), often associated
with release of danger-associated molecular patterns (DAMPs)
and pathogen-associated molecular patterns (PAMPs) (5, 171).
The recognition of DAMPs and PAMPs by Kupffer cells
(hepatic-resident macrophages), hepatocytes, and immune
cells triggers hepatic inflammation (12, 57). Hepatic in-
flammation involves the mobilization of macrophages,
lymphocytes, eosinophils, and dendritic cells. Inflammatory
mediators responsible for the mobilization and activation of
these immune cells in the liver include TNF-a, IL-1, IL-6,
C-X-C motif chemokines, granulocyte-colony stimulating
factor (G-CSF), granulocyte-macrophage-CSF, and the
NLRP3 inflammasome (57). Injured epithelial cells, endo-
thelial cells, and activated immune cells secrete profibrotic
mediators that set the stage for the fibrogenic phase of liver
injury. These profibrotic mediators include PDGF, Ang II,
CTGF, and TGF-b1 (67, 187, 254, 278). Fibrogenesis leads
to progressive accumulation of ECM, destruction of the li-
ver tissue architecture, decline in liver function, and por-
tal hypertension (194). The putative cell-of-origin of liver
myofibroblasts that deposit and remodel the ECM in the
liver have been intensely studied. EMT and activation of
resident mesenchymal progenitors, bone-marrow-derived
fibrocytes, or hepatic stellate cells (HSCs) have all been
implicated in contributing to the myofibroblast population
in the fibrotic liver (1, 60, 122, 131, 182, 205). However,
in vivo lineage tracing studies carried out in a murine model
of liver fibrosis have shown that >95% of liver myofibro-
blasts come from the transdifferentiation of HSCs and the
activation of portal fibroblasts (108).

Role of NOX enzymes in liver fibrosis

The role of increased oxidative stress in the pathogenesis of
liver fibrosis is based on studies using clinical samples and
experimental animal models of liver fibrosis (11, 211, 273)
(Fig. 5). NOX4 expression has been shown to be elevated in a
murine model of steatosis-induced fibrosis (21). In this model,
hepatocyte-specific deletion of NOX4 results in lower oxida-
tive stress, reduced lipid peroxidation, and attenuation of
liver fibrosis (21). NOX4-derived ROS have also been
implicated in the transdifferentiation and proliferation of
HSCs (211). NOX2-/- mice are protected against CCl4-
induced liver fibrosis (11). These studies support a role of
NOX2 in the regulation of both the expression of matrix
metalloproteinase-2 and -9 (MMP-2 and MMP-9) and the
expression of the MMPs tissue inhibitors, TIMP-1 and
TIMP-2. NOX2 has also been shown, in vitro, to be the source
of ROS in HSCs and Kupffer cells (186). NOX2 has been
shown to mediate the activation of HSCs into myofibroblasts
after phagocytosis of dying hepatocytes (114). NOX1 KO
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mice are also protected against CCl4-induced liver fibrosis
(134). NOX1 is also expressed and activated in HSCs. NOX1,
similar to NOX2 and NOX4, has also been implicated in the
transdifferentiation and proliferation of HSCs (134). In vitro
studies using a genetic approach to delete NOX5 in HSCs
have also suggested that NOX5 may be involved in the acti-
vation of HSCs through the modulation of p38 MAPK (9).

Therapeutic strategies

Small molecule inhibitors. The NOX1/NOX4 inhibitor,
GKT137831, ameliorates liver inflammation and fibrosis in a
murine model of CCl4-induced liver fibrosis (10). These
studies applied the CCl4-induced liver fibrosis model to WT
mice and to mice harboring the SOD1 G37R mutation
(SOD1mu), which increases the catalytic activity of NOX1;
however, the drug protected both WT and SOD1mu mice.
GKT137831 impedes hepatic lipid peroxidation, as evi-
denced by lower levels of 4-HNE, in liver tissue, along with a
downregulation in the gene expression of profibrotic markers
and NOX4 in HSCs isolated from WT or SOD1mu mice (10).

Herbal medicines. 2,3,5,4¢-Tetrahydroxystilbene-2-O-b-
d-glucoside (TSG) is a bioactive polyphenolic component of
Polygonum multiflorum (266). TSG has been reported to pro-
tect against end-stage hepatic fibrosis associated with NASH
(269). TSG treatment of low-density lipoprotein receptor
knockout mice fed a high fat diet to induce NASH resulted in
lowering of collagen accumulation in the liver with reduced
expression of TGF-b1 and a-SMA. In addition, TSG decreased
NOX2 and NOX4 expression, and enhanced the hepatic anti-
oxidant activity via the upregulation of SOD, catalase, and
GSH (269). Of note, TSG administration has been reported to
aggravate acetaminophen-induced hepatotoxicity in mice due
to enhanced expression of cytochrome P450 (271).

Ferulic acid is a dietary antioxidant found in many plants
and vegetables. It is a phenolic compound particularly
abundant in bamboo sprouts, beetroot, cabbage, broccoli, and
spinach (284). In vitro treatment of human HSCs (LX-2 cells)
with methyl ferulic acid (MFA) inhibited TGF-b1-induced
expression of a-SMA, collagen I, TGF-b receptor I, NOX4,
and p22phox (43). This reduction in the expression of profi-
brotic markers was associated with a decrease in the phos-
phorylation levels of Smad2/3 (43). Furthermore, MFA
reduced fibrosis markers such as hydroxyproline, hyaluronic
acid, procollagen III, and collagen IV in the serum of a rat
model of hepatic fibrosis (43). Modulation of the TGF-b1/
NOX4-mediated ROS signaling pathway has been suggested
as the mechanism of MFA’s protective effect on liver
fibrosis (43).

Ursolic acid is a lipophilic pentacyclic triterpenoid found
in the peel of fruits and herbs such as apples, bearberry,
lavender, and coffee leaves (110). Pretreatment of HSCs with
ursolic acid prevents TGF-b1-induced differentiation of
HSCs into myofibroblasts (279). This effect of ursolic acid
in vitro on HSC activation has been linked to both a reduction
in the expression of the NOX2 and its subunits, p67phox,
p22phox, and Rac1 and inhibition of the hedgehog signaling
pathway (279). More recent studies have shown that ursolic
acid also protects against CCl4-induced liver fibrosis in rats
(80). These studies showed that administration of ursolic acid
ameliorates fibrosis via downregulation of TGF-b1, collagen
I, and TIMP-1 gene expression (80); this decrease in profi-
brotic marker expression is accompanied by a reduction in
CCl4-induced expression of NOX4, p67phox, NOX2, p47phox,
NOX1, p22phox, and Rac1 proteins in the liver tissue (80).

Polydatin is a glucoside of resveratrol that has been shown
to attenuate CCl4-induced liver fibrosis in mice (283). Poly-
datin treatment reduces CCl4-induced liver fibrosis in mice
via the attenuation of oxidative stress and inflammation.

FIG. 5. NOX expression
and function in liver fibro-
sis. The expression/activity
of NOXs supports the in-
crease in oxidative stress and
altered redox signaling in the
pathogenesis of liver fibrosis.
NOX-generated ROS con-
tribute to apoptosis and/or
necrosis of hepatocytes after
injury. Hepatocyte NOX-
dependent ROS may activate
hepatic Kupffer cells, resi-
dent macrophages of the li-
ver. H2O2 and O2$ - from
activated NOXs mediate the
activation and transdiffer-
entiation of HSCs into myo-
fibroblasts, as well as in the
phagocytosis of apoptotic
bodies by HSCs. HSCs, he-
patic stellate cells. Color
images are available online.
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Lower hepatic levels of the oxidative stress markers, 4-
hydroxy-2-nonenal (4-HNE) and NOX4, have been shown
in response to polydatin treatment (283). The reduction of
the inflammatory response upon polydatin administration is
characterized by decreased macrophage recruitment and
reduced gene expression of TNF-a and MCP-1 (283).

Quercetin or 3, 3¢, 4¢, 5, 7-pentahydroxyflavone is a plant
pigment that is abundant in many fruits, vegetables, and
grains (147). Quercetin has been reported to improve bile
duct ligation (BDL)-induced liver fibrosis in rats through
downregulation of NOX1 expression (120). Quercetin also
decreases the expression of Rac1, a small GTPase protein that
enhances NOX1 activity, and upregulates the activity of SOD
and catalase in the liver tissue of rats in the BDL liver fibrosis
model (120).

Antioxidants. Apocynin is a natural organic compound
that has been described as a NOX inhibitor (14). a-Lipoic
acid (ALA) is an antioxidant produced by plants, animals,
and humans. In cells, ALA serves as a cofactor for pyruvate
dehydrogenase and a-ketoglutarate dehydrogenase in mito-
chondria (208). Administration of both apocynin and ALA
attenuated concanavalin A-induced liver fibrosis in rats (71).
These studies showed that apocynin and ALA treatment re-
duces hepatic levels of hydroxyproline, a-SMA, and TGF-b1
as well as diminish levels of the proinflammatory markers,
IL-6 and TNF-a. This treatment also restores the antioxi-
dant capacity of the liver through augmentation of SOD and
GSH while decreasing mRNA expression of NOX4 and
NOX1 (71).

Prescription drugs. Fluvastatin (Flu) is a prescription
drug that limits the production of cholesterol and prevents its
accumulation in blood vessel walls (189). Flu treatment
ameliorates steatohepatitis-induced liver fibrosis in rats via
lowering collagen accumulation and decreasing the expres-
sion of a-SMA (45). Flu treatment also downregulates
mRNA expression of collagen 1, TIMP-1, IL-6, iNOS, and
intercellular adhesion molecule 1 (ICAM-1). In vitro treat-
ment with Flu prevents palmitate-induced injury of hepato-
cytes by reducing intracellular ROS and the secretion of
proinflammatory factors such as TNF-a and IL-6 (45). These
studies also show that Flu treatment downregulates NOX2
mRNA.

Peptides. Similarly to kidney fibrosis, delivery of Ang1–
7 attenuates liver fibrosis induced by BDL in rats (30). In
these studies, the authors demonstrate that fibrogenesis de-
pends on the activation of the NLRP3 inflammasome/IL-1b
signaling axis by NOX4. Protective effects of Ang1–7 were
proposed to be mediated by restoration of the altered redox
balance in HSCs by lowering NOX4-driven oxidative stress
and augmenting the Nrf2/ARE antioxidant defenses (30).

Cardiac Fibrosis

Causes and pathogenic mechanisms

The term cardiac fibrosis encompasses two subtypes of
fibrosis affecting the heart, namely replacement fibrosis and
reactive fibrosis. Replacement fibrosis is a reparative process
initiated upon cardiomyocyte injury. Replacement fibrosis
deposits scar tissue to replace the loss of cardiomyocytes due

to necrosis, and is associated with systolic ventricular dys-
function. Reactive fibrosis is triggered by stimuli such as
mechanical stress, myocardial inflammation, and metabolic
dysregulation. These stimuli activate fibrogenic responses
in absence of cardiomyocyte death. Reactive fibrosis leads
to the accumulation of fibrous tissue around cardiomyo-
cytes and the heart vasculature; in contrast to replace-
ment fibrosis, reactive fibrosis is associated with diastolic
dysfunction (216).

Activated myofibroblasts deposit fibrils of collagen I and
III that constitute scar tissue in cardiac fibrosis (216). Lineage
tracing studies have shown that resident cardiac fibroblasts
are the main source of activated myofibroblasts in the heart
(4, 174). Profibrotic mediators support the activation and
differentiation of cardiac myofibroblasts. Macrophage-
derived IL-10, TGF-b1, and PDGF are prominent profibrotic
factors that mediate myofibroblast differentiation and acti-
vation (69, 195). Degranulation of mast cells after cardio-
myocyte injury also releases proinflammatory and profibrotic
mediators such as TNF-a, TGF-b1, IL-4, PDGF, chymase,
and tryptase (76, 121, 162, 178, 224, 228). Recruited T cells
have been suggested to participate in the reprogramming of
macrophage toward a profibrotic phenotype, and to support
the activation and differentiation of myofibroblasts. Direct
interactions between Th1 lymphocytes and cardiac fibro-
blasts have been suggested to enhance the production of
fibroblast-derived TGF-b1 (180). Th2 lymphocyte-derived
IL-4 and IL-13 (48) have been implicated in the stimulation
of collagen synthesis by myofibroblasts (83). Neutrophils
have been proposed to play a role in the development of
fibrosis in the aging heart through the establishment of a
peptidylarginine deiminase 4-dependent neutrophil extra-
cellular trap formation (166). In addition to the release of
profibrotic mediators by recruited immune cells, the renin–
angiotensin–aldosterone system promotes the differentiation
of cardiac fibroblasts into myofibroblasts through the en-
gagement of AT1 and mineralocorticoid receptor-driven
signaling (119, 252). Furthermore, crosstalk between injured
cardiomyocytes, endothelial cells, and resident cardiac fi-
broblasts has been reported to stimulate and sustain the dif-
ferentiation of fibroblasts into myofibroblasts (213).

Role of NOX enzymes in cardiac fibrosis

Many of the profibrotic mediators described above, in
particular Ang II and TGF-b1, mediate their effects on car-
diac myofibroblast activation and differentiation via stimu-
lating ROS production (159, 197). Cardiac fibroblast-derived
ROS participates in matrix accumulation and remodeling
(148). The ROS-generating enzymes, NOX4 and NOX2, are
the predominant NOX isoforms expressed in the heart (2, 18).
Both NOX4 and NOX2 are expressed in cardiomyocytes,
endothelial cells, and fibroblasts (280). NOX4 is also found in
smooth muscle cells (270). In vivo studies using NOX4- or
NOX2-deficient mice have confirmed a role for both these
homologs in the pathogenesis of cardiac fibrosis (2, 54, 117).
NOX4-produced H2O2 mediates the differentiation of cardiac
fibroblasts (54), and may contribute to cardiomyocyte apo-
ptosis (2). NOX2 has been reported to mediate Ang II-
induced cardiac fibrosis (117). More recently, studies have
shown increased cardiac NOX1 mRNA expression in a mu-
rine model of DOX-induced cardiac fibrosis; in addition,
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conditioned medium from NOX1-depleted H9c2 cardio-
myocytes loses its ability to upregulate collagen3a1 mRNA
expression in cardiac fibroblasts (109). NOX2 has been
suggested to mediate endothelial-to-mesenchymal transition
in cardiac fibrosis (176). Selective expression of NOX5 in
VSMCs of humanized transgenic mice increases cardiac
oxidative stress and fibrosis (173) (Fig. 6).

Therapeutic strategies

Small molecule inhibitors. Mitoquinone (MitoQ) is a
mitochondria-targeted antioxidant that accumulates within
the mitochondrial matrix due to the positive charge of its
triphenylphosphonium moiety (227). MitoQ treatment at-
tenuates left ventricular pressure overload-induced cardiac
remodeling (86). These studies showed that MitoQ treatment,
in vivo, restores the cardiac oxidant/antioxidant balance. The
protective effect of MitoQ appears to result from both a re-
duction in NOX4-mediated oxidative stress and an increase
in Nrf2-driven antioxidant defenses (86). Furthermore,
MitoQ administration lowers levels of the profibrotic cyto-
kine, TGF-b1 (86).

As with fibrosis involving the lung, kidney, and liver, the
NOX1/4 inhibitor GKT137831 has been shown to attenuate
cardiac fibrosis in a murine model overexpressing human
NOX4 in cardiac myocytes (282). These studies showed that
GKT137831 treatment reduces oxidative-stress-mediated
activation of the AKT/mTOR and NFjB signaling pathways.

Herbal medicines. Protocatechuic acid or 3,4-dihydroxy-
benzoic acid is a metabolite that is derived from poylphenols

found in green tea (140). Protocatechuic acid has antioxidant
properties and has been shown to prevent differentiation of
cardiac fibroblasts into myofibroblasts (229). Protocatechuic
acid blocks myofibroblast differentiation by inhibiting NOX4-
mediated ROS production and phosphorylation of p38 MAPK.
Inhibition of the NOX4/ROS/p38 signaling pathway leads to
reduced expression of the profibrotic markers, a-SMA, col-
lagen I, and CTGF (229).

Astragaloside IV is a traditional Chinese medicinal herb
derived from Astragalus membranaceus that is proposed to
mediate antioxidant, anti-inflammatory, immunoregulatory,
anticancer, hypolipidemic, and antihyperglycemic properties
(154). A. membranaceus extracts contain polysaccharides,
flavonoids, and saponins (154). Astragaloside IV ameliorates
cardiac fibrosis and cardiac function in a murine model of
DOX-induced cardiomyopathy (150). Astragaloside IV me-
diates its protective effects against DOX-induced cardiac fi-
brosis via the inhibition of NOX2- and NOX4-mediated
oxidative stress (150). This reduction in NOX-mediated ROS
is associated with a decrease in cardiomyocyte apoptosis
triggered by DOX injury (150). Astragaloside IV treatment
has also been reported to ameliorate cardiac fibrosis in
ApoE-/- mice, a murine experimental model of hyperlipid-
emia that develops cardiac hypertrophy and fibrosis (146). In
this model, astragaloside IV restored the expression of the
proliferative marker Ki67 and decreased that of NOX4 and
p16INK4a, a biomarker of cellular senescence (146).

Carthamus tinctorius L. or safflower belongs to the family
of Asteraceae. Safflower extracts contain bioactive compo-
nents such as flavonoids, quinochalcones, alkaloids, and
polyacetylenes (287). Treatment with safflower extracts

FIG. 6. NOX expression
and function in cardiac fi-
brosis. In the fibrotic heart,
NOXs have been implicated
in cardiomyocyte apoptosis
and hypertrophy. NOXs are
also involved in the differ-
entiation of mesenchymal fi-
broblasts into myofibroblasts
that deposit exuberant ECM.
NOXs also contribute to the
polarization of macrophages
to a profibrotic phenotype.
Color images are available
online.

466 BERNARD AND THANNICKAL



reduces NOX2-mediated oxidative stress in the heart of NO-
deficient hypertensive rats (28). In this experimental model,
lower levels of the profibrotic mediators TGF-b1 and MMP-9
were linked to a decrease in NOX2 expression (27).

Luteolin-7-diglucuronide (L7DG) is a bioactive com-
pound extracted from the leaves of Verbena officinalis (32).
L7DG pretreatment prevents the development of cardiac
fibrosis in response to isoproterenol-induced myocardial in-
jury in mice (181). These studies showed that L7DG pre-
treatment decreases the accumulation of interstitial collagen
and a-SMA levels in heart tissues of isoproterenol-injured
mice. Moreover, L7DG treatment reduced the expression
of genes encoding NOX subunits (181), namely CYBA
(p22phox), CYBB (gp91phox), NCF1 (p47phox), NCF2
(p67phox), NCF4 (p40phox), and RAC2 (240). L7DG also
downregulated mRNA expression of the profibrotic markers,
Col1a1, Col1a2, Col3a1, Col2a1, fibronectin, elastin, CTGF,
and collagen triple helix repeat containing-1 (181).

Prescription drugs. Trimetazinide (TMZ) is a piperazine
compound that prevents ischemia and is a prescribed drug for
treatment of angina (46). TMZ was first described as a
modulator of metabolism that shifts mitochondrial substrate
utilization (75). TMZ ameliorates cardiac fibrosis associated
with diabetes-mellitus-induced cardiomyopathy in rats (239).
In this experimental model of cardiomyopathy, TMZ reduced
the occurrence of oxidative DNA damage, and decreased
the expression of NOX2 and p47phox mRNA. Of note, these
studies also showed that TMZ does not reverse the increase in
p22phox mRNA expression observed in the myocardium of
diabetic rats. Furthermore, reduction of myocardial oxidative
stress in diabetic rats upon TMZ treatment attenuates the
cardiac inflammatory response (239).

Febuxostat is a xanthine oxidase inhibitor (XO) that is
approved for the treatment of gout (64). High salt intake
leads to increased cardiac mass in rats due to cardiomyocyte
hypertrophy and interstitial fibrosis (123). Febuxostat ad-
ministration reversed the increase in XO and NOX activity
associated with high-salt-induced hypertension in rats (177).
Febuxostat treatment also reduced the expression of collagen
I, TGF-b1, phospho-ERK, ACE, and ATR1 (177).

Similar to protective effects of metformin on lung fibrosis,
administration of metformin after myocardial infarction
ameliorated cardiac fibrosis and decreased levels of cardiac
galectin-3 (13). Galectin-3 is a b-galactoside binding lectin
that mediates myofibroblast proliferation and activation (100,
161, 238). A reduction in galectin-3 release by myofibro-
blasts, through the modulation of the mitochondrial NOX4/
PKCa signaling pathway by AMPK, has been proposed as a
mechanism for the salutary effects of metformin on cardiac
fibrosis after myocardial infarction (13).

Peptide. As described for kidney fibrosis, Ang1–7 has
been reported to ameliorate cardiac fibrosis, although by
apparently different mechanisms (41). Activation of cardiac
fibroblasts observed in cardiac fibrosis is mediated by en-
hanced extracellular calcium influx via TRPC3 channels
(184), as well as by augmented NOX4 expression (54). Ad-
ministration of Ang1–7 reduces collagen accumulation and
mitigates the activation of cardiac fibroblasts by AngII (41).
These studies suggest that Ang1–7 exerts its effect on cardiac
remodeling through the reduction of either (or both) extra-

cellular calcium influx and oxidative stress. The mechanism
proposed to support the protective effects of Ang1-7 is by a
reduction in NOX4-mediated oxidation of CaMKIId and
GSSG, and thus lower levels of CTGF and ERK1/2 MAPK
activation (41).

Conclusion

Fibrosis involving diverse organ systems such as the lung,
kidney, liver, and heart may involve common pathophysio-
logic mechanisms. Accumulating evidence indicates that
an upregulation in the expression and activation of ROS-
generating NOX enzymes represents a conserved fibrogenic
mechanism across these organs. As such, NOX enzymes
constitute a promising therapeutic target to ameliorate fi-
brosis, either through a preventative strategy or by arresting
progression of established fibrosis. A large number of pre-
clinical studies in experimental animal models have re-
inforced the legitimacy of NOXs as attractive targets for
organ fibrosis. Notably, these studies have demonstrated
in vivo attenuation of the severity of fibrosis, acceleration
of its resolution, and/or arrest of its progression. Some of
the NOX-targeted therapies appear to have redox-
modulatory effects rather than a specific effect on NOX
enzymes (14). The currently available preclinical models
of organ fibrosis do not recapitulate the progressive nature
of the disease in humans; using aging models may be more
representative of the pathology (98), and the emerging use
of human organoid models may be more predictive of
therapeutic responses (236). Finally, a more thorough un-
derstanding of signaling targets/intermediates of the
NOXs, their cell-specific expression and targeting, and the
development of more specific, potent, and safe strategies to
inhibit specific NOX homologs will advance drug dis-
covery/development for fibrotic pathologies that currently
carry high morbidity and mortality.
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Abbreviations Used

4-HNE¼ 4-hydroxy-2-nonenal
8-OHdG¼ 8-hydroxy 2¢-deoxyguanosine
ABCA3¼ATP-binding cassette-type 3

ACE¼ angiotensin-converting enzyme
AECI¼ alveolar epithelial cell type I

AECII¼ alveolar epithelial cell type II
AGE¼ advanced glycation end products
ALA¼ a-lipoic acid

AMPK¼AMP-activated kinase
Ang II¼ angiotensin II

AT1¼ type 1 angiotensin receptor
AT1R¼ angiotensin II type 1 receptor

BDL¼ bile duct ligation
CaMKII¼Ca2+/calmodulin-dependent protein

kinase II
CB1¼ cannabinoid receptor type 1

CTGF¼ connective tissue-derived growth factor
DAMPs¼ danger-associated molecular patterns

DOX¼ doxorubicin
Duox¼ dual oxidase
ECM¼ extracellular matrix

478 BERNARD AND THANNICKAL



Abbreviations Used (Cont.)

EMT¼ epithelial-to-mesenchymal transition
EndMT¼ endothelial-to-mesenchymal
ERK1/2¼ extracellular signal-regulated protein

kinase 1 and 2
FD¼ fluorofenidone or [1-(3-fluorophenyl)-5-

methyl-2-(1H)-pyridone]
FDA¼ U.S. Food and Drug Administration

Flu¼ fluvastatin
G-CSF¼ granulocyte-colony stimulating factor

GSH¼ glutathione
H2O2¼ hydrogen peroxide
HGF¼ hepatocyte growth factor
HKD¼ hypertensive kidney disease
HSCs¼ hepatic stellate cells

ICAM-1¼ intercellular adhesion molecule 1
IL¼ interleukin

iNOS¼ inducible nitric oxide synthase
IPF¼ idiopathic pulmonary fibrosis

Keap1¼Kelch-like ECH-associated protein 1
L7DG¼ luteolin-7-diglucuronide

LPA¼ lysophosphatidic acid
MAPK¼mitogen-activated protein kinase
MCP-1¼monocyte chemoattractant protein 1

MFA¼methyl ferulic acid
MgIG¼magnesium isoglycyrrhizinate
MitoQ¼Mitoquinone
MMPs¼matrix metalloproteinases
mRNA¼messenger RNA
MSCs¼mesenchymal stem cells
NAF1¼ nuclear assembly factor 1 ribonucleoprotein
NASH¼ nonalcoholic steatohepatitis
NF-jB¼ nuclear factor-kappa B

NO¼ nitric oxide

NOX¼ nicotinamide adenine dinucleotide
phosphate oxidase

Nrf2¼ nuclear factor erythroid-derived 2-like 2
PAH¼ pulmonary hypertension

PAI-1¼ plasminogen activator inhibitor-1
PAMPs¼ pathogen-associated molecular patterns

PDGF¼ platelet-derived growth factor
PGE2¼ prostaglandin E2

PPAR-c¼ peroxisome proliferator-activated
receptor-gamma

PPE-AuNP¼ pomegranate peel extract-stabilized gold
nanoparticles

RAGE¼ receptor for advanced glycation end products
ROS¼ reactive oxygen species

SASP¼ senescence-associated secretory phenotype
SFTPs¼ surfactant proteins

SMA¼ smooth muscle actin
SMAD¼mothers against decapentaplegic homolog

SOD¼ superoxide dismutase
STZ¼ streptozotocin

Tan-IIA¼ tanshinone IIA
TGF-b1¼ transforming growth factor-beta 1

TIMPs¼ tissue inhibitors of matrix
metalloproteinases

TMZ¼ trimetazinide
TNF-a¼ tumor necrosis factor-alpha

TPL¼ triptolide
TRPC6¼ transient receptor potential cation channel 6

TSG¼ 2,3,5,4¢-tetrahydroxystilbene-2-O-b-d-
glucoside

UUO¼ unilateral ureteral obstruction
VCAM-1¼ vascular cell adhesion molecule-1

VSMCs¼ vascular smooth muscle cells
XO¼ xanthine oxidase inhibitor
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