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Abstract

Antibiotic resistance has become a serious threat to human health (WHO Antibacterial Agents in Clinical Development: an Analysis 
of the Antibacterial Clinical Development Pipeline, Including Tuberculosis. Geneva: World Health Organization; 2017), and the ability 
to predict antibiotic resistance from genome sequencing has become a focal point for the medical community . With this geno-
centric prediction in mind, we were intrigued about two particular findings for a collection of clinical Pseudomonas aeruginosa 
isolates (Marvig et al. Nature Genetics 2015;47:57–64; Frimodt-Møller et al. Scientific Reports 2018;8:12512; Bartell et al. Nature 
Communications 2019;10:629): (i) 15 out of 52 genes found to be frequently targeted by adaptive mutations during the initial 
infection stage of cystic fibrosis airways (‘candidate pathoadaptive genes’) (Marvig et al. Nature Genetics 2015;47:57–64) were 
associated with antibiotic resistance (López-Causapé et al. Fronters in Microbiology 2018;9:685; López-Causapé et al. Antimicro-
bal Agents and Chemotherapy 2018;62:e02583-17); (ii) there was a parallel lack of resistance development and linkage to the 
genetic changes in these antibiotic-resistance-associated genes (Frimodt-Møller et al. Scientific Reports 2018;8:12512; Bartell 
et al. Nature Communications 2019;10:629). In this review, we highlight alternative selective forces that potentially enhance the 
infection success of P. aeruginosa and focus on the linkage to the 15 pathoadaptive antibiotic-resistance-associated genes, 
thereby showing the problems we may face when using only genomic information to predict and inform about relevant antibi-
otic treatment.

Data Summary
The primary data supporting this mini-review has been 
reported in the following papers: Marvig et al. (2015) DOI: 
10.1038/ng.3148, Frimodt-Møller et al. (2018) DOI: 10.1038/
s41598-018-30972-y and Bartell et al. (2019) DOI: 10.1038/
s41467-019-08504-7.

Introduction
Antibiotic resistance is defined here by the European 
Committee on Antimicrobial Susceptibility Testing 
(EUCAST) determinations of clinical breakpoints. In the 
clinic, a bacterium is defined as being resistant when the 
measured minimum inhibitory concentration (MIC) is above 
the breakpoint. This is in contrast to ‘decreased susceptibility’ 
or ‘low-level resistance’, which is observed as an increase in 

MIC compared with previous measurements that is below the 
EUCAST breakpoint and, therefore, which is generally not 
reported in the medical clinic.

Antibiotic resistance is either acquired (horizontal gene 
transfer) or evolved (mutational resistance), and includes 
three main mechanisms: (i) alteration of antibiotic targets, 
(ii) degradation or chemical modification of antibiotics, and 
(iii) reduced uptake or increased efflux across the bacterial 
cell wall (Fig. 1). These mechanisms are often governed by 
several genes and often associated with other bacterial traits 
that are important for survival in the human host.

Here, we will discuss resistance mutations appearing during 
adaptive evolution of Pseudomonas aeruginosa in airway 
infections of antibiotic-treated cystic fibrosis (CF) patients 
[1–3]. We will, in particular, focus on 52 genes recently 
identified as the most frequently mutated genes, which are, 
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therefore, assumed to be important for early adaptation to the 
CF airways (pathoadaptive genes) [1]. The study provided a 
comprehensive genomic analysis of the initial 0–10 years of 
infection by P. aeruginosa in 34 young CF patients. We will 
specifically direct our attention to 15 genes associated with 
antibiotic resistance, assigned to the mutational resistome of 
P. aeruginosa [4, 5], or associated with ‘antibiotic resistance 
and susceptibility’ according to the Pseudomonas aeruginosa 
Community Annotation Project (PseudoCAP) [6–8].

P. aeruginosa bacterium
P. aeruginosa is a Gram-negative bacterium, which is isolated 
from a variety of environments such as soil, water, plants and 
animals, as part of the natural bacterial microbiota, but also 
is known as an opportunistic pathogen. This dual life-style is 
likely attributable to its large genome (~6–7 Mb) [9], which 
also includes a range of different mechanisms associated with 
antibiotic resistance [10]. Moreover, as a consequence of its 
inherent antibiotic resistance and its pathogenic potential, 
it has been described as a ‘priority pathogen’ by the World 
Health Organization [11].

Studies of antibiotic resistance
Antibiotic resistance has been, and still is, extensively inves-
tigated in laboratory experiments [10, 12–15]. These experi-
ments generally provide a simple causality between genetic 
change(s) and resistance phenotype, as there is usually only 
one or few variable selective pressures (e.g. antibiotics) 
present, which is optimal for studying primary mechanisms 
of antibiotic resistance and identifying the associated genetic 
determinants.

However, the environments in which the antibiotics are meant 
to be used, and in which resistance interferes with treatment, 
are never as simple as in a test tube (Fig. 1). The human or 
animal host represents arrays of selective forces, which the 
invading bacteria meet and have to adapt to, in order to estab-
lish an infection. Some of these host-associated challenges 
resemble the selective pressure from antimicrobials, e.g. pres-
ence of toxins and antimicrobial compounds expressed by the 
commensal flora or by the immune system [16, 17] (Fig. 1). 
Therefore, to understand antibiotic resistance as it develops 
in the host, both through primary and secondary selection, 
we need to contextualize the findings from the laboratory 
studies with studies of complex natural systems. One excel-
lent infection model system to carry out such investigations 
is persistent airway infection in CF patients.

Cystic fibrosis
CF is an autosomal recessive inherited disease caused by a 
malfunctioning chloride channel resulting in an imbalance 
in salt concentrations across the epithelial layers, which is 
particularly problematic on mucosal surfaces, where the 
mucus layer gets thick and sticky due to dehydration. In 
the lungs of CF patients, this results in reduced clearance of 
airway secretions and, thus, CF patients are prone to airway 

infections. One of the most frequent infectious agents is P. 
aeruginosa [18].

CF patients routinely attend out-patient clinics, where lung 
samples are cultured to identify and monitor airway infec-
tions, and from which bacterial isolates are collected. Such 
isolates stored over time provide longitudinal bacterial 
libraries, useful for investigations of the adaptive trajecto-
ries of persistent infections [1–3, 5]. There are several such 
examples in the literature, which document how historical 
contingencies and epistatic interactions [1, 19], coopera-
tion and cheating in bacterial populations [20], horizontal 
gene transfer and gene loss in natural populations [21], and 
antibiotic resistance development [4, 22] can be documented 
from investigations of genomic and phenotypic changes over 
time. Longitudinal bacterial isolates provide opportunities to 
study the evolution of antibiotic resistance in complex and 
dynamic environments with clinically relevant antibiotic 
concentrations. Such investigations provide relevant contexts 
for comparisons with more controlled laboratory experiments 
characterized by a single or a few specific selective pressures.

INITIAL ADAPTATION TO THE HUMAN HOST
Despite early treatment with antibiotics, initial colonization of 
CF airways does not seem to result in resistance development 
in P. aeruginosa populations [22, 23]. Instead, establishment 
of an infection probably depends much more on adaptation 
to a range of other selective factors within the human host 
such as: the immune system, altered nutrient availability, 

Impact Statement

As more genomes are being sequenced every day (human 
as well as bacterial), it has become increasingly enticing 
to focus on what can be predicted from these genomes, 
e.g. disease predispositions, treatment opportunities 
and antibiotic resistance to mention a few. However, in 
spite of being increasingly aware of the complexity of 
predicting traits from genetic changes, many are still 
firm believers that we will soon be able to predict the 
best treatment opportunities, for example, for bacterial 
infections from the genomic content of said bacteria. This 
paper critically reviews the opinion that antibiotic resist-
ance can be predicted solely from the genetic changes 
observed in the bacteria Pseudomonas aeruginosa. This 
is done because of the contradictory findings of three 
papers focusing either purely on genetics or a combi-
nation of genetics and phenotypic traits in a collection 
of clinical isolates of P. aeruginosa. The contradiction is 
the presence of antibiotic-resistance-associated genetic 
changes and the lack of antibiotic resistance in the bacte-
rial collection. Thus, we highlight the problems that we 
may face if we only rely on genetic information to inform 
about relevant antibiotic treatment.
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Fig. 1. The complex environment of a human host (left) and the main mechanisms applied by P. aeruginosa to become antibiotic resistant 
(right). The bullet points on the right explain how antibiotic-resistance mechanisms also provide survival mechanisms against other 
stressors and/or toxins found in the environment apart from antibiotics. ROS, Reactive oxygen species. Asterisks indicate mutated 
versions of the proteins in question.

fluctuating oxygen concentrations and the composition of 
the indigenous microbiota [16, 24–28] (Fig. 1).

If antibiotic resistance plays a minor role in the initial coloni-
zation of the CF human host, it is in fact surprising that 15 of 
the 52 pathoadaptive genes identified as particularly frequent 
targets for mutations in early CF airway infections [1] are 
associated with antibiotic resistance [4, 5]. However, all of 
these 15 mutated genes are additionally associated with other 
important infection-associated phenotypes (PseudoCAP) 
(Table 1) and, thus, could be selected for by conditions in the 
host other than the presence of antibiotics.

For 12 of the resistome-associated pathoadaptive genes, the 
number of phenotypic traits not directly linked to antibiotic 
resistance is striking, and highlight the diverse selective pres-
sures that the bacteria face in the initial stages of infection. 
Specifically, we find genes associated with cell-wall biosyn-
thesis (htrB1 [15], wbpM [29], mpl [30]), efflux pumps and 
porins (mexR, mexA, mexB [14], mexZ [31], mexS [32, 33], 
nalD [13], oprD [12]) and quorum sensing (lasR [34]). In 
all cases, mutations in these genes may change antibiotic 
susceptibility, but they are also linked to responses towards 
other environmental stressors.

When entering the human host, the bacteria will encounter 
the innate immune system and the indigenous microbiota. 
The innate immune system will likely be activated by cell-wall 
components of the bacteria, such as the lipopolysaccharides 
(LPS), and mutations in genes related to the LPS will help 
the bacteria to ‘hide’ from the immune system. Addition-
ally, the peptidoglycan of the cell wall and efflux pumps will 
provide the infecting bacteria with protection against toxic 
compounds produced by other micro-organisms or other 
environmental compounds (e.g. heavy metals, quorum 
sensing signals, etc.). These effects have been reviewed else-
where [24, 35, 17]. Interestingly, mutations in the negative 
regulator of the MexXY efflux pump (mexZ) outnumber all 
other pathoadaptive mutations [1] in this collection, and the 
gene has also been found to be highly important in other 
studies, as reviewed previously [36]. It has been associated 
with resistance to aminoglycosides and fluoroquinolones 
[37, 38], but in most cases mexZ mutations have been found 
to be associated with resistance levels far below the EUCAST 
breakpoints, pointing to yet another clinical challenge when 
comparing genotypes and phenotypes [39].

Of the 15 resistome-associated pathoadaptive genes, 3 are 
likely to accumulate mutations as a direct consequence of 
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Table 1. Fifteen genes associated with antibiotic resistance

These genes [4, 5] were selected because they have also been found to be important for the adaptation of P. aeruginosa to the airways of CF patients 
[1]. The PseudoCAP functions associated with each gene are marked by coloured boxes representing the different functions as noted in the key.

‍ ‍

antibiotic selection. For example, mutations in the genes 
gyrA, gyrB and nfxB have been linked specifically to resist-
ance against a distinct group of antibiotics: the quinolones, 
which include ciprofloxacin [40–42]. Accordingly, mutations 
in these genes have been identified in isolates with increasing 
ciprofloxacin resistance over time [22]. However, in spite of a 
direct connection between gyrase and the antibacterial mode 
of action of ciprofloxacin, mutations in either of the gyrase-
encoding genes do not always result in the development of 
resistance. This is even observed when bacteria are under high 
levels of selection for resistance development (i.e. high levels 
of antibiotics in the environment). As shown by Bartell et 
al. [22], 78 % of such mutated isolates showed ciprofloxacin 
resistance (based on the EUCAST breakpoint), leaving 22 % 
of the mutations without any antibiotic-resistance phenotype. 
Others have found isolates with the same gyrA mutation to 
result in MIC values varying more than 1000-fold [43], high-
lighting the importance of the genetic background in which 
the mutations are found.

CONCLUDING REMARKS
We have described parts of the wide repertoire that can be 
deployed by P. aeruginosa to achieve a high level of infec-
tion success and persistence (fitness) in the host. Many of 
these mechanisms are associated with antibiotic resistance 
but, as we have discussed here, it is far from clear that there 
is a direct causality between specific mutations and specific 
phenotypes. Therefore, we conclude that despite the useful-
ness of full-genome sequences of pathogenic bacteria as part 
of the diagnostic repertoire in the clinic, we still need to 
take into consideration the following: (i) that mutations are 
fixed in bacterial populations as consequences of the specific 
environments in which the bacteria are growing (selection 
forces), and (ii) that the specific mutations cause phenotypic 
changes that depend on the rest of the genomic configuration 
(epistatic impacts). It is consequently doubtful that genomic 
diagnostics can fully substitute for phenotypic characteriza-
tion, and that depending entirely on genomics in the clinic 
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may result in erroneous diagnoses and resulting therapeutic 
extrapolations.
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