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Abstract

With renewed interest in free energy methods in contemporary structure-based drug design there is 

a pressing need to validate against multiple targets and force fields to assess the overall ability of 

these methods to accurately predict relative binding free energies. We computed relative binding 

free energies using GPU accelerated Thermodynamic Integration (GPU-TI) on a dataset originally 

assembled by Schrödinger, Inc.. Using their GPU free energy code (FEP+) and the OPLS2.1 force 

field combined with the REST2 enhanced sampling approach, these authors obtained an overall 

MUE of 0.9 kcal/mol and an overall RMSD of 1.14 kcal/mol. In our study using GPU-TI from 

AMBER with the AMBER14SB/GAFF1.8 force field but without enhanced sampling, we 

obtained an overall MUE of 1.17 kcal/mol and an overall RMSD of 1.50 kcal/mol for the 330 

perturbations contained in this data set. A more detailed analyses of our results suggested that the 

observed differences between the two studies arise from differences in sampling protocols along 

with differences in the force fields employed. Future work should address the problem of 

establishing benchmark quality results with robust statistical error bars obtained through multiple 

independent runs and enhanced sampling, which is possible with the GPU-accelerated features in 

AMBER.
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1. Introduction

Protein-ligand binding affinity calculation has drawn a lot of attention for many years 

because of its ability to significantly accelerate drug discovery by focusing experimental 

effort on high quality leads.1–4 Using molecular dynamics (MD) or Monte Carlo algorithms 

to perform the necessary sampling, many methods have been developed to address this 

task5–19: These include the linear interaction energy (LIE) approach5–6, the Molecular 

Mechanics-Poisson−Boltzmann/Surface Area (MM-PBSA) and Molecular Mechanics-

Generalized Born/Surface Area (MM-GBSA)7–10 approaches, and physical pathway 

methods such as the Umbrella Sampling (US) method11–12 combined with Weighted 

Histogram Analysis (WHAM)20–21 or the variational free energy profile (vFEP) 

methods22–23.

Another class of methods is the alchemical methods, where the thermodynamic path 

between two end states is defined and the free energy change is calculated based on 

statistical mechanical analysis of the simulations. Based on the theoretical foundation of 

Kirkwood, Zwanzig and Bennett among others,15–19, 24–25 the three most widely used 

alchemical methods are Thermodynamic Integration (TI),16 Free Energy Perturbation (FEP),
24 and (Multistate) Bennett Acceptance Ratio (MBAR).15, 19 FEP is based on the Zwanzig 

equation by considering the process of transforming A → B. The free energy change can be 

written as:

ΔF(A B) = − ln exp − UB − UA
kBT A

or ln exp UB − UA
kBT B

(1)

where UB and UA are the potential energy of A and B, kB is the Boltzmann constant, and T 

is the temperature. From a practical perspective, this method is limited to small perturbations 

due to convergence and end state catastrophe issues, which to some extent is addressed via 

introducing a coupling parameter λ that varies from 0 to 1. The intermediate state λ has a 

potential energy U(λ), which is equal to U(A) when λ is 0, and to U(B) when λ is 1. TI 

computes the free energy change of this transformation by integrating the Boltzmann 

averaged ∂U(λ)/∂λ:
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ΔF(A B) = ∫
0

1 ∂U(λ)
∂λ λ

dλ (2)

Different functional forms of U(λ) have been constructed and tested.26–27 MBAR calculates 

the free energy difference between neighboring intermediate states using:

ΔF(λ λ + 1) = − ln
w exp −βUλ + 1 λ
w exp −βUλ λ + 1

(3)

where w is a function of F(λ) and F(λ + 1). The equation is solved iteratively to give the 

free energy change of neighboring states ΔF(λ → λ + 1), which via combination yield the 

overall free energy change.

Another notable method is λ-dynamics,17 pioneered by Brooks and co-workers. It combines 

the idea of alchemical methods and US method by treating the λ variable dynamically, and 

generates a potential of mean force in λ-space. The initial application studies of alchemical 

methods were performed a few decades ago by a number of groups.2, 28–29 Since this time, a 

number of applications in both academia and industry have been reported.30–43 However, to 

more reliably drive decisions in lead optimization, there are two major issues that alchemical 

methods should deal with, namely, adequate sampling of relevant configurations and force 

field accuracy.3 To address the sampling issues methods like Hamiltonian exchange and 

replica exchange have been developed,44–46 while improvements in force fields, like 

CGenFF,47 AMOEBA,48 OPLS49 and AMBER/GAFF,50–51 have been an ongoing effort and 

will continue to be for the foreseeable future.

Recently, a FEP protocol was described that was able to predict the relative binding affinity 

over a broad range of protein-ligand complexes.1 This approach used replica exchange with 

solute tempering (REST2) in combination with the OPLS2.1 force field that was carefully 

parameterized using an extensive training set of relevant torsional and covalent interactions.1 

The AMBER ff14SB/GAFF force fields50, 52 are widely used, but have not been extensively 

validated against such a large data set (8 systems and 330 perturbations). To fill this gap we 

employed the recently implemented53–54 GPU-accelerated TI module of Amber18 to repeat 

the calculations for these systems in order to assess the capabilities of another force field 

model on this same data set. Overall, our computed results have larger average errors than 

the FEP+ result. The overall mean unsigned error (MUE) and root mean square deviation 

(RMSD) for FEP+ versus AMBER are 0.90 versus 1.17 kcal/mol, and 1.14 versus 1.50 kcal/

mol, respectively. This indicates that the GPU-TI module of AMBER using the AMBER 

ff14SB/GAFF 1.8 force field is an alternative choice for high-throughput relative binding 

free energy calculations, albeit with slightly larger overall errors.

2. Methods

2.1 System preparation

All of the protein and ligand PDBs were obtained from the SI of the Wang et al. publication.
1 The atom names of the ligands were modified manually so that the common atoms of the 

ligands in each protein system have the same name and the unique atoms have different 
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names. The protonation states of all the charged residues as well as Histidine residues were 

maintained as reported in Wang et al.. The AMBER FF14SB force field55 was employed to 

describe the proteins and GAFF (version 1.8) was50 used for the ligands. Restrained 

electrostatic potential (RESP) charges for the ligands were calculated at the HF/6–31G(d) 

level of theory using the Gaussian 09 program56 and AMBERTools16. The parmchk utility 

from AMBERTools16 was used to generate the missing parameters for the ligands. The 

systems were solvated using the SPC/E57 water model using cubic simulation cells. 5 Å and 

10 Å were used as the minimum distance between the edge of the cell and the solute atoms 

of the protein and ligand systems, respectively. The resulting solvated protein/ligand systems 

were then charge neutralized by adding Na+ or Cl− ions58. The particle mesh Ewald (PME) 

method59–60 was used to treat the long-range electrostatic interactions. All bonds involving 

hydrogen atoms were constrained using SHAKE61. The AMBER16 package62 was used to 

run the MD simulations. MD simulations for each protein-ligand system were performed to 

equilibrate the systems. Five steps of minimization were performed to remove close 

contacts. The first step minimizes the water molecules and counter ions, with the protein 

restrained. The second, third and fourth step restrains the heavy atoms, backbone heavy 

atoms, backbone carbon and oxygen atoms of the protein, while the last step minimizes the 

entire system. Each minimization step consisted of 20000 cycles of minimization using the 

steepest descent method. Afterwards the system was heated from 0 K to 300 K using the 

Langevin thermostat with a collision frequency of 2.5 ps−1. The solute was restrained using 

a 5 kcal/(mol*Å2) restraining potential. Finally, the system was equilibrated at 300 K for 5 

ns employing the NPT ensemble using a Langevin thermostat with a collision frequency of 1 

ps−1. The Berendsen barostat was used for the pressure control with a pressure relaxation 

time of 10 ps. The time step was 2 fs and the nonbonded cutoff was 12 Å. The last snapshot 

was used to generate a pdb file. Using the generated pdb file, all the protein atoms were 

duplicated along with the common atoms of the second ligand. The unique atoms of the 

second ligand were added according to the mol2 file of the second ligand, the coordinates of 

which were obtained from the input files from Wang, et al. The “timerge” function of the 

parmed.py utility of the AMBER 14 package was used to generate the dual ligand topology.

2.2 TI simulations

As shown in Figure 1, the relative binding free energy (ΔΔG) can be calculated as the 

difference between the free energies (ΔGs) of changing one ligand to the other in the protein 

matrix and in solution. Therefore, TI simulations for both process 1 and 2 were performed. 

For each process, the one-step protocol was adopted, i.e. disappearing one ligand and 

appearing the other ligand simultaneously. The common atoms of the two ligands were 

linearly transformed and the unique atoms were in the softcore region. Both the charge and 

vdW interactions between the disappearing (or appearing) unique atoms with the 

surrounding atoms were described by softcore potentials. Alternatively one can use the 3-

step protocol, which consists of three steps: disappearing the charge interaction of one 

ligand, changing the vdW and bonded terms, and then appearing the charge of the second 

ligand. The one-step protocol not only takes less steps but also has the same charge for the 

initial and final state of the TI simulation. However, for the 3-step protocol, the charge of the 

system may change during the decharging/charging steps, which may affect the long-range 

electrostatic interactions via the use of a neutralizing background plasma in AMBER.
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2.2.1 The one-step protocol—The detailed TI simulation protocol is as follows: First, 

using the dual ligand topology parameter file, 50000 steps of steepest descent minimization 

was performed. Then the system was heated from 0 to 300 K at the ps timescale, followed 

by 1 ns NVT equilibration at 300 K. Afterwards 1 ns pf NPT equilibration at 300 K and 1 

bar was performed to equilibrate the density. These simulations were performed at λ=0.5 to 

equilibrate the system63–64. No restraint was applied for these simulations and all structures 

were visually checked. For some perturbations, multiple runs had to be performed in order to 

obtain a stable starting structure. Afterwards the equilibrated structure was used as the 

starting structure for 12 λ windows (0.00922, 0.04794, 0.11505, 0.20634, 0.31608, 0.43738, 

0.56262, 0.68392, 0.79366, 0.88495, 0.95206, 0.99078). For each λ, 1 ns of NVT 

equilibration was performed with the initial velocities randomly generated to give a 

temperature of 300 K. Afterwards 5 ns of NVT simulation was performed to collect ∂U/∂λ 
data. A 12-point Gaussian quadrature was used for the numerical integration of ∂U/∂λ to 

obtain all necessary ΔG values. The non-bonded interaction cutoff was 9.0 Å and a softcore 

potential26–27 was used. The parameter α and β of softcore potential was 0.5 and 12 Å2, 

respectively. The time step was 1 fs for all simulations and SHAKE was not used. All TI 

simulations used the Berendsen thermostat with a coupling constant of 2 ps, except for the 

NPT equilibration step, which used the Langevin thermostat with a collision frequency of 2 

ps−1. We note that the Langevin thermostat is generally preferred over the Berendsen 

thermostat. The Berendsen barostat was used for NPT equilibration with a pressure 

relaxation time of 2 ps. NPT equilibration was performed using the CPU version of pmemd 

from the Amber14 package. The obtained results for all eight systems can be found in the 

Supplemental Information (SI). The input files are available at GitHub: https://github.com/

linfranksong/Input_TI

3. Results and Discussion

3.1 Overall results

The ΔΔG values directly obtained from the TI calculations can be found in the SI. The mean 

unsigned error (MUE) and root mean square deviation (RMSD) of these values compared to 

experiment are summarized in SI Table 1. After obtaining the ΔΔG values, we employed the 

cycle closure convergence strategy described previously65 and obtained our final ΔΔG 

values. Thus, the following analysis is based on the cycle-closure ΔΔG values. Table 1 

summarizes the MUE and RMSD compared to experiment. The overall MUE obtained with 

GPU-TI of AMBER using the AMBER FF14SB/GAFF1.8 force field (AMBER for short) is 

1.17 kcal/mol (0.27 kcal/mol larger than FEP+. Similarly, the RMSD is a bit higher for 

AMBER: 1.50 kcal/mol versus 1.14 kcal/mol for FEP+. Moreover, in our current work, we 

did not apply replica exchange, which could help enhance the overall sampling and improve 

the quality of the computed free energies. Future work will explore the role sampling (both 

in λ-space and phase space) plays on these systems versus the effect of force field errors.

With the cycle-closure ΔΔG values, we obtained the ΔG values following the procedure of 

Wang, et al.. In short, in this procedure all of the ligands’ experimental values were used as a 

reference, and the sum of the predicted ΔG values was set to be equal to the sum of the 

experimental ΔG values. Though this way of calculating the offset can artificially improve 
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the overall results, we adopted this procedure in order to better compare with Wang, et al. 
The predicted ΔG values were plotted against experimental ΔG values in Figure 2. We can 

see AMBER performs worse than FEP+. Out of the 199 ligands, 5 ligands (2.5%) for 

Schrödinger and 18 ligands (9.0%) for AMBER are more than 2kcal/mol off from 

experiment. The R2 and Kendall’s tau coefficient are listed in Table 2. Figure 3 shows the 

individual plots of predicted versus experimental ΔG values for each of the 8 systems for 

both FEP+ and AMBER TI.

3.2 Uncertainty estimate

To estimate the uncertainty in the calculations, we randomly selected 2 perturbations from 

each of the 8 systems and repeated the calculations described in section 2.2.1 twice. From 

Table 3, we can see most of the perturbations have standard deviations of less than 0.5 kcal/

mol, except 4 of the perturbations. The overall standard deviation is 0.33 kcal/mol.

3.3 The “problematic cases”

As alluded to in section 2.2.1, for some perturbations, multiple runs at λ=0.5 had to be run 

in order to obtain a stable starting structure; for example, the ligand significantly moved in 

the binding pocket or the conformation of the protein changed. In order to understand the 

origin of this problem better, we visually checked the initial structures and the structures 

after minimization, and found that there were a few cases that had close contacts in the 

initial structure, but after minimization, the structures had improved. No clashes between the 

ligand and the binding site of the protein were observed after minimization. We next 

hypothesized that our heating protocol was too fast, which caused the observed structural 

issues. Hence, we repeated the “problematic cases” with a more rigorous minimization, 

heating and equilibration procedure. Five steps of minimization were performed to remove 

close contacts. The first step minimized the water molecules and the counter ions, with the 

protein restrained. The second, third and fourth step restrained the heavy atoms, backbone 

heavy atoms, backbone carbon and oxygen atoms of the protein, while the last step 

minimized the entire system. Each minimization step consisted of 20000 cycles of 

minimization using the steepest descent method. Afterwards the system was heated from 0 K 

to 300 K gradually over 1 ns with a coupling restraint of 5 kcal/(mol*Å2) on the solute, 

followed by equilibration at 300 K using the NPT ensemble for 200 ps with the same 

restraint. Then another 200 ps of NPT equilibration with a weaker restraint (2 kcal/

(mol*Å2)) was performed. Finally the restraint was released and the system was equilibrated 

using NPT conditions for 600 ps. With these settings, the simulations successfully finished 

and the structures appeared fine after visual inspection. With the equilibrated structure, 12 λ 
windows were used for data collection with similar settings except: 1) the initial velocity 

was taken from the equilibrated structure as well as the coordinates; 2) the two end windows 

(0.00922 and 0.99078) used the velocity and coordinates from the equilibrated structure of 

the neighboring window (0. 04794 and 0. 95206). A few other differences between these 

new simulations and the former simulations include: 1) parmchk2 was used to generate the 

missing bond/angle/dihedral parameters for the ligands; 2) 22 and 12 Å was used as the 

minimum distance between the edge of the solvated cell and the ligand and protein/ligand 

systems respectively; 3) the protein/ligand system was thermalized more gradually and more 

steps of equilibration were used; 4) the Langevin thermostat was used with a collision 
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frequency of 2 ps−1 for all the TI simulations; 5) the CPU version of the AMBER 18 

package was used instead of the AMBER 14 package for the TI simulations under NPT 

conditions. The overall MUE and RMSD for these perturbations are about the same: 1.61 

kcal/mol and 2.09 kcal/mol for the new protocol versus 1.52 kcal/mol and 1.93 kcal/mol for 

the former protocol. Even so, some of the individual changes were significant, but given the 

differing box sizes, thermalization protocols, thermostats, etc. this wasn’t particularly 

surprising. Nonetheless, the average performance is relatively insensitive to the protocol 

employed. These data are summarized in the spreadsheet provided in the SI.

3.4 The 3-step protocol

A recent publication highlighted differences between the one-step protocol and a 3-step 

protocol when employing AMBER TI calculations.66 In order to explore the impact of using 

one protocol over the other we performed 3-step calculations for one of the systems, i.e. the 

JNK1 system. As discussed above, the 3-step protocol consists of disappearing the charge, a 

vdW change and a charge reappearance step. For each step, the same minimization, heating 

and equilibration was performed at λ=0.5 as described in section 3.3. The equilibrated 

structure and velocities were used for the 12λ window TI calculation. The remaining 

settings for the TI calculations were the same as in section 2.2.1. We found that the MUE 

and RMSD is nearly the same as the one step protocol: 1.11 versus 1.07 kcal/mol, 1.43 

versus 1.45 kcal/mol, respectively. This suggests that although there are differences between 

the two protocols that are worthy of in-depth exploration, the overall performance using 

either protocol is about the same, using the current code base and force fields. These data are 

summarized in SI spread sheet “FEP_vs_GTI-dG-SI”.

3.5 Discussion

In the SI (see Trend.xlsx) we summarize all of the 330 perturbations. Overall, we find that 

AMBER performs reasonably well for perturbations between halogens and H, CH3 or 

CH2CH3: 44 of 49 perturbations have errors less than 2 kcal/mol, 34 of which have an error 

less than 1 kcal/mol. Perturbations involving large van der Waals radii changes, like Br to H 

or I to H, tend to have larger errors. We further analyzed the perturbations based on the 

“size” of the perturbation; whether there is ring appearance/disappearance or whether there 

is a ring type change (for example, pyridine to benzene). We classified perturbations that 

involved 3 heavy atoms changing or more as “big change” perturbations, and the others as 

“small change” perturbations. AMBER performs well for “big change” as well as “small 

change” perturbations: 151 of the 194 “big change” perturbations (~80%) have errors less 

than 2 kcal/mol, 99 of which have errors less than 1 kcal/mol; 107 of the 136 “small change” 

perturbations have errors less than 2 kcal/mol, 99 of which have errors less than 1 kcal/mol. 

Compared to “big change” perturbations, a larger percentage of “small change” 

perturbations have errors less than 1 kcal/mol: 69% for “small change” vs 51% for “big 

change” perturbations. Moreover, ring disappearance/appearance and ring type changes are 

also often seen in perturbation studies and they’re present in this data set as well. From our 

analysis, we find that AMBER performs well for both: 54 of 68 ring disappearance/

appearance perturbations have errors less than 2 kcal/mol, 35 of which have an error less 

than 1 kcal/mol; 52 of 78 ring type change perturbations have errors less than 2 kcal/mol, 29 

of which have an error less than 1 kcal/mol. While it would have been helpful to find 
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systematic issues within certain classes of perturbations when using the AMBER class of 

force fields, in order to help guide force field improvement efforts, we found this wasn’t the 

case in the present data set.

4. Conclusions

We repeated the relative binding free energy calculations on the data set described in 

previous work.1 Comparing to the Schrödinger FEP/OPLS 2.1 force field, GPU TI with 

AMBER FF14SB and the GAFF (1.8) force field performs reasonably well on this data set, 

with errors above those seen using the FEP/OPLS 2.1 force field. For the 330 perturbations, 

AMBER has MUE and RMSDs of 1.17 kcal/mol and 1.50 kcal/mol, which is a few tenths of 

kcal/mol larger than the reported values (0.90 kcal/mol and 1.14 kcal/mol).1 For the 199 

ligands, most of the binding free energy values are within 2 kcal/mol, except for 18 ligands 

(versus 5 reported previously1). Interestingly, a null model, which assumes all the ΔΔG 

values are 0 kcal/mol, gives similar results (see SI Figure 1): 8 ligands are not within 2 kcal/

mol. This is due to the small range of the experimental ΔG values: the widest range of ΔG 

values is 5.13 kcal/mol. To better demonstrate and test free energy approaches, data sets with 

larger experimental ΔG ranges should be explored. Future work will also explore the use of 

replica exchange and other features within AMBER to enhance the sampling (both in λ-

space and orthogonal degrees of freedom). Along with technical advances we will also 

explore the capabilities of the next generation GAFF2 and protein force fields. Finally, test 

procedures for creating benchmark quality results with meaningful error estimates that can 

be used as a baseline for other comparisons will be explored.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Thermodynamic cycle used for the calculation of the relative binding free energy between 

protein-ligand system A and protein-ligand system B.
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Figure 2. 
Correlation between predicted binding free energies and experimental data for the eight 

systems.
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Figure 3: 
Correlation between the predicted binding free energies and experimental data for the eight 

systems studied herein. X axis: Experimental ΔG (kcal/mol); Y axis: Predicted ΔG (kcal/

mol). τ is the Kendall’s tau coefficient.
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Table 1.

Summary of the MUE and RMSD, R2 and Kendall's tau coefficient (τ) of the eight systems based on cycle 

closure ΔΔG values.

System # of 
ligands

# of 
perturbations

FEP+/OPLS 2.1 (kcal/mol) AMBER GPU-TI/AMBER FF14SB 
+ GAFF (1.8) (kcal/mol)

Difference* (kcal/
mol)

MUE RMSD R2 τ MUE RMSD R2 τ MUE RMSD

Thrombin 11 16 0.76 0.93 0.17 0.21 0.46 0.62 0.50 0.54 −0.30 −0.31

Tyk2 16 24 0.75 0.93 0.48 0.54 1.07 1.27 0.24 0.26 0.32 0.34

Jnk1 21 31 0.78 1.00 0.35 0.44 1.07 1.45 0.05 0.23 0.29 0.45

CDK2 16 25 0.91 1.11 0.15 0.30 0.97 1.13 0.35 0.46 0.06 0.02

PTP1B 23 49 0.89 1.22 0.43 0.55 1.06 1.40 0.35 0.51 0.17 0.18

BACE 36 58 0.84 1.03 0.37 0.36 1.20 1.47 0.27 0.31 0.36 0.44

MCL1 42 71 1.16 1.41 0.26 0.35 1.52 1.83 0.16 0.28 0.36 0.42

P38a 34 56 0.80 1.03 0.62 0.60 1.20 1.56 0.31 0.39 0.40 0.53

Overall 199 330 0.90 1.14 0.36 0.44 1.17 1.50 0.23 0.34 0.27 0.36

*
The difference is calculated as AMBER MUE or RMSD minus Schrodinger MUE or RMSD.
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Table 2.

R2 and Kendall's tau coefficient for the correlation between predicted binding free energies and experimental 

data for the eight systems; τ represents the Kendall's tau coefficient.

System # of ligands # of perturbations

FEP+/OPLS 2.1 (kcal/mol) AMBER GPU-TI/AMBER FF14SB + GAFF (1.8) (kcal/
mol)

R2 τ R2 τ

Thrombin 11 16 0.50 0.45 0.57 0.56

Tyk2 16 24 0.79 0.70 0.33 0.45

Jnk1 21 31 0.71 0.76 0.22 0.34

CDK2 16 25 0.23 0.28 0.22 0.25

PTP1B 23 49 0.65 0.70 0.50 0.64

BACE 36 58 0.61 0.56 0.19 0.29

MCL1 42 71 0.60 0.61 0.42 0.49

P38a 34 56 0.42 0.47 0.15 0.28

Overall 199 330 0.66 0.62 0.44 0.48
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Table 3.

Estimate of the uncertainty of the calculations.

System Ligand 1 Ligand 2 Run_1 (kcal/
mol)

Run_2 (kcal/
mol)

Run_3 (kcal/
mol)

Average (kcal/
mol)

Standard 
Deviation (kcal/

mol)

Thrombin
1d 1c −0.20 −0.15 −0.15 −0.17 0.03

6e 6b 0.60 0.75 0.75 0.70 0.09

TYK2
ejm 31 ejm 46 −0.75 −0.85 −0.65 −0.75 0.10

jmc 28 jmc 30 −2.00 −2.00 −1.90 −1.97 0.06

JNK1
18626–1 18624–1 1.50 0.95 1.05 1.17 0.29

18659–1 18634–1 −0.95 −1.10 −0.35 −0.80 0.40

CDK2
22 lhlr −0.55 −0.90 −0.70 −0.72 0.18

1oiy 1h1q 1.65 1.70 2.85 2.07 0.68

PTP1B
23466 23475 −1.50 −1.60 −2.65 −1.92 0.64

20670(2qbs) 23330(2qbq) −1.65 −1.40 −1.85 −1.63 0.23

BACE
CAT-13a CAT-17g 1.95 1.10 1.65 1.57 0.43

CAT-4p CAT-13k −1.45 −1.20 −0.85 −1.17 0.30

MCL1
26 57 −0.85 −1.05 −1.00 −0.97 0.10

68 45 −0.75 −0.70 −0.85 −0.77 0.08

P38
p38a_2aa p38a_2bb −1.35 −0.20 0.65 −0.30 1.00

p38a_3fly p38a 3fmh 0.00 −0.35 0.85 0.17 0.62

Overall 0.33
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