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Abstract

Consideration of a core and mantle configuration for individual grains is a prominent method to 

capture the grain size-dependence in the constitutive models for polycrystal material. The mantle 

represents a region of the grain volume near the grain boundary where mechanical deformation is 

influenced by the grain boundaries, while the core represents the inner region of the grain volume. 

The grain size-dependence is then realized by assigning a set of values for the mechanical 

properties in the mantle that are different from those of the core region. However, these values for 

the mechanical properties of the mantle region are typically chosen arbitrarily, guided solely by 

the quality of the agreement between a model’s predicted stress-strain behavior with that obtained 

experimentally. In the present study, a physics-based method to develop the grain size-dependent 

crystal plasticity constitutive model on the core and mantle configuration for polycrystal materials 

is presented. The method is based on the assumption that any resistance to dislocation nucleation 

and motion in a material manifests as an increase in yield strength and a decrease in strain-

hardening modulus, and the mutual relationship between yield strength and strain-hardening is an 

inherent material property that determines the plasticity of that specific material. Accordingly, the 

same single crystal plasticity constitutive model that describes the behavior of the material under 

loading can be used to capture the increased resistance to dislocation nucleation and motion in the 

grain boundary influence region. The physics-based modeling is facilitated by introducing a shear 

flow strain distribution in the phenomenological formulation and a pile-up of dislocation density 

distribution in the dislocation based formulation, such that, the resulting variations in the yield 

strength and the strain-hardening modulus are identical to that produced by the increased 

resistance in the grain boundary influence region. Thus, the increase in strength and the decrease 

in the strain-hardening modulus, determined as spatially varying local material properties in the 

mantle, are mutually related through the grain size-independent inherent plastic properties specific 

to the material. A simplified model that considers the grain boundary effect averaged over the 

grain volume is also developed under this general framework. Implementation of this simplified 

model is demonstrated by considering the case of a power law flow rule and a hyperbolic-secant 

hardening rule for the phenomenological formulation, and Taylor strength relation for the 

dislocation based formulation. Finally, the grain size-dependent constitutive model is validated by 
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comparing the predicted stress-strain behavior of polycrystal copper samples under uniaxial 

loading with experimental results.
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based model; Core and mantle configuration

1. Introduction

Microstructural feature sizes such as grains and precipitates have significant effects on 

material deformation. The yield strength of a crystalline metallic material increases when its 

average grain size becomes smaller according to the Hall-Petch relationship [26,48]. 

Similarly, the yield strength of nickel based superalloys increases with a decrease in the 

average size of precipitate phase for a given volume fraction of the precipitate 

[10,22,32,37,43,50]. These grain size-dependent behaviors are attributed to the influence of 

grain boundaries on dislocation nucleation and its mobility, which in turn affects yield 

strength and strain-hardening in slip systems.

In classical crystal plasticity constitutive models [35], the plastic deformation of a material is 

captured through a set of a flow rule and a strength evolution rule that describes slipping 

deformation in slip systems as a function of resolved shear stress. However, these 

constitutive models do not have an intrinsic mechanism to capture any localized deformation 

arising from the geometric constraints associated with the existence of microstructural 

features. Therefore, classical crystal plasticity constitutive models lack the ability to predict 

microstructural feature size-dependent behavior observed experimentally.

The mechanism of grain size-dependent behavior has been explained as a consequence of 

the influence of plastic strain gradients on material response, arising primarily due to the 

inhomogeneous plastic deformation between neighboring grains as a result of lattice 

incompatibilities [16]. Accordingly, deformation gradient based grain size-dependent 

constitutive models that fundamentally rely on dislocation density as an internal variable to 

capture the evolution of dislocations were developed [15]. Dislocations are generally 

classified into statistically stored dislocations (SSDs) that evolve from the random trapping 

processes during uniform plastic strains, and geometrically necessary dislocations (GNDs) 

that evolve as a result of the strain gradients driven by geometrical constraints on the crystal 

lattice [4]. The evolution of GNDs introduces the plastic strain gradients [2]. While a 

number of strain gradient based models were phenomenological under the higher order 

mathematical formulations [12,17,18,39,53,7], others followed a more physically intuitive 

approach by directly introducing strain gradient effects in the evolutionary laws of internal 

slip system state variables [1,11,13,14,21,3,34,36,41–43,46,50,54,6,8]. However, the strain 

gradient based grain size-dependent constitutive models inherently lack a fundamental 

mechanism in their formulation to capture the yield strength variation with grain size 

[14,40,42,9], which results in enforcing a boundary region with pre-existing GNDs. This 

deficiency of the strain-gradient models is highlighted by Kubin et al. [40]. Another 

deficiency of the strain-gradient models is that their formulations also result in mesh 
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sensitivity [8], which not only is a challenge in the implementation of the method, but more 

importantly, raises concerns regarding the physical foundation of the formulation as well.

Following an alternative approach, grain size-dependent constitutive models were developed 

by subdividing a grain into a core and a mantle configuration [19,20,44,51,52]. The model 

relies on the hypothesis that grain boundaries influence the resistance to dislocation 

nucleation of material points in their neighborhood, causing a change in the plastic behavior 

of these material points by increasing the yield strength and decreasing the strain-hardening 

coefficient. The mantle that surrounds the core represents the region influenced by grain 

boundary, and is modeled to deform differently from the core that represents the inner 

volume of the grain. The characteristics of the core remaining the same irrespective of the 

grain size an inherent length-scale naturally emerges in the constitutive model. The emerged 

length-scale is a measure of the relative dominance of the grain boundary influence region 

on the overall behavior of the material. This approach is primarily motivated by the 

experimental determination of increased strain-hardening near grain boundaries [25,45]. 

Meyers et al. [44] modeled individual grains in a polycrystalline aggregate as a composite of 

a work-hardened boundary layer (mantle) surrounding the grain interior (core) comprised of 

an annealed material. The model predicted the variation in the yield strength satisfactorily. It 

was also shown that the flow stress of the material can be obtained from the average of the 

flow stress in the dislocation-free core and the dislocation-piled-up mantle by applying a 

rule similar to the rule of mixture. Fu et al. [20] advanced this model by allowing for the 

evolution of dislocation density in the mantle. While the grain interiors were modeled using 

a limited form of the crystal plasticity constitutive model, the grain boundary influence 

regions were modeled by applying an isotropic plasticity model with a higher yield strength. 

The higher yield strength accounted for the increase in the resistance to dislocation 

nucleation and motion. The model was further advanced to the nanocrystalline regime [19] 

by accounting for the grain boundary rotation and slipping, thus capturing the reverse Hall-

Petch effect. A lower yield strength and a higher work-hardening rate than those of the core 

were used in the mantle to account for the grain boundary rotation and slipping. Grain size-

dependent constitutive models on the core and mantle configuration have also been 

developed by coupling a single-crystal plasticity constitutive model with an appropriate 

cohesive interface model [51,52].

Unlike the deformation gradient based models, the core and mantle based models can 

inherently capture the dependence of yield strength on grain size, and are relatively easy to 

implement. However, the core and mantle based models reported in the literature realize 

grain size-dependent behavior by simply applying an arbitrarily chosen set of material 

properties for the mantle that is different from the properties of the core, rather than by 

capturing the variation in the resistance to dislocation nucleation explicitly in the 

formulation. The arbitrarily chosen material properties are then validated by comparing the 

predicted material behavior for different grain sizes with those obtained experimentally.

In the present study, a physics-based grain size-dependent crystal plasticity constitutive 

model on a core and mantle configuration is developed by explicitly accounting for the 

increased resistance to dislocation nucleation and motion in grain boundary influence 

region. Both phenomenological and dislocation density based crystal plasticity formulations 
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were considered for the model development. In the phenomenological formulation, the 

model development is facilitated by the introduction of a shear flow strain distribution in the 

grain boundary influence region such that the resulting variations in the yield strength and 

strain-hardening modulus, determined following the crystal plasticity constitutive model, are 

identical to that produced by the increased resistance in the grain boundary influence region. 

Similarly, in the dislocation density based formulation a dislocation density distribution is 

introduced. A major advantage of using crystal plasticity for the determination of increased 

resistance in the grain boundary influence is that the increase in yield strength and the 

decrease in the strainhardening modulus due to the grain boundary effect are not arbitrary. 

Instead, they are related mutually through the inherent size-independent properties specific 

to the material, thus making the model physics-based. As a result, the spatial distribution of 

the resistance to shear flow strain is the only additional information required for 

implementing the method to introduce size-dependence in the crystal plasticity constitutive 

models. The theoretical development of the method and its implementation for polycrystal 

material under both phenomenological and dislocation density based crystal plasticity 

formulations is presented in this article. Implementation of the method for capturing the 

precipitate-size dependence in two-phase single crystal materials using phenomenological 

formulation has been discussed elsewhere [22].

2. Theory

The classical crystal plasticity model is presented in Section 2.1, in a very general form 

suitable for the present study. The development of a general grain size-dependent 

constitutive model is presented in Section 2.2. The developed model is then simplified by 

considering the grain boundary effect averaged over the grain volume in Section 2.3. Finally, 

the implementation of the simplified grain size-dependent framework is demonstrated in 

Section 2.4 by considering a widely used specific case of flow rule and strain-hardening 

rule.

2.1. General crystal plasticity framework

Following the classical approach, the kinematics of elastic-plastic deformation is split into 

two multiplicative operations; a plastic deformation followed by an elastic deformation. The 

plastic deformation describes the slipping of lattices without any lattice stretching, while the 

elastic deformation describes the stretching and rotation of the lattices [23,24,35]. The total 

deformation gradient F is then given by,

F = F* . F p (1)

where the superscript p denotes the plastic deformation of material to an intermediate 

reference configuration in which lattice orientation and spacing are the same as in the 

original reference configuration, and the superscript * denotes the stretching and the rotation 

of the lattice.

The total velocity gradient L is given as,
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L = L* + Lp = Ḟ . F −1 = D + Ω (2)

where the symmetric stretch rate D and the anti-symmetric spin tensor Ω can also be 

decomposed as below,

D = D* + Dp, Ω = Ω* + Ωp (3)

The velocity gradient associated with the plastic deformation, Lp, is then given in terms of 

Schmid’s tensor as,

Lp = F p . Ḟ p−1
= ∑α γ̇(α)m(α) ⊗ n(α) (4)

where γ̇(α) is the rate of shear strain associated with the slipping in α-th slip system, m is the 

unit normal to the slip plane, and n is the unit vector parallel to the slip direction. 

Incremental formulation of plasticity theory is based on; (1) evolution of Cauchy stress on a 

Jaumann corotational frame of reference that rotates with the crystal lattice, J*(σ), (2) shear 

flow rate (slipping rate) γ̇(α), and (3) work hardening rate ġ(α) as given below,

J*(σ) + σ I :D* = C :D*, (5)

where σ is the Cauchy stress, C is the tensor of elastic moduli, and I is the second order 

identical tensor.

The rate of slipping on a given slip system (α) is then defined as,

γ̇(α) = γ̇(α) τ(α), g(α) (6)

where τ(α) and g(α) are the resolved shear stress and the shear strength, respectively.

The evolution of shear strength g(α) due to the strain-hardening associated with the plastic 

behavior of a material is attributed to the nucleation and pile-up of dislocations in the grains. 

As the nucleation and pile-up continue under loading, the resistance to any further 

nucleation of dislocations also increases, exhibiting two major characteristics of strain-

hardening phenomena; an increase in shear strength and a decrease in strain-hardening 

modulus. The increase in the shear strength and the decrease in the strain-hardening 

modulus represent an increase in the threshold stress to nucleate dislocation and a decrease 

in the material’s ability to further strain-harden, respectively. Therefore, this increase in 

strength and decrease in strain-hardening are not only mutually dependent through the shear 

flow strain or dislocation accumulated due to loading, but that mutual dependence is also a 

property inherent to the microstructure of a specific material. The development of a crystal 

plasticity constitutive model relies on this fundamental property of the material, facilitating 

the formulation of the evolution of shear strength and strain-hardening modulus as functions 

of the accumulated shear flow strain.
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As the nucleation and pile-up continue under loading, the resistance to any further 

nucleation of dislocations also increases, exhibiting two major characteristics of strain-

hardening; an increase in shear strength and a decrease in strain-hardening modulus 

representing an increase in the threshold stress to nucleate dislocation and a decrease in the 

capacity to further strain-harden, respectively. Therefore, this increase in strength and 

decrease in strain-hardening are not only mutually dependent through the shear flow strain 

or dislocation accumulated due to loading, but that mutual dependence is also a property 

inherent to the crystal structure of a specific material. The development of a crystal plasticity 

constitutive model relies on this fundamental property of the material, allowing the 

formulation of the evolution of shear strength and strain-hardening modulus as functions of 

the accumulated shear flow strain.

Following the principle of crystal plasticity constitutive modeling discussed above, the 

evolution of strength g(α) can be defined either by using the accumulated shear flow or 

through applying the dislocation density as an independent parameter. These two different 

formulations are referred to as phenomenological based formulation and dislocation density 

based formulation, respectively. In the phenomenological based formulation, the primary 

concern is the average plastic shear strain, which is the overall effect of the movement of 

dislocations as a whole. While in the dislocation density based formulation, the constitutive 

behavior is described by the evolution of the dislocation density on the slip plane directly. 

Therefore, the dislocation density based formulation allows for a more fundamental 

description of the material behavior that permits the explicit description of various 

deformation mechanisms at the microscale level such as screw and edge dislocations, 

incorporation of cross-slip, and incorporation of GNDs [38,6,8]. Though the 

phenomenological formulation cannot capture the underlying deformation mechanisms, it 

only requires relatively fewer material parameters and is typically easier to implement. Since 

both the formulations are widely used, the development of the grain size-dependent model 

for both the formulations is presented.

Accordingly, in the phenomenological formulation, the evolution of strength g(α) in a given 

slip system (α) due to strain-hardening can be described in terms of the cumulative shear 

flow strain and the rate of shear flow in each of the slip systems as given below,

ġ(α) = ∑(β)ℎαβ(γ)|γ̇(β)| (7)

where hαβ, a function of the cumulative shear flow strain γ, is the strain-hardening modulus, 

and γ̇ is the rate of shear flow. The cumulative shear flow strain γ is defined as,

γ = ∑
(α)

∫
0

t
|γ̇(α)|dt (8)

The evolution of strength, therefore, is associated with the evolution of a material’s 

resistance to dislocation nucleation, which is captured through the strain-hardening 

coefficient as a function of the shear flow strain γ (Eq. (7)). The hαβ corresponding to the 
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annealed state of the material (γ = 0) is the initial strain-hardening modulus. The 

instantaneous shear strength of a slip system is then obtained as,

g(α) = τ0 + ∫
0

t

ġ(α)dt (9)

where, τ0 is the shear strength corresponding to the annealed state of the material.

For the dislocation density based formulation, the strength is directly dependent on the local 

dislocation density ρ(α) through the Taylor strength relation [13,49],

g(α) = αdμdb ρ(α) (10)

where αd is a dimensionless stiffness parameter, μd is the shear modulus and b refers to the 

magnitude of the Burgers vector. The dislocation density corresponding to the annealed state 

of the material, ρ0, can be determined by setting g(α) = τ0 in the above relationship (Eq. 

(10)). The evolution of the dislocation density can be expressed in a general form as,

ρ̇(α) = ρ̇(α)(ρ(α), γ̇(α)) (11)

2.2. General grain size-dependent crystal plasticity framework

In polycrystal materials, the geometric constraints on the deformation of crystal lattice in the 

grain boundary influence region, primarily driven by the difference in grain orientations 

across the grain boundaries, is expected to produce an increase in resistance to dislocation 

nucleation and motion. Therefore, according to the core and mantle configuration, the 

consideration of a grain boundary influence region (mantle) with its characteristics different 

from the grain interior (core) and independent of the grain size, allows for the natural 

emergence of a length-scale parameter leading to the grain size-dependent constitutive 

model.

Following the treatment of the grain boundary influence region as a work-hardened region 

by Meyers et al. [44], we hypothesize that the increased resistance to dislocation nucleation 

and pile-up in the grain boundary influence region will not only produce an increase in yield 

strength and a decrease in strain-hardening modulus, but their mutual relationship will 

follow the same fundamental plastic properties specific to the material as well. That is, the 

consequences of an increased resistance on the plastic behavior are the same irrespective of 

its root cause: either the accumulation of shear flow strain under loading or the grain 

boundary effect. As discussed in the previous section, the mutual dependence of the strength 

and the strain-hardening modulus expressed through the accumulated shear flow strain in the 

phenomenological formulation or the pile-up of dislocation density in the dislocation based 

formulation is a fundamental principle of the crystal plasticity modeling framework. Hence, 

the increased resistance to dislocation nucleation and motion in the grain boundary influence 

region can also be captured using the same crystal plasticity constitutive model by 

introducing an appropriate distribution of cumulative shear flow strain γGB in the 
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phenomenological formulation or a distribution of a pile-up of dislocation density ρGB in the 

dislocation based formulation (Fig. 1). The γGB and ρGB are termed as the grain boundary 

equivalent shear flow strain and grain boundary equivalent pile-up of dislocation density, 
respectively, since the change in the strength and the strain-hardening modulus at a material 

point as a result of their introduction in the constitutive model must be identical to those 

caused by the grain boundary effect.

The method is illustrated as follows. First, the equivalent shear flow strain γGB and an 

equivalent pile-up of dislocation density ρGB (Eq. (12)) are considered in the grain boundary 

influence region of thickness (δGB) for the phenomenological formulation and dislocation 

based formulation, respectively (Fig. 1(a) and (d)),

γGB r* = γGB r* Pℎenomenological
or

ρGB r* = ρGB r* Dislocationbased
wℎere 0 ≤ r* ≤ δGB (12)

where, r* represents the location of a material point in the grain with respect to the closest 

point on the grain boundary. The distribution of γGB and ρGB in the grain boundary influence 

region must be such that the resulting shear strength (gGB) and strain-hardening modulus 

distributions (hGB) are identical to those produced by the actual resistance due to the grain 

boundary effect. At the grain boundary, the values of gGB and hGB should correspond to a 

fully strain-hardened region with no further strain-hardening possible. At the intersection 

between core and mantle, r* = δGB, these values should correspond to the annealed state 

without any history of shear flow strain accumulation or any grain boundary effect. 

Therefore, gGB decreases from its maximum value of gGB*  at the grain boundary to zero as it 

approaches the core (Fig. 1(b)). Conversely, the strain-hardening modulus, hGB, increases 

from zero at the grain boundary to the initial strain-hardening modulus at the coremantle 

interface (Fig. 1(c)). Without loss of generality, a typical profile for γGB in the 

phenomenological formulation or ρGB in the dislocation based formulation that produces the 

desirable distribution of increase in strength and decrease in strain-hardening modulus with a 

maximum value of γGB*  or ρGB*  at the grain boundary, is shown in Fig. 1(d). In general, the 

γGB or ρGB distribution profile is characteristic of the grain boundary, and may vary with its 

location on the grain boundary depending on many factors such as relative orientation of the 

grains across the grain boundary at that location. Assuming that the effect of these variations 

is relatively small when compared to the overall grain size-dependence, the profiles for γGB
and ρGB are treated as material properties that remain unchanged irrespective of the variation 

in the characteristics of the grain boundaries.

In the phenomenological formulation, the size-dependent constitutive model is then 

formulated by accounting for the effect of the resistance to dislocation nucleation in the 

hardening rule that describes the rate of shear strength evolution (Eq. (7)). Thus, the 

evolution of shear strength of a material point at an arbitrary location r* in the grain can be 

described as,
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ġ(α) r* = ġ(α)(γ + γGB r* , γ̇(β)) (13)

Considering the individual contributions of grain boundary effect and the strain-hardening 

effect due to loading explicitly, the instantaneous shear strength of a slip system (Eq. (9)) 

can be written as,

g(α) r* = τ0∞ + gGB(α) r* + ∫
0

t

ġ(α) r* dt (14)

where, τ0∞ is the shear strength corresponding to the annealed state of the material. The 

subscript ∞ indicates that the related quantity corresponds to a sample with large grains, 

thus not influenced by the grain boundary. The parameter gGB
(α)(r*) is the increase in 

strength due to grain boundary effect.

Following the hypothesis that the mutual relationship between the increase in strength and 

the decrease in the strain-hardening modulus is an inherent material property, the quantity 

gGB
(α)(r*) and the corresponding decrease in the strain-hardening modulus can be 

determined by invoking the crystal plasticity constitutive model itself. The procedure is as 

follows; with the goal of determining the gGB
(α)(r*) profile, the strength evolution rate in a 

given slip system (α) can be considered as a linear combination of the rate of shear flow 

strain in all the slip systems (Eq. (7)).

ġGB
(α) r* = ∑(β)ℎαβ γ r* γ̇(β)

(15)

The increase in strength gGB
(α)(r*) can be determined from the rate equation as (Eq. (14)),

gGB(α) r* = ∫
0

tGB

∑(β)ℎαβ γ r* γ̇(β)dt (16)

where the upper limit of time integration, tGB, represents the time of evolution of strength 

due to the formation of the γGB in the grain boundary influence region. Since the equivalent 

shear flow strain γGB is a mathematical quantity introduced in order to capture the resistance 

to dislocation nucleation in the grain boundary influence region, its evolution tGB  has no 

significance. Therefore, the integration in the equation to determine strength due to grain 

boundary effect can be transformed from the time domain to the accumulated shear flow 

strain domain,

gGB(α) r* = 1
Nss ∫

0

γGB r*

∑(β)ℎαβ(γ)dγ (17)
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where Nss is the total number of slip systems in a grain. In this derivation, it is assumed that 

γ is equally divided on the Nss slip systems in the grain boundary influence region. It is 

important to note that the determination of gGB
(α)(r*) for a given γGB distribution is 

independent of the shear flow rule (Eq. (6)). The role of the strain-hardening modulus ℎαβ(γ), 
a property inherent to each specific material, in modeling the grain boundary effect can be 

clearly observed in these relations.

Since the characteristic of the grain boundary influence region is treated as a constant, 

irrespective of the nature of the grain boundary or the grains across it, gGB
(α)  can be expressed 

as gGB, an average value over all the slip-systems. Therefore, the above expression can be 

further simplified as,

gGB(α) r* = gGB r* = 1
Nss ∫

0

γGB r*

ℎs(γ)dγ + Nss − 1 ∫
0

γGB r*

ℎl(γ)dγ (18)

where hs and hl are the self- and latent- hardening moduli. The strain-hardening modulus 

hαβ represents the self-hardening modulus hs when α = β, and the latent-hardening modulus 

hl otherwise.

In the dislocation based formulation, the size-dependent constitutive model can be 

formulated by accounting for the ρGB in the dislocation evolution and strength relations 

(Eqs. (11) and (10), respectively) as shown below.

The evolution of dislocation density can be described as,

ρ̇(α) r* = ρ̇(α)(ρ(α) + ρGB r* , γ̇(α)) (19)

Then the strength relationship becomes,

g(α) r* = g(α) ρ(α) + ρGB r* = αdμdb ρ(α) + ρGB r* (20)

The gGB
(α)(r*) can be obtained as,

gGB(α) r* = gGB r* = g(α) ρ0 + ρGB r* − g(α) ρ0 (21)

where g(α)(ρ0) is equal to the strength of the grain due to the initial dislocations; i.e. the 

annealed state without any grain size effect.

In the phenomenological formulation, the increase in yield strength due to the grain 

boundary effect is captured in the constitutive model through gGB term as per Eq. (18), while 

the decrease in the initial strain-hardening modulus is captured through the functional form 

of ℎαβ(γ) specific to the material as per Eqs. (17) and (18). In the dislocation based 

formulation, the increase in yield strength is realized through its relationship with the 
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existing dislocation pile-up (Eqs. (20) and (21)) explicitly, while the decrease in hardening 

rate is realized implicitly by reducing the evolution rate in the dislocation density (Eqs. (19) 

and (20)).

The gGB (r*), in principle, can be determined experimentally. For example, the hardness 

profile determined on the cross-section of a sample containing large grains using a 

nanoindenter can potentially provide information for the determination of gGB (r*). Hence, a 

nano-hardness profile obtained by taking the average of several measurements will be a 

good approach to derive gGB (r*). In the absence of such detailed information, a linear 

profile with the value of the maximum strength at the grain boundary set to the strength of a 

fully work-hardened sample may be a good approximation. The challenge is to determine an 

appropriate γGB in the phenomenological formulation and ρGB in the dislocation based 

formulation that when applied to Eq. (17) and Eq. (21), respectively, agree with the 

experimentally measured or the assumed gGB (r*) distribution in the grain boundary 

influence region. Once these material specific parameters are known, the behavior of the 

material for any grain size distributions can be predicted using the size-dependent crystal 

plasticity constitutive model.

It is important to note that the parameters γGB and ρGB should be treated as mere 

mathematical quantities introduced to utilize the crystal plasticity framework to conveniently 

capture the increased resistance to dislocation nucleation and its effect on plastic properties 

in the grain boundary influence region. Introduction of these terms do not contribute directly 

to the cumulative shear flow strain or the pile-up of dislocation density due to the 

mechanical loading, but influence them indirectly through higher strength and a lower strain-

hardening modulus in the grain boundary influence region.

The size-dependent crystal plasticity model developed in this section can be considered as a 

broader framework that can capture any fundamental deformation mechanisms as long as 

these deformation mechanisms can be described under a core-mantle geometric grain 

description and they involve a modification of the material’s resistance to dislocation 

nucleation and motion. The resulting strengthening or softening of the material in the grain 

boundary influence region will cause an appropriate variation in yield strength and a 

corresponding variation in the strain hardening modulus in this region. Therefore, though not 

discussed in the present article, the developed model can be easily extended to describe the 

material behavior driven by such deformation mechanisms by introducing an appropriate 

resistance profile in the grain boundary influence region. A typical example is the reverse 

Hall-Petch behavior in nanocrystalline material driven by the dominance of grain boundary 

softening mechanisms.

2.3. Simplified model based on the grain boundary effects on an average sense over the 
grain volume

The general framework developed in the previous section can be simplified by considering 

the grain boundary effects on an average over the grain volume. In this approach, a uniform 

distribution of the resistance over the whole grain volume is considered such that its average 

effect on the grain volume is identical to the average effect produced by the actual 
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distribution of the resistance in the grain boundary influence region. Accordingly, quantities 

γGB and ρGB, which are γGB or ρGB averaged over the grain volume, respectively, are 

introduced.

In the phenomenological formulation,

γGB =
∫V γGB r* dV

V (22)

therefore, the Eqs. (13) and (14) can be modified as,

ġ(α) = ġ(α)(γ + γGB, γ̇(β)) (23)

g(α) = τ0∞ + gGB + ∫
0

t

ġ(α)dt (24)

where gGB is the uniform shear strength equivalent to the average grain boundary effect in 

the grain volume. Therefore, the increase in strength due to the grain boundary effect 

averaged over the volume of a grain gGB can be determined by modifying Eq. (18) as,

gGB = 1
Nss ∫

0

γGB

ℎs(γ)dγ + Nss − 1 ∫
0

γGB

ℎl(γ)dγ (25)

Similarly, in the dislocation based formulation, a uniform dislocation density distribution 

that produces the same average grain boundary effect over grain volume as the actual 

dislocation density distribution can be introduced as,

ρGB =
∫V ρGB r* dV

V (26)

The dislocation density evolution and the strength equations (Eqs. (19)–(21)) are then 

modified as,

ρ̇(α) = ρ̇(α)(ρ(α) + ρGB, γ̇(α)) (27)

g(α) = g(α) ρ(α) + ρGB = αdμdb ρ(α) + ρGB (28)

Therefore, gGB in the dislocation density based formulation can be obtained as,

gGB = g(α) ρ0 + ρGB − g(α) ρ0 (29)
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It is important to note the difference in the way the inherent length-scale parameters emerge 

in the material point based model and the grain volume average based model. In the material 

point based model, the inherent length-scale parameter does not explicitly appear in the 

model (Eqs. (13), (14) and (18) for the phenomenological formulation and Eqs. (19)–(21) 

for the dislocation based formulation), but rather emerges as a measure of the relative 

dominance of the grain boundary influence region with respect to grain size in the overall 

behavior of the grain. In the grain volume average based model, the inherent length-scale 

appears explicitly through the parameters γGB and ρGB as a function of δGB (Eqs. (23) and 

(24) in the phenomenological formulation, and Eqs. (27) and (28) in the dislocation based 

formulation).

2.4. Implementation for a specific case

The implementation of the grain volume average based model is demonstrated for a special 

case of flow and strength evolution rules widely reported in the literature. For simplicity, a 

spherical grain with a diameter D (2rg) representing the effective size of an actual grain with 

a non-spherical shape (Fig. 2) is considered.

The spherical grain shape configuration allows for consideration of a simpler coordinate 

system. In this case, r is the radial distance of any material point from the grain center, and 

the radius of the core rc, can be described as rc= rg − δGB. Accordingly, the grain boundary 

influence region can be described by an r such that, rc<r<rg.

A typical power law flow rule for the shear flow strain can be defined as [30,31,47,5]

γ̇(α) = ȧ τ(α)

g(α)

n
(30)

where τ(α) and g(α) are the resolved shear stress and the shear strength on the α-th slip 

system. The constant ȧ refers to the slipping rate when the resolved shear stress reaches the 

strength, and is assumed to be the same for all slip systems. In the phenomenological 

formulation, a hyperbolic-secant hardening rule is considered with the coefficient hαβ (Eq. 

(7)) being defined as,

ℎαβ = q(αβ)ℎ0∞secℎ2 ℎ0∞γ
τs − τ0∞

(31)

where q(αβ) differentiates latent-hardening (α ≠ β) and self-hardening (α = β), h0∞ is the 

initial strain-hardening modulus, τ0∞ is the shear strength which is equal to the initial value 

of g(α), and τs is the stage-I stress (break-through stress) which is taken as the maximum 

shear strength corresponding to fully strain-hardening condition, gGB* . Substituting the flow 

rule and the hardening rule (Eqs. (30) and (31)) along with the γGB (Eq. (12)) into Eq. (18), 

gGB (r) can be obtained as,

gGB(r) = ℎ0∞
K tanℎ KγGB(r) (32)
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In this formulation, the constants ℎ0∞ and K are given as ℎ0∞ =
ℎ0∞ Nss − 1 q + 1

Nss
 and 

K =
ℎ0∞

τs − τ0∞
, respectively. The parameter q(αβ) is the same for all the (Nss−1) latent-

hardening slip systems (referred simply as q), and it is equal to unity for the self-hardening 

slip system. From the grain averaged shear flow strain γGB (Eq. (22)), the grain averaged 

shear strength gGB can be determined by substituting Eqs. (30) and (31) into Eq. (25),

gGB = ℎ0∞∫
0

γGB

secℎ2 |Kγ |dγ = ℎ0∞
K tanℎ KγGB (33)

In the dislocation based formulation, the evolution of dislocation density (Eq. (11)) is 

considered to be driven by both the accumulation and annihilation of the dislocations 

described as [13,49],

ρ̇(α) = 1
b

ρ(α)

Kac
− 2ycρ(α) γ̇(α)

(34)

where Kac is a material parameter corresponding to the accumulation of the dislocation 

density and yc is a critical distance between dislocations that controls the annihilation of the 

dislocations.

A simple linear profile for γGB(r) or ρGB(r) is considered for demonstration purpose as,

γGB(r) or ρGB(r) = C r − rc H r − rc (35)

where the constant C is given as 
γGB*
δGB

 or 
ρGB*
δGB

 for the phenomenological and dislocation 

based formulations, respectively. H (r−rc) is the Heaviside step function enforcing value of 0 

to the and ρGB(r) profile for r≤rc.

Substituting the grain volume averaged form (Eq. (22)) of given in the Eq. (35) into the Eq. 

(33), gGB for the phenomenological formulation can be determined as,

gGB = ℎ0∞
K tanℎ KγGB* 3δGB

2rg
− δGB

rg

2
+ 1

4
δGB
rg

3
(36)

Similarly, by substituting the grain volume averaged form (Eq. (26)) of ρGB(r) given in the 

Eq. (35) into the Eq. (28), we have,

gGB = αdμdb ρ0 + KρGB* ( 3δGB
2rg

− δGB
rg

2
+ 1

4
δGB
rg

3
− ρ0 (37)
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3. Results and discussion

The grain size-dependent constitutive model was validated by: 1) verifying the Hall-Petch 

effect by studying the variation of gGB with grain size, and 2) incorporating the grain size-

dependent constitutive model on a finite element analysis (FEA) framework, and then 

comparing the predicted stress-strain behavior of the samples with different average grain 

sizes under uniaxial tensile loading to the corresponding experimental results for copper 

reported in literature. A linear profile was considered for and ρGB(r) for the 

phenomenological formulation (Eq. (36)) and the dislocation based formulation (Eq. (37)), 

respectively.

Polycrystalline samples consisting of 125 grains with random shapes and sizes generated 

using the Voronoi algorithm were considered as representative volume elements (RVEs) in 

this study (Fig. 3). Experimentally obtained stress-strain behavior for copper samples with 

different average grain diameters of 14 μm, 33 μm and 220 μm is available in the literature 

[28,29]. In addition, the stress-strain behavior for a sample with large grains (grain size-

independent) was reported by Hansen et al. [29], which was obtained by extrapolating the 

experimental stress-strain behavior of these three different grain sizes. To validate the model 

proposed in this article by comparing its prediction with the above experimental results, 

samples with the same average grain sizes (Dave), namely 14 μm, 33 μm and 220 μm were 

considered for the numerical simulation. The different average grain sizes were obtained by 

simply scaling the overall sample size, thus making sure that the grain shapes and 

orientations (Fig. 3) remained the same from sample to sample.

The elastic material properties C11, C12, and C44 for the copper cubic lattice structure and 

the plastic material parameters ȧ0 and q were obtained from the literature [33]. Since the 

material properties τ0∞, τs and h0∞ required for describing plasticity were not available, an 

FEA simulation with a grain size-independent constitutive model and phenomenological 

formulation (Eqs. (6)–(9)) was performed first. These properties were then determined by 

matching the stress-strain behavior from the simulation with the stress-strain behavior 

reported for the sample with large average grains [29]. The saturated value of the γGB*

corresponding to the τs was determined using Eq. (36) by assuming that the grain boundary 

influence region is thoroughly saturated. A relatively high value of 100 was considered for n 
in order to obtain a rate-independent flow rule. The material parameters for the dislocation 

based formulation were also obtained from the literature [13]. The initial and saturated 

dislocation densities, ρ0 and ρGB*  were obtained by using the Taylor strength relationship 

(Eq. (10)), using the same τ0∞ and τs, respectively, used in the phenomenological 

formulation. All the material parameters used in this study are shown in Table 1. A grain 

boundary thickness (δGB) of 0.333 μm was chosen since it provided the best fit for the 

predicted stress-strain behavior with the experimental results for all three samples of 

different average grain sizes. For individual grains in the samples, the values of γGB, ρGB
and gGB were determined following Eqs. (22), (26), (36) and (37).

The Abaqus commercial FEA package, with the crystal plasticity constitutive model 

implemented through a UMAT subroutine, was used for both the grain size-independent 
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simulation to derive material properties, and the grain size-dependent study to validate the 

newly developed constitutive model. The sample was subjected to a uniaxial tensile load at a 

loading rate of 350 MPa/s. Periodic boundary conditions were enforced on all the external 

faces of the RVEs [14,9]. The discretization of the sample is shown in Fig. 3. In order to 

ensure a good refinement, even with respect to the smallest grain size, a 20 × 20 × 20 mesh 

of 20-noded brick elements was considered.

3.1. Variation of γGB, ρGB, and gGB with grain size

For the assumed linear profiles of γGB(r) and ρGB(r) (shown in Fig. 4), the quantities γGB, 

ρGB and gGB, calculated for three individual grains of sizes 14 μm, 33 μm, and 220 μm (Fig. 

2) are provided in Table 2. The sizes of these single grains are equal to the average grain 

sizes of the three polycrystal samples considered in the validation step. The horizontal axis 

is taken as the radial distance from the center of the grain normalized by the grain radius. As 

expected, γGB, ρGB and gGB increased as the grain size decreased. Also, results from both 

the phenomenological and the dislocation based formulations agree reasonably well.

The grain size distribution in the Voronoi polycrystal sample is shown in Fig. 5, and the 

variations of γGB, ρGB and gGB with grain size are shown in Fig. 6. Since the diameter of the 

equivalent spherical representation of individual grains is different due to the difference in 

their grain size, the values of γGB, ρGB and gGB vary from grain to grain. As the grain size 

increases, the ratio of the volume of the grain boundary influence region to the volume of the 

grain decreases, thus decreasing the effect of the grain boundary resistance. As an example, 

in the sample with the smallest average grain size, 14 μm, the gGB varied from 28.97 to 

13.02 MPa with the increase in the size of the grains in the phenomenological formulation. It 

should be noted that the value of gGB for a given grain represents the increase in its average 

shear strength over the grain volume as a result of the grain boundary effect.

The model’s ability to capture the Hall-Petch relation was verified for the range of grain 

sizes in the polycrystalline sample by plotting the gGB of individual grains against 1
D . The 

quantities gGB and 1
D  were normalized by the gGB of an individual grain of size equal to the 

average grain size (Table 2) and the corresponding 1
Dave

, respectively (Fig. 7). The R2 

values for the linear fit for each of the cases demonstrated reasonably good agreement. In 

addition, the slopes for all three cases considered agreed quite well.

3.2. Grain size-dependent constitutive model

In this section, validation of the grain size-dependent constitutive model to capture the size-

dependent stress-strain behavior under uniaxial tensile loading is discussed. The validation 

was performed for both the phenomenological formulation (Eqs. (6), (8), (23), and (24)) and 

the dislocation based formulation (Eqs. (6), (27) and (28)). The values of γGB, ρGB and gGB, 

obtained as functions of the grain size (discussed in the previous section), were assigned to 

individual elements in the finite element mesh as a material parameter in addition to the 

elastic and plastic material properties provided in Table 1. All the elements belonging to a 
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given grain have the same values for γGB, ρGB and gGB, calculated based on the 

corresponding equivalent spherical grain. The elements that overlap between two grains in 

the grain boundary region were associated with one of the grains based on the location of the 

element’s centroid.

The axial stress-strain behavior under the uniaxial loading obtained for the samples with 

different average grain sizes are compared with the experimental results in Fig. 8. Overall, 

the predicted results from both the phenomenological and dislocation based formulations 

(Fig. 8) agree well with the experimental results. The experimental data is not sufficiently 

dense near the yield strength for an accurate comparison. Nevertheless, the predicted 

increase in yield strength with decrease in grain size shows a clear trend that matches the 

expected behavior. Some disagreement near the yield point observed for the case of D = 14 

μm could be attributed to the inaccuracy in the measurements. The good agreement between 

the predicted and experimental hardening behavior (stress-strain behavior beyond yield 

strength) validates the ability of the proposed general constitutive framework to capture size-

dependent plastic behavior, not only in terms of variation in yield strength, but in terms of 

the strain-hardening modulus as well. Since the experimental results were available only for 

three average grain sizes, the variation of the predicted yield strength of polycrystal samples 

was not compared against 1
D  to further validate Hall-Petch.

In Fig. 8, the stress-strain behavior is shown only in the strain range of 0–0.1 due to the 

limited availability of the experimental data. In order to validate the model for a larger strain 

range, the axial stress-strain response predicted by the grain size-dependent model for a 

strain up to 0.5 is shown in Fig. 9. Since the results from both the phenomenological and 

dislocation density based formulations were similar, results are only shown for 

phenomenological based formulation in this figure. The strain-hardening modulus varies 

with grain size as is quite evident in this depiction. For a given value of axial strain (or axial 

stress) the slope of the curve representing the hardening modulus increases with increase in 

grain size [27]. Results show that the increase in strength and the decrease in strain-

hardening as the grain size becomes smaller lead to decrease in ductility for a given ultimate 

strength, which is consistent with the behavior of metals.

4. Conclusion

A new physics-based method to capture grain size-dependence in the crystal plasticity 

constitutive model on a core and mantle configuration was developed. Size-dependence was 

realized by accounting for the resistance to dislocation nucleation in the grain boundary 

influence region following the principles of crystal plasticity, rather than the current 

approach of arbitrary assignment of a different set of values for the mantle’s material 

properties. Consequently, variation in strength and the strain-hardening modulus due to the 

effect of grain boundaries followed the same mutual relationship that is fundamental to the 

plastic behavior of a specific material microstructure. In order to use the crystal plasticity 

constitutive modeling principles, a shear flow strain parameter in the phenomenological 

formulation and a pile-up of dislocation density in the dislocation based formulation, 

equivalent to the resistance to dislocation nucleation, were introduced. The grain size-
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dependent constitutive model was then derived consistent with the crystal plasticity 

framework. Validation of the model was performed by studying the variation of yield 

strength with the grain size of single grains. Results captured the increasing effect of the 

grain boundary in terms of an increase in yield strength and a decrease in strain-hardening 

with a decrease in grain size. The results demonstrate a good agreement with the Hall-Petch 

relationship. Subsequently, the size-dependent constitutive model was implemented on a 

FEA framework, and the FEA framework was used to obtain stress-strain behavior of 

polycrystalline samples comprised of 125 grains under uniaxial tensile loading for three 

different average grain diameters of 14 μm, 33 μm and 220 μm. Comparison of the predicted 

results with the experimental results available in literature revealed that a grain boundary 

influence region of 0.33 μm thickness along with a linear equivalent shear flow strain profile 

can describe the size-dependent stress-strain behavior of the FCC copper polycrystalline 

samples, both for the phenomenological and dislocation based formulations. To demonstrate 

the grain size effect, a polycrystal grain configuration with randomly shaped grains based on 

the Voronoi tessellations was considered.

In summary, the new method provides a simple physics-based alternative to the current 

arbitrary approach for the development of size-dependence in constitutive models on core 

and mantle configuration. Various manufacturing processes, such as shot-peening, cold 

rolling and additive manufacturing, introduce microstructural modification such as changes 

in texture, grain size and grain shapes, and may also produce a non-homogeneous 

microstructure. Physics based models that account for various characteristics of 

microstructural features, such as the one proposed in this work that account for grain sizes, 

can significantly increase the reliability of the computational models for predicting material 

response, and may serve as powerful tools for engineers in tailoring their designs for the 

specific applications of interest.

Acknowledgments

Author A. Achuthan would like to thank NASA Glenn Research Center and Ohio Aerospace Institute for the 
summer research fellowship that supported part of this work.

Nomenclature

F Total deformation gradient

L Total velocity gradient

D Symmetric stretch rate tensor

Ω Anti-symmetric spin tensor

γ Shear flow strain

m Unit normal to the slip plane

n Unit vector parallel to the slip direction

σ Cauchy stress
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C Tensor of elastic moduli

I Second order identical tensor

J* Jaumann corotational frame of reference

τ Resolved shear stress

g Shear strength

hαβ Strain-hardening modulus

t Time

τ0 Shear strength corresponding to the annealed state of the 

material

ρ Dislocation density

αd Dimensionless stiffness parameter

μd Shear modulus

b Magnitude of the Burgers vector

γGB Equivalent shear flow strain in the grain boundary 

influence region

ρGB Equivalent pile-up of dislocation density in the grain 

boundary influence region

δGB Thickness of the influence region

gGB* Maximum strength (corresponding to fully strain-

hardening condition) in the grain boundary influence 

region

γGB* Maximum accumulated shear flow strain (corresponding to 

fully strain-hardening condition) in the grain boundary 

influence region

γGB γGB averaged over the grain volume

ρGB ρGB averaged over the grain volume

gGB Uniform shear strength equivalent to the average grain 

boundary effect in the grain volume

hs Self-hardening moduli

hl Latent- hardening moduli

ρ0 Initial dislocation density
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V Volume of the grain

D Diameter of the grain

Dave Average diameter of the grains in a polycrystalline sample

r* Location of a material point in the grain with respect to the 

closest point on the grain boundary

r Radial distance of any material point from the grain center

rg Radius of the grain

rc Radius of the core

ȧ Slip rate when the resolved shear stress reaches the strength

q(αβ) Parameter for differentiating latent-hardening (α ≠ β) and 

self-hardening (α = β)

τs Maximum shear strength corresponding to fully strain-

hardening condition

h0 Initial strain-hardening modulus

Kac Material parameter corresponding to the accumulation of 

the dislocation density

yc Critical distance between dislocations for annihilation

H( ) Heaviside step function

ℎ0∞ A constant equal to 
ℎ0∞ Nss − 1 q + 1

Nss

K A constant equal to 
ℎ0∞

τs − τ0∞

C11, C12, C44 Cubic material elastic constants

n Rate sensitivity exponent in the power-law flow rule
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Fig. 1. 
(a) A schematic illustrating the grain boundary influence region (b) distribution of the 

strength (c) distribution of initial strain-hardening modulus (d) distribution of the equivalent 

shear flow strain (and equivalent pile-up of dislocation density) parameter which allows 

capturing the strength and strain-hardening distributions.

Moghaddam et al. Page 24

Mater Sci Eng A Struct Mater. Author manuscript; available in PMC 2020 July 20.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Fig. 2. 
(a) A schematic illustrating the grain boundary influence region by considering a simple 

spherical grain, (b) the distribution of the shear flow strain or dislocation density associated 

to the resistance exerted by the grain boundary.
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Fig. 3. 
Polycrystal with 125 randomly oriented, shaped and sized grains.
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Fig. 4. 
γGB(r)orρGB(r) profiles and the averaged γGBorρGB (horizontal lines).
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Fig. 5. 
The variation of the grain diameters normalized with the average grain diameter in the 

studied sample for 125 grains. Since the three samples with different average grain sizes are 

obtained by simply scaling the geometry this variation is same for all of them.
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Fig. 6. 
The variation of gGB and γGB, ρGB for the three studied samples with different average grain 

sizes from both the phenomenological and dislocation based formulations (a) the variation in 

γGBandρGB normalized by γGB*  and ρGB* , respectively (b) the variation in gGB normalized 

by τs.
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Fig. 7. 
Hall-Petch relationship for the three studied samples with average grain diameters of 14μm, 

33μm and 220μm. R2 represents the regression coefficient related to the linear fit (gGBave
values are reported in Table 2).
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Fig. 8. 
Axial stress-strain behavior obtained based on phenomenological and dislocation based 

formulations for the studied samples with grain diameters of 14 μm, 33 μm and 220 μm. 

(Experimental results from [28,29].
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Fig. 9. 
Predicted size-dependent axial stress-strain behavior for the studied samples for a larger 

strain range.
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Table 1

Applied elastic and plastic material properties.

Material properties

τ0∞ 9 MPa

τs 95 MPa

ȧo 0.001 1/s

n 100

q 1

c11 168, 400 MPa

c12 121,400 MPa

c44 75,400 MPa

Phenomenological formulation

γGB* 1.07

h0∞ 240 MPa

Dislocation based formulation

μd 542,000 MPa

αd 0.3

Kac 7

yc 1.6 × 10−9 m

b 2.56 × 10−9 m

ρ0 4.67 × 1012 m−2

ρGB* 5.21 × 1014 m−2
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Table 2

γGB, ρGB and gGB for a single grain considering grain boundary effect.

Dgrain (μm) Phenomenological formulation Dislocation based formulation

γGB gGB (MPa) ρGB (m−2) gGB (MPa)

14 0.0740 17.5000 3.5680e13 17.4427

33 0.0325 7.6495 1.5417e13 9.6583

220 0.0048 1.1637 2.3392e12 2.0241
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