
1Aladwani M, et al. BMJ Open 2020;10:e034661. doi:10.1136/bmjopen-2019-034661

Open access�

Prediction models for prostate cancer to 
be used in the primary care setting: a 
systematic review

Mohammad Aladwani,1 Artitaya Lophatananon  ‍ ‍ ,1 William Ollier,1,2 
Kenneth Muir  ‍ ‍ 1

To cite: Aladwani M, 
Lophatananon A, Ollier W, 
et al.  Prediction models for 
prostate cancer to be used 
in the primary care setting: a 
systematic review. BMJ Open 
2020;10:e034661. doi:10.1136/
bmjopen-2019-034661

►► Prepublication history and 
additional material for this 
paper are available online. To 
view these files, please visit 
the journal online (http://​dx.​doi.​
org/​10.​1136/​bmjopen-​2019-​
034661).

Received 02 October 2019
Revised 21 May 2020
Accepted 29 May 2020

1Division of Population Health, 
Health Services Research 
and Primary Care School of 
Health Sciences Faculty of 
Biology, Medicine and Health, 
The University of Manchester, 
Manchester, UK
2School of Healthcare Science, 
Manchester Metropolitan 
University Faculty of Science 
and Engineering, Manchester, 
UK

Correspondence to
Dr Kenneth Muir;  
​kenneth.​muir@​manchester.​
ac.​uk

Original research

© Author(s) (or their 
employer(s)) 2020. Re-use 
permitted under CC BY. 
Published by BMJ.

Strengths and limitations of this study

►► The review focussed on risk prediction models for 
PCa for use in primary care.

►► The Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) approach 
was followed in identifying relevant articles and re-
porting this study.

►► We used the Prediction model Risk Of Bias 
ASsessment Tool (PROBAST) to assess the quality 
and risk of bias in the included models.

►► The search strategy was restricted to two databases 
and a manual search, to retrieve original studies.

Abstract
Objective  To identify risk prediction models for prostate 
cancer (PCa) that can be used in the primary care and 
community health settings.
Design  Systematic review.
Data sources  MEDLINE and Embase databases combined 
from inception and up to the end of January 2019.
Eligibility  Studies were included based on satisfying all 
the following criteria: (i) presenting an evaluation of PCa 
risk at initial biopsy in patients with no history of PCa, (ii) 
studies not incorporating an invasive clinical assessment 
or expensive biomarker/genetic tests, (iii) inclusion of at 
least two variables with prostate-specific antigen (PSA) 
being one of them, and (iv) studies reporting a measure of 
predictive performance. The quality of the studies and risk 
of bias was assessed by using the Prediction model Risk 
Of Bias ASsessment Tool (PROBAST).
Data extraction and synthesis  Relevant information 
extracted for each model included: the year of publication, 
source of data, type of model, number of patients, country, 
age, PSA range, mean/median PSA, other variables 
included in the model, number of biopsy cores to assess 
outcomes, study endpoint(s), cancer detection, model 
validation and model performance.
Results  An initial search yielded 109 potential studies, of 
which five met the set criteria. Four studies were cohort-
based and one was a case-control study. PCa detection 
rate was between 20.6% and 55.8%. Area under the curve 
(AUC) was reported in four studies and ranged from 0.65 
to 0.75. All models showed significant improvement in 
predicting PCa compared with being based on PSA alone. 
The difference in AUC between extended models and PSA 
alone was between 0.06 and 0.21.
Conclusion  Only a few PCa risk prediction models have 
the potential to be readily used in the primary healthcare 
or community health setting. Further studies are needed 
to investigate other potential variables that could be 
integrated into models to improve their clinical utility for 
PCa testing in a community setting.

Introduction
Prostate cancer (PCa) is the second most 
common cancer and the fifth leading cause 
of cancer-attributed death in men worldwide 
with an estimated incidence of 1 276 106 and 
358 989 deaths in 2018.1 In the UK, around 
47 200 new cases of PCa were reported in 

2015, accounting for 26% of all new cancer 
cases in males. PCa deaths in the UK of were 
around 11 600 in 2016.2 The global projec-
tions of PCa incidence and mortality for 2030 
are 1.7 and 0.5 million, respectively.3 The 
highest incidence of PCa is seen in western 
societies.4 The significant increase of PCa 
incidence and diagnosis over the last three 
decades can be attributed mainly to the 
widespread implementation of the prostate-
specific antigen (PSA serum test after it had 
been introduced in the late 1980s.5 6

The strong association of PSA with 
PCa,7 8 along with it being a relatively inex-
pensive test,9 has made PSA a key biomarker 
in the diagnostic process of PCa and for the 
recommendation of a confirmatory pros-
tate biopsy.7 9 PSA is, however, not a cancer-
specific marker.5 10 Conditions such as benign 
prostate hypertrophy (BPH), prostatitis and 
other non-malignant prostatic conditions 
can also elevate PSA level, thus introducing 
uncertainty to the application of the test.11–14 
This highlights limitations of the PSA test 
regarding its specificity and sensitivity, and it 
being largely dependent on setting a ‘diag-
nostic’ cut-off point, which often leads to an 
unacceptable number of false-positive and 
false-negative results.5 10 15 16 Such issues are 
likely to be the part of the explanation for 
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the significant number of unnecessary biopsies currently 
being performed each year. Such procedures are asso-
ciated with adverse side effects for patients and also 
increases healthcare costs.17 18

To address such PSA test limitations, researchers have 
incorporated other measurable factors into approaches 
for the early detection of PCa; these ‘risk assessment tools’ 
are based on statistical models designed to improve the 
accuracy and performance of the PSA test.19–22 Logistic 
regression and artificial neural network (ANN) models 
are now considered to be the most common and effective 
statistical techniques in aiding the development of new 
models to enhance early PCa diagnosis.23 These PCa risk 
prediction models can be used to aid the testing of men 
for further investigations.

Currently in the UK, there is no population-based 
screening programme for PCa. The ultimate goal of PCa 
screening is to find intermediate and high risk of PCa 
rather than low-risk PCa that would not require treat-
ment but will give emotional burden to the patient once 
detected and unnecessary treatment in some patients. 
An important potential advantage of the extended risk 
models is their ability to provide a more accurate esti-
mation of PCa risk. This may ultimately lead to their use 
in patient counselling and decision-making.24–27 Such 
models have already achieved better results in predicting 
probabilities of outcome compared with clinical judge-
ment.28 29 Furthermore, it has been reported that using 
such predictive models may minimise the rate of unnec-
essary biopsies.30

Recently, there has been a substantial increase in the 
development of predictive models to help clinicians assess 
risk and decide which man to send to clinical setting to 
further investigate for a possible diagnosis of PCa.22 26 30–35 
The majority of these models are designed for use in 
clinical settings, where costs are less of an issue and most 
include the need for a clinical examination such as digital 
rectal examination (DRE) or trans-rectal ultrasonog-
raphy (TRUS). One of the main limitations of DRE is its 
poor performance, especially at low PSA levels, and it is 
highly subjective to inter-observer variability.36–38 A meta-
analysis study revealed that DRE has positive predictive 
value of only 18%.39 Similarly, TRUS has been reported 
for having poor accuracy at low PSA levels40 41 and small 
PCa might not be palpable on DRE or visualisation on 
TRUS.40 Furthermore, less than 40% of PCa detected by 
DRE are potentially curable, making it less beneficial for 
early diagnosis.42 Several studies showed that there is fear, 
anxiety and embarrassment among some men, in partic-
ular Black men, regarding the DRE test.43–46 Another 
disadvantage of the DRE is the fact that it is a potentially 
uncomfortable test.47–52 This may explain why the DRE is 
a barrier for some men to participate in PCa screening if 
it includes DRE test. Lee et al reported that 74% to 84% 
of Black men may not maintain annual DRE screening,53 
while another study found that it may prevent 22% of men 
from participating.54 Since TRUS needs to be performed 
by a skilled urologist, this means men have to make an 

appointment with a clinic in a different location, which 
makes the screening less convenient. As a result, men may 
feel reluctant to have such tests performed.

This systematic review of the literature was undertaken 
to identify risk prediction models that do not incorpo-
rate invasive or more costly clinical procedures or exten-
sive biomarkers but have potential application for use 
in primary care and community settings. As low cost is a 
primary concern for community use, for this review, we 
set an indicative threshold of approximately three to five 
times the cost of a PSA test for inclusion. This excluded 
a number of models that contain new and emerging 
biomarker or single nucleotide polymorphism panels. As 
a number of persons are referred to the clinical setting, 
costs are less of an issue. The performance of the models 
reviewed for detecting PCa at initial biopsy have been 
compared using ‘reported area under the curve’ (AUC) 
and/or sensitivity-specificity testing.

Methods
The approach used to identify and select relevant articles 
was based on the application of the ‘Preferred Reporting 
Items for Systematic Reviews and Meta-Analysis’ 
(PRISMA).55

Data sources and search strategy
A literature search was performed using MEDLINE 
(via Ovid) and Embase databases. The ‘medical subject 
heading’ (MeSH) terms, combined with Boolean logic 
operators ‘AND’ and ‘OR’, were applied to retrieve rele-
vant articles. The terms used for the search were ‘Pros-
tatic Neoplasms’ AND (‘Initial biopsy’ OR ‘first biopsy’ 
OR ‘early detection of cancer’) AND (‘nomograms’ 
OR ‘artificial neural networks’ OR ‘risk assessment’ OR 
‘statistical model’). The full search strategy is provided 
in a online supplementary file 1. All articles defined 
(published since the inception of the databases and up 
to the end of January 2019) were subsequently further 
filtered as being those only published in English language 
and with an abstract. Further to using the above search 
databases, the research articles were selected manually 
from the reference lists of any relevant review articles. 
Google Scholar and MEDLINE searches were also carried 
out to identify independent study for external validation 
for each model included in this review. The results are 
presented in online supplementary file 2.

Eligibility criteria
As this review focusses on PCa risk prediction based in 
community healthcare settings, all studies were selected 
on the following inclusion criteria: (i) evaluating the 
risk for PCa at initial biopsy in patients who had no prior 
history of PCa, (ii) studies that reported ‘low cost’ risk 
assessment tools (ie, those not including more expen-
sive genetic or biomarker test) or ‘invasive’ clinical tests/
examinations (such as DRE or TRUS), (iii) studies that 
included a minimum of two variables of which PSA had 
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Figure 1  Flow diagram of studies included using the 
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses method. DRE, digital rectal examination; PCA3, 
prostate cancer antigen 3; PV, prostate volume; SNP, single 
nucleotide polymorphism.

to be one of them (on the basis that an elevated PSA test 
in UK primary care is usually the first sign and rationale 
for suggesting a need for further investigation of PCa 
within NICE guidelines), and (iv) studies that reported 
AUC and/or sensitivity and specificity of the diagnostic/
predictive tool. The exclusion criteria used were: (i) arti-
cles with models that were built and based on repeat or 
mixed biopsies, (ii) studies that only validate an existing 
model, and (iii) articles that were not published in 
English. There were no time boundaries regarding the 
publication year.

Screening of the titles, abstracts and full-texts was 
carried out by two reviewers (MA, AL). Any concerns 
about the eligibility of a study were resolved by discussion 
with a third reviewer (KM).

Data extraction
A data extraction form was developed to collect all rele-
vant information. For each study used in this review, the 
items extracted included: year of publication, source of 
data, type of model, number of patients, country where 
it was performed, age, PSA range, mean/median PSA, 
number of biopsy cores, variables included in the model, 
study endpoint(s), cancer detection, model performance 
and model validation.

Evaluating the performance of the risk models
Prediction models can be evaluated against various criteria. 
The most critical measurements of model performance 
are discrimination and calibration.27 Discrimination 
refers to how well the prediction model can differen-
tiate patients in different outcome classes according to 
their predicted risks. It is often assessed by measuring the 
area under the receiver operating characteristic curve.56 
It also requires setting a series of thresholds to separate 
low and high ranges of predicted outcomes. A value of 
0.5 indicates no discrimination, while a value of 1 indi-
cates perfect discrimination. However, even with perfect 
discrimination, observed risk can differ from expected 
risk. Therefore, calibration has an important role in 
model evaluation.57 Calibration represents the agree-
ment between expected and observed outcomes.58 A well-
calibrated model is achieved when the calibration slope 
is close to 1. When the calibration slope is less than 1, 
it indicates that the model underestimates low risks and 
overestimates high risks.59

Due to the heterogeneity of the studies included, 
conducting a meta-analysis was not applicable.

Study quality assessment
The quality of the studies included in this review was 
assessed using the Prediction model Risk Of Bias ASsess-
ment Tool (PROBAST).60 This tool has been developed 
specifically to assess the risk of bias and applicability 
for prediction model studies. The tool consists of four 
domains and has 20 signalling questions that facilitate 
reaching overall judgement of risk of bias, as well as issues 
relating to applicability.

Patient and public involvement
No patients were involved in setting the research question 
or the outcome measures, nor were they involved in the 
design and implementation of the study. There are no 
plans to involve patients in dissemination.

Results
A total of 102 publications were identified using the 
search strategy as shown in figure 1. An additional nine 
articles were identified through manual searches from a 
bibliography of reviewed articles. At the first filter step, 
a total of 109 titles and abstracts were screened for eligi-
bility after removing two duplicates. In the second filter 
step, 60 papers failed to meet the inclusion criteria and 
were excluded, resulting in 49 articles. The final step of 
filtering yielded only five studies that were considered 
to be eligible (ie, passed all set criteria) and were thus 
included in this systematic review. There was no indepen-
dent study identified for external validation for included 
models.

Study characteristics
Four of the five studies included were based on cohort 
studies and one was a case-control study. The charac-
teristics of each of these studies and populations are 
summarised in table 1. Details of PSA assays used in the 
models are presented in online supplementary file 3.

Patients used to build the risk models varied across 
these studies. Of the five studies, three studies included 
men from referral populations61–63 and two studies from 
screening programmes.64 65 The sample sizes ranged 
from 151 to 3773, with three studies derived from US 
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Table 2  Variables used in the prostate cancer risk prediction models

Author and year

Variables used in the model

Total PSA Free PSA Per cent free PSA Age Other variables

Carlson et al, 199861
✓ ✓ ✓

Babaian et al, 200064
✓ ✓ ✓ Creatine kinase, prostatic acid 

phosphatase

Jansen et al, 2010 (Site 1)65
✓ ✓ p2PSA

Jansen et al, 2010 (Site 2)65
✓ ✓ p2PSA

Hill et al, 2013 (Method 1)62
✓ ✓ HGB, RBC, haematuria, creatinine, MCV 

and ethnicity ‘Black’

Hill et al, 2013 (Method 2)62
✓ ✓ HGB, RBC, creatinine and MCV

Lazzeri et al, 2013 (Model 1)63
✓ ✓ ✓

Lazzeri et al, 2013 (Model 2)66
✓ ✓ ✓ p2PSA

Lazzeri et al, 2013 (Model 3)63
✓ ✓ ✓ %p2PSA

Lazzeri et al, 2013 (Model 4)63
✓ ✓ ✓ PHI

HGB, haemoglobin; MCV, mean corpuscular volume; PHI, prostate health index; p2PSA, precursor of PSA; %p2PSA, percentage of p2PSA to 
free PSA ; PSA, prostate-specific antigen; RBC, red blood cells.

cohorts61 62 64 and two from Europe.63 65 Four studies used 
logistic regression methodology to build their model, 
whereas one study used an ANN-based approach.64 The 
minimum age of participants was 40 years62 64 and the 
minimum PSA level was 2 ng/mL.63 65

Variables in the model
Table  2 presents details of the variables used in each 
model. PSA level was used in all models, followed by free 
PSA (fPSA), age and free-to-total PSA ratio (%fPSA). 
Other variables also reported in the models included: 
precursor of PSA (p2PSA), percentage of p2PSA to fPSA 
(%p2PSA), prostate health index (PHI), levels of haemo-
globin (HGB), albumin, creatinine and red blood cell 
count (RBC), haematuria, mean corpuscular volume 
(MCV) and prostatic acid phosphatase.

Outcome
The study endpoint also varied among the studies 
selected. Two studies evaluated the accuracy of detecting 
any PCa61 64 and three studies examined the pathologic 
Gleason score.62 63 65 Although Jansen et al, did not build a 
model to predict the aggressiveness of PCa, they assessed 
the relationship of each variable individually with a 
Gleason score ≥7. PCa was determined by taking a needle 
biopsy. All patients in the five studies underwent prostate 
biopsy. The least number of biopsy cores used were six61 65 
and the highest were ≥12.63 One study did not report the 
number of biopsy cores taken.62 PCa rates ranged from 
20.6% to 55.8%.

Evaluating the performance of the risk models
For predicting any PCa, the Jansen et al, model used 
data from the Rotterdam arm of the European Study of 
Screening for PCa (ESPRC). Their model achieved the 
highest discrimination value when compared with PSA 

alone (AUC of 0.755 vs 0.585, respectively).65 The AUC 
values in other studies ranged from 0.648 to 0.74.

One study did not provide the AUC but instead reported 
an increase of 11% in specificity over per cent fPSA alone 
with 95% sensitivity.61 Lazzeri et al,63 presented results 
from four separated models discriminating PCa with a 
Gleason score of ≥7. Lazzeri’s model 2 (which includes 
the base model total PSA, fPSA and %fPSA in addition 
to p2PSA) and model 3 (which includes base model plus 
PHI) showed the highest levels of discrimination out of 
the four models with an AUC of 0.67. In the study of Hill,62 
the authors classified PCa stages differently and built their 
two models accordingly. In Hill’s first model, the differ-
ence in the discrimination was analysed and based on all 
PCa versus non-cancerous prostate conditions where the 
AUC for this model was 0.68 compared with 0.59 for PSA 
alone. In Hill’s second model, the discrimination anal-
ysis was based on PCa stages II, III, IV versus PCa stage I, 
prostatic interstitial neoplasm, BPH and prostatitis where 
stages I, II, III and IV are parallel to T1, T2, T3/T4 and 
metastatic PCa, respectively. The AUC for the second 
model was 0.72 compared with 0.63 for PSA alone. In 
general, four studies examined the AUC with PSA alone 
and all reported a benefit from the use of logistic regres-
sion or the trained ANN. Model performance and the 
differences between the AUC’s for PSA alone and for the 
extended models are presented in table 3.

Sensitivity and specificity data are presented in table 4. 
At 95% sensitivity, the Babaian et al model shows the 
highest specificity (51%) whereas the Jansen model for 
both sites had the lowest specificity (~23.5%). In the Hill 
study, with a sensitivity of ~90%, the specificity was lower 
than in other studies (~18% and 28%) for method 1 and 
2, respectively. In the study reported by Lazzeri, the sensi-
tivity and specificity were not reported for the overall 
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Table 3  The difference of AUC for PSA alone and extended 
model

Study AUC for PSA AUC for model
ΔAUC
(Model – PSA)

Carlson et al61 NA NA NA

Babaian et al64 0.64 %fPSA 0.74 0.1

Jansen et al 
(Site 1)65

0.58 0.75 0.17

Jansen et al 
(Site 2)65

0.53 0.7 0.16

Hill et al 
(Method 1)62

0.59 0.68 0.09

Hill et al 
(Method 2)62

0.63 0.72 0.09

Lazzeri et al 63 0.50 for any 
PC
0.54 for 
Gleason score 
≥7

Model 1=0.65
Model 1 (Gleason 
score ≥7)=0.60

0.15
0.06

Model 2=0.71
Model 2 (Gleason 
score ≥7)=0.67

0.21
0.13

Model 3=0.704
Model 3 (Gleason 
score ≥7)=0.67

0.2
0.13

Model 4=0.71
Model 4 (Gleason 
score ≥7)=0.672

0.21
0.13

AUC, area under the curve; %fPSA, free-to-total PSA ratio ; PC, prostate 
cancer; PSA, prostate-specific antigen.

Table 4  Sensitivity and specificity profile at different levels for each model*

Study Sensitivity Specificity Probability cut-off Positive predictive value Negative predictive value

Carlson et al61 99 18 >15 ≤47 NA

95 34 18 51 NA

89 43 20 42 NA

Babaian et al64 95 51 NA 39 97

92 62 NA 44 96

89 62 NA 43 95

Jansen et al (Site 1)65 95 23.9 NA NA NA

Jansen et al (Site 1)65 90 30.1 NA NA NA

Jansen et al (Site 2)65 95 23.2 NA NA NA

Jansen et al (Site 2)65 90 36.2 NA NA NA

Hill et al (Method 1)62 90.9 17.6 33 47.1 70.5

Hill et al (Method 2)62 89.8 28 13 20.6 91.3

Hil et all (Method 1)62 80.5 37.1 37 50.9 70.2

Hill et al (Method 2)62 78.2 45 15 28.7 88.8

Hill et al (Method 1)62 39.9 81.4 48 63.4 62.6

Hill et al (Method 2)62 45.8 79.5 23 36.7 85

*Lazzeri63 model reported only sensitivity and specificity for predictive variables individually and at sensitivity of 90, %p2PSA and %fPSA 
achieved the highest specificity
%fPSA, free-to-total PSA ratio ; NA, not applicable; %p2PSA, percentage of p2PSA to free PSA .

model; instead their study reports sensitivity and spec-
ificity for predictive variables individually. The highest 
sensitivity (90.5%) of %p2PSA and %fPSA achieved the 

highest specificity in predicting PCa at 21.5% and 22.8%, 
respectively. Percentage p2PSA and PHI were more asso-
ciated with Gleason scores.

Table  5 summarises the validation and calibration 
results for the studies included. Model calibration was 
reported in two studies.61 63 Carlson plotted the observed 
and expected risks using calibration plots, whereas Lazzeri 
used the Hosmer-Lemeshow goodness-of-fit test. In terms 
of validation, two studies did not report model valida-
tion.62 65 Only one study reported an external validation 
using an additional data set consisting of 525 patients.61 
Cross-validation using multiple re-sampling schemes was 
used in the Babaian study; however, they did not report 
the number of time this was performed.64 Lazzeri used 
200 bootstrap re-samples to minimise overfitting bias.63

Study quality assessment
Quality assessment was carried out by two reviewers 
(MA and AL) with any discordance resolved by a third 
reviewer (KM). The assessment of results suggested 
some issue of study quality according to the criteria as 
set in the PROBAST, particularly in the analysis domain. 
For instance, one study applied univariable analysis to 
select predictors.61 Three studies did not measure cali-
bration.62 64 65 Furthermore, two studies did not account 
for optimism and overfitting by using internal validation 
methods.62 65 Whereas one study did not use appropriate 
measures for model performance that is, AUC, this study 
reported the calibration.61

The event per variable was lower than recommended 
(<10)59 66 in the Babaian64 study, indicating inadequate 
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Table 6  Quality assessment for ROB and applicability concern for included studies

Study

ROB* Applicability Overall

Participants Predictors Outcome Analysis Participants Predictors Outcome ROB Applicability

Carlson et al61 + + – – + + – – –

Babaian et al64 + + + – – + + – –

Jansen et al65 – – – – + – – – –

Hill et al62 – + + – – + + – –

Lazzeri et al63 + + + + + + + – +

+ indicates a ROB or applicability; – indicates a high ROB or applicability.
*ROB, risk of bias.

Table 5  Validation and calibration for included models

Author and year Validation Calibration

Carlson et al,199861 External validation on additional data set 
consisting of 525 patients

Calibration plot

Babaian et al, 200064 Cross-validation and separate data set of 151 NA

Jansen et al, 201065 NA NA

Hill et al, 201362 NA NA

Lazzeri et al, 201363 Internal validation using 200 bootstrap 
resamples

Internal calibration using the Hosmer-
Lemeshow goodness-of-fit test

power. Four studies did not report missing data or how 
they handled it.61 63–65 The remaining study used complete 
case analysis and excluded patients with missing data on 
laboratory biomarkers (n=75).62 The PROBAST guide-
lines state that in a prediction model study where any 
risk of bias and applicability is low in all four domains, a 
regrading to high risk of bias should be considered when 
the study did not validate the model externally.60 Thus, 
although the quality assessment for the Lazzeri study63 
was graded low risk in all the four domains, since the 
study did not report any external validation of the model, 
the assessment of the study has been regraded to high risk 
of bias according to the PROBAST criteria. A full quality 
assessment for all studies is presented in table 6.

Discussion
Despite the large number of PCa risk prediction models, 
the majority still include clinical inputs and/or more 
costly biomarker or genetic panels; few low cost models 
exist that do not include specialist clinical input or more 
expensive further testing that limits there use for popula-
tion wide assessments. To our knowledge, this is the first 
study to examine risk prediction models for PCa that are 
low cost and do not include clinical and genetic variables, 
and are based on single time-point assessment.

Our study identified five unique models that met the 
set criteria. The Carlson model61 has the largest popula-
tion (3773 patients) when compared with the other four 
studies. Although they reported an 11% increase in speci-
ficity, they did not report AUC predictive estimates. It has 
been acknowledged that sensitivity and specificity results 

are dependent on the prevalence of the disease. Hence, 
the comparison between populations where the PCa 
prevalence may vary (especially in early detection) will be 
difficult.33 More importantly, by not reporting the AUC 
estimate, the model raises some doubts regarding the reli-
ability of the model and its implementation.33 It will also 
make comparison to other models not applicable.67

Babaian64 developed an algorithm and compared 
the performance of the ANN to PSA density (total PSA 
divided by prostate volume) (PSAD), %fPSA and transi-
tion zone density (PSAD-TZ). Their ANN demonstrated 
a significant increase of model specificity that reached 
51% when sensitivity was held at 95%. This was better 
than the specificity value of each individual variable such 
as %fPSA (10%), PSAD (39%), and PSAD-TZ (22%). 
In terms of AUC, the ANN achieved a moderate accu-
racy (0.74), being the second highest among all studies 
included. However, the ANN model did not show signif-
icant improvement when compared with a model fitted 
with only individual variables (AUC for %fPSA=0.64, 
PSAD=0.74 and PSAD-TZ=0.75). They included a number 
of uncommon pre-biopsy inputs into their algorithm 
such as prostatic acid phosphatase and creatine kinase.68 
Furthermore, they used a tight PSA range (2.5 to 4.0 ng/
mL) which meant that their model may be less suitable 
for patients with PSA level below or above that range, thus 
limiting its generalisability.

The study by Jansen and colleagues65 demonstrated 
that adding p2PSA to the base model of PSA and fPSA 
significantly enhanced the PCa predictive value and spec-
ificity. The association and added value of p2PSA in the 
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prediction and detection of PCa have been reported by 
several other studies.16 69–72 Jansen65 showed that p2PSA 
has no clear association with aggressive PCa. However, the 
base model that includes p2PSA had the highest clinical 
significance in correlation to pathologic Gleason score 
with a p value of 0.008 compared with %fPSA and PHI 
(p value 0.01 and 0.02, respectively). Although they used 
archived blood samples and retrospective analysis, the 
results were similar to a prospective study of 268 patients.16

Hill62 used a case-control study to evaluate several labo-
ratory biomarkers. They found HGB, RBC, haematuria, 
creatinine, PSA, age, MCV and ethnicity (‘being Black’) 
were statistically significantly associated in the first method 
(p<0.05). In the second method, HGB, RBC, creatinine, 
PSA, age and MCV were found to be statistically signifi-
cantly correlated (p<0.001) with PCa. However, since this 
study was designed as a case-control study, it would have 
been more prone to uncontrolled confounding and selec-
tion bias. Moreover, the type of screening protocols used 
in Veterans’ Administrations may vary to those conducted 
in other healthcare systems; therefore, the results may not 
be applicable to other populations. Furthermore, patients 
with a PSA level <4.0 ng/mL have not been investigated, 
and thus, the performance of the models are unknown 
for individuals in this group.

Lazzeri et al,63 in a European multicentre study have 
evaluated similar biomarkers as in Jansen study with 
the same PSA range 2 to 10 ng/mL prospectively. They 
found no difference in both %p2PSA and PHI as indi-
vidual PCa predictors with AUC of 0.67 (95% CI 0.64 to 
0.71). However, the base model (consisting of PSA, fPSA 
and %fPSA) that also included either p2PSA or PHI 
outperformed the base model alone and the base model 
including %p2PSA. In the analysis, the additive value 
of both p2PSA and PHI is 0.064 and 0.056 for %p2PSA 
for predicting the risk of PCa. These additive values 
increased to 0.076 for both p2PSA and PHI, and 0.073 for 
%p2PSA in predicting Gleason scores ≥7 for the disease. 
The usefulness of PHI in improving the predictive accu-
racy of PCa over total and free PSA has been confirmed 
and reported by several studies.16 72–75

In general, only one study has validated their model 
externally,61 whereas the remaining studies were either 
validated internally63 64 or did not report any validation 
methods.62 65 Prediction models may not be equally 
applicable to all data sets as patients’ characteristics may 
vary.20 76 As a result, the generalisability of a model might 
be poor when it used in populations other than that used 
in building the model. Therefore, external validation 
should be conducted before applying any new model into 
general practice.77 78

Another key performance measure of any model that 
needs careful evaluation is calibration. A calibration 
plot with a calibration slope is more preferable than the 
Hosmer-Lemeshow test; it has been acknowledged that 
evaluating a good and well calibrated model based on a 
large data set can still fail the Hosmer-Lemeshow test. In 
contrast, when evaluating a poorly calibrated model with 

a small data set it can still pass the Hosmer-Lemeshow 
test.79 In our analysis, three studies fail to report the 
calibration of the model62 64 65 while the Carlson study61 
used a calibration plot and Lazzeri63 used the Hosmer-
Lemeshow test. Excluding calibration from the majority 
of models may explain why some models are not currently 
used in practice.79

With regard to biopsy cores, only two studies used 
extended biopsy cores. Babaian64 used an 11-core 
multisite biopsy, whereas Lazzeri63 used at least 12 biopsy 
cores. Moreover, two studies used six cores biopsy in their 
model.61 65 The use of six-core biopsy has been criticised 
as not being adequate in detecting PCa80 and that models 
developed using sextant biopsy are less accurate than 
when a 10-core biopsy is used.76 As a result, the European 
guideline for clinical PCa recommended an extended 
biopsy as standard practice for PCa detection.81

It is worth noting that all five reviewed models 
performed better than just PSA alone. However, none of 
them has both high specificity and sensitivity. The level 
of sensitivity has been increased, and despite enhance-
ment in the specificity, it is still considered low. Specificity 
is crucial when it comes to being used in a population 
setting as men without PCa should be ruled out as much 
as possible from further invasive engagement with the 
health system.

Our review therefore suggests that none of the reviewed 
models provide an ideal performance in predicting PCa 
with high sensitivity and high specificity. It is particularly 
important when considering the application of PCa risk 
prediction at the population level that the tool used 
should be able to both detect the outcome and filter 
out people with no disease. As there is robust evidence 
suggesting the clinical relevance of PSA range to the 
detection of PCa differs across age groups,82–84 any future 
model should consider PSA threshold in relation to a 
specific age range. Risk prediction models for PCa should 
therefore take account of age.

Out of the five reviewed models, the Lazzeri model 2, 
has the greatest potential to be implemented in primary 
care. It achieved the least risk of bias and had fair discrim-
ination for both any and aggressive PCa. It also had the 
largest improvement in discrimination performance 
compared with PSA alone. Moreover, except for the 
p2PSA that requires a specific assay, the included vari-
ables are common and easy to measure. However, before 
it could be used, the model requires to be validated 
externally.

Comparison with other studies
To our knowledge, three systematic reviews of PCa predic-
tion tools have been published.20 26 27 In the Louie et al 
review, risk models were included that were externally 
validated in at least five study populations for the purpose 
of meta-analysis and only six studies were included in 
their analysis. Furthermore, all the studies included 
incorporated clinical tests such as DRE and/or TRUS-
PV.26 Schroder and Kattan20 reviewed models that were 
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built to predict the likelihood of having a positive pros-
tate biopsy for cancer. However, it appears that they also 
included models where patients had a previous negative 
biopsy. As such, some of the models included variables 
related to biopsy results and cores. The review by Shariat 
and colleagues examined different types of predictive 
tools.27 They explored tools that predict PCa on initial 
and repeat biopsy, pathologic stages, biochemical recur-
rence after radical proctectomy, metastasis, survival and 
life expectancy. Similarly, virtually all the prediction tools 
that were based on initial biopsy included variables based 
on invasive procedures.

Strengths and limitations of this study
This report is the first to review risk prediction tools 
for PCa that can be used in primary care and commu-
nity settings. Any prediction model should therefore be 
simple to use, based on non-invasive tests, be feasible at a 
population level and at low cost. We carried out an exten-
sive data extraction relating to important features and 
characteristics for each study included, such as modelling 
method, source of data, sample size, variables, discrim-
ination, validation and cancer detection rate. We have 
also followed PRISMA guidelines for identifying eligible 
articles as well as for reporting this study. In addition, the 
PROBAST was adopted to assess the quality and risk of 
bias for each prediction model.

Our study has some limitations. Our aim was to iden-
tify prediction models that have the potential to be 
implemented in a primary care or community setting, 
and consequently our search strategy was to retrieve rele-
vant studies for this specific purpose. Furthermore, we 
excluded articles that were not published in English or 
did not have an abstract. Moreover, only two databases 
were searched, besides manual search, to retrieve original 
studies.

A previous systematic review suggested that the majority 
of relevant studies could be identified through a manual 
search of articles reference lists instead of a database 
alone.20 We identified four eligible studies using this 
approach. Given the small number of models identi-
fied by the approach we followed, that can be applied in 
primary care settings compared with the large number 
relating to wider existing models, it is unlikely that we 
have not included any study that would affect the results 
of our review.

Implications and future research
It is now accepted that the PSA test and its derivatives have 
some limitations for detecting PCa as defined by subse-
quent biopsy.85 As a consequence, a considerable number 
of PCa prediction models have been built to improve 
prediction accuracy. This has resulted in a plethora of PCa 
risk prediction tools, with to date more than 100 models 
described.86 87 There is evidence that some of these 
models show benefit and have better performance over 
just PSA measurement alone.20 It also has been demon-
strated that some of these models out-performed clinical 

experts in predicting PCa.28 29 Although such models are 
not designed to replace specialist clinical judgement or 
patient preferences,76 85 88 they can help in patient coun-
selling and aid clinicians to decide whether a prostate 
biopsy should be taken or not.77 88 89

Given the small number of risk prediction models for 
PCa that do not incorporate clinical or genetic tests, the 
discrimination of these reviewed models ranged between 
poor to moderate (AUC range ~0.65 to~0.75); in addi-
tion there were some issues relating to their study design 
and analysis raises the risk of bias. Consequently, none of 
these models could be currently recommended for use in 
a primary care and community healthcare setting. Several 
guidelines are against using PSA test based screening for 
PCa; the US Preventive Services task force, the Canadian 
task force on preventive health and the American College 
of Preventive Medicine do not currently recommend 
PSA-based testing due to insufficient evidence.90–92 This 
has made it difficult, so far, to convince policymakers to 
adopt PCa screening programme.

The first guideline of PROSTATE CANCER UK states, 
“In the future, health professionals should look at a 
man’s PSA level alongside other known risk factors as 
part of a risk assessment tool, when one becomes avail-
able.”93 However, the vast majority of the current PCa 
risk prediction models are not suitable for routine use 
as they include clinical and genetic tests and are not 
validated externally in other cohorts. Therefore, the 
main challenge in the UK, remains to develop a risk 
prediction tool that is reliable, cheap, is applicable for 
as wide an ethnicity as possible, and, most importantly, 
is easy to use and can be implemented at a primary care 
level.94

The value of such risk tools is that they will help to 
stratify men at high risk of developing PCa earlier so that 
they have appropriate management and/or surveillance 
programme as early as possible and, therefore, may fit 
into the clinical pathway. Such tools should help physi-
cians have a better understanding of the risk for this 
disease and simplify the procedures and discussions with 
patients when recommending further specialist-led inves-
tigations such as DRE and/or MRI where a decision on 
whether a biopsy should or not perform is concluded. 
Furthermore, using the appropriate risk prediction tool 
will avoid men from undergoing inappropriate further 
and frequent testing.94 This will reduce any associated 
costs of inappropriate tests and decrease the burden on 
healthcare delivery systems.

It is crucial to address these issues by identifying all 
possible risk factors for PCa that are non-clinical, non-
genetic, and easy to use and interpret. There remains 
a pressing need to develop a risk prediction tool in the 
future using all appropriate factors (potentially also 
including genetics once there is infrastructure in place 
for genetic testing in the primary care and the cost comes 
down) into a robust multivariable analysis and validate 
the model externally to eliminate applicability and gener-
alisability concerns. Only when this is achieved will it be 
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possible to introduce a PCa screening programme fit for 
purpose.

Conclusion
There is a paucity of suitable low-cost risk models that 
incorporate non-clinical, non-genetic inputs and which 
can be used at a primary care level and in other commu-
nity health services. Existing models have limitations 
reflecting both study design and reporting performance 
measures. Future research should take into account these 
key issues and explore other risk factors for incorporation 
into further models.
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