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Abstract
Background  Tumor-infiltrating lymphocytes have been 
reported as prognostic markers in tumors. We aimed 
to assess the prognostic value of total T cell (CD3+) 
density, cytotoxic T cell (CD8+) density and memory T 
cell (CD45RO+) density in patients with nasopharyngeal 
carcinoma (NPC).
Methods  The expression of CD3, CD8 and CD45RO was 
detected by immunohistochemistry in the training (n=221) 
and validation cohorts (n=115). The densities of these 
three markers were quantified by digital pathology both 
in the tumor and stroma. Then, we developed the immune 
score based on the density of these three markers and 
further analyzed its prognostic value.
Results  The high density of CD3+, CD8+ and CD45RO+ 
T cells both in the tumor and/or stroma were significantly 
associated with the decrease in mortality in the training 
cohort, respectively. High immune score predicted a 
prolonged overall survival (OS) (HR 0.34, 95% CI 0.18 
to 0.64, p=0.001, disease-free survival (DFS) (HR 0.44, 
95% CI 0.25 to 0.78, p=0.005) and distant metastasis-free 
survival (DMFS) (HR 0.43, 95% CI 0.21 to 0.87, p=0.018) in 
NPC patients. The findings were confirmed in the validation 
cohort. Multivariate analysis revealed that immune score 
remained an independent prognostic indicator for OS, 
DFS and DMFS. In addition, we established a nomogram 
with the integration of all independent variables to predict 
individual risk of death.
Conclusions  We established an immune score model, 
which provides a reliable estimate of the risk of death, 
disease progress and distant metastasis in NPC patients.

Background
Nasopharyngeal carcinoma (NPC) is a 
unique head and neck cancer with high 
prevalence rates in southern China, South-
east Asia, North Africa, the Middle East and 
Alaska.1 Currently, tumor, node and metas-
tasis (TNM) staging is the main tool in deter-
mining treatment strategy and assessment 
of prognosis. However, this anatomy-based 
system provides useful but unsatisfactory 
prognostic information, because NPC 
patients with the same TNM stage receive 

similar treatment, their clinical outcomes 
vary widely.2 Important studies have found 
heavy infiltration of immune cells in the 
tumor microenvironment, and high expres-
sion of PD-L1 by both tumor and immune 
cells.3–5 This indicates that immune factors 
might play an important role in the devel-
opment of NPC. In addition, the prognostic 
value of a variety of immune cells has been 
evaluated in many cancers.6–8 However, 
few studies assessing the prognostic value 
of immune cell density and distribution 
patterns in the tumor microenvironment in 
patients with NPC have been performed.

The tumor-immune microenvironment is 
complicated with infiltration of both inflam-
matory and lymphocytic cells. These cell 
types include macrophages, dendritic cells, 
mast cells, natural killer cells, naive and 
memory lymphocytes, B cells, and effector 
T cells (including various subsets of T cell). 
The latter include T helper cells, regulatory 
T cells, T follicular helper cells and cytotoxic 
T cells.6 Of these, high densities of CD3+ T 
cells, CD8+ cytotoxic T cells and CD45RO+ 
memory T cells have been shown to be asso-
ciated with longer overall survival (OS) and 
disease-free survival (DFS) in gastric, liver, 
lung and colorectal cancer.8–12 Furthermore, 
immunoscore integrates CD3+, CD8+, and 
CD45RO+ cells, which is positively associated 
with clinical outcomes.9 Therefore, there is 
benefit in evaluating the prognostic value of 
CD3+, CD8+, CD45RO+ cells and the immune 
score (IS) for NPC patents.

In this study, we evaluated the density of 
lymphocyte populations (CD3, CD8 and 
CD45RO) both in the tumor and stroma for 
NPC patients using digital pathology. In addi-
tion, IS including these three lymphocyte 
populations could classify NPC patients with 
different risk.
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Figure 1  Representative images of CD3, CD8 and CD45RO 
expression and digital pathology. (A) High and low expression 
of CD3+, CD8+ and CD45RO+ T cells; (B) The classification 
of tumor and stroma areas was based on tumor cell density 
map. The scale bar represents 100 µm.

Methods
Clinical specimens
A total of 336 pretreatment, non-metastatic NPC speci-
mens were obtained from two academic institutions in 
China. There were 221 specimens from the Sun Yat-sen 
University Cancer Center (Guangzhou) between January 
2011 and December 2013 that were designated as the 
training cohort, while the 115 samples obtained at the 
Affiliated Hospital of Guilin Medical University (Guilin) 
between November 2006 and October 2012 were desig-
nated as the validation cohort. All patients were patholog-
ically diagnosed with NPC and were restaged according 
to the eighth AJCC TNM staging system.13 All partici-
pants provided written informed consent prior to treat-
ment. This study is reported according to the Reporting 
Recommendations for Tumor Marker Prognostic Studies 
criteria.14

Immunohistochemistry
Sequential histological tumor sections of 4 µm thick were 
obtained from a representative formalin-fixed, paraffin-
embedded tumor block and used for immunohistochem-
istry (IHC) analysis. IHC staining was performed for: 
CD3+ total T cells, CD8+ cytotoxic T cells and CD45RO+ 
memory T cells. The following primary antibodies were 
used: anti-CD3 (ab16669, 1:800; Abcam, Cambridge, UK), 
anti-CD8 (ab4055, 1:800; Abcam), anti-CD45RO (clone 
UCHL1, 1:1600; Cell Signaling Technology, CST, Beverly, 
Massachusetts, USA). IHC was performed as previously 
described.15

Digital pathology
A full view of each IHC slide was digitally scanned using 
a ScanScope Aperio AT2 slide scanner (Leica Microsys-
tems) at ×400 magnification. Representative images of 
IHC staining with high and low positive numbers for 
these markers are shown in figure  1A. All images were 
autoexamined using digital pathology.

First, all IHC slides were evaluated by pathologists, only 
slides with good staining quality would be included in 
further analysis. In addition, all normal tissue was excluded 
from the assessment through manual annotation by 
pathologists. Then, stain deconvolution was performed, 
each nucleus in the haematoxylin channel was segmented 
using a regional convolutional neural network, which 
showed good performance in our previous studies (online 
supplementary figure S1).16 17 All the nuclei in the slide 
were classified into tumor cells (TCs) or tumor-associated 
immune cells (TAICs) based on a deep learning method, 
which was developed based on the manual annotation of 
each nucleus as a TC or TAIC by two pathologists and 
achieved good performance.18 The computational algo-
rithms showed a high reproducibility and consistency 
with pathological classification. TC density map was 
generated by counting the number of TCs in the blocks 
of 8 µm by 8 µm in size. Several thresholds from 1 to 5 
were used on a small set of images and the above opti-
mized threshold was chosen experimentally according to 

the visual examination of the identified tumor area by the 
pathologists. A density threshold of 2 was selected and the 
blocks with more TCs than the threshold were identified 
as tumor area. The remaining tissue areas were classified 
as stroma area (figure 1B). Finally, the positive number of 
TAICs for CD3, CD8 and CD45RO were quantified sepa-
rately into tumor areas and stroma areas, and recorded 
in density per mm2 through evaluating the percentage of 
positive pixels in the ring area, which was defined as the 
area with a width of five pixels at the boundary of the 
nucleus mask (online supplementary figure S1). Detailed 
descriptions of the computational algorithms for nucleus 
segmentation, classification and quantification of positive 
cells are described in our previous study.17

Immune Score
We used X-tile software (V.3.6.1; Yale University, New 
Haven, Connecticut, USA) to determine optimal cut-off 
values for high and low density regarding CD3, CD8 and 
CD45RO cells both in the tumor and stroma areas in the 
training cohort for OS.19 Based on the threshold, each 
patient was given a binary score (0 for low, 1 for high) for 
each immune cell type (CD3+, CD8+ and CD45RO+) both 
in the tumor and stroma. IS for each patient was obtained 
by adding the six binary score values; the scale being from 
0 to 6. Seven patient groups were defined: patients with 
low densities of CD3+, CD8+ and CD45RO+ T cells in both 
tumor and stroma regions were classified as IS-0; patients 
with one high density region for one marker were clas-
sified as IS-1; and patients with two, three, four, five and 
six high density regions of these three markers were strat-
ified as IS-2, IS-3, IS-4, IS-5 and IS-6, respectively. X-tile 
was used to generate the optimal cut-off values for the 
IS based on the associations with patient OS.19 Patients 
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with a high degree of immune cell infiltration (3–6) 
were assigned as the high-infiltrating group, and patients 
with a low degree of immune cell infiltration (0–2) were 
assigned as the low-infiltrating group.

DNA extraction and real-time quantitative PCR
The plasmatic Epstein-Barr virus (EBV) DNA concentra-
tions were routinely measured before treatment using 
quantitative PCR.20 A cut-off level of 2000 copies/mL was 
chosen to define low and high pretreatment EBV DNA 
levels.21 22

Statistical analyses
The primary endpoint of our study was OS, and secondary 
endpoints were DFS and distant metastasis-free survival 
(DMFS). OS was calculated from the first day of treat-
ment to the date of death from any cause. DFS was calcu-
lated from the first day of treatment to the date of the first 
relapse at any site or death from any cause (whichever 
occurred first) and DMFS was estimated from the first day 
of treatment to the first distant relapse.

The associations between the IS and clinicopatholog-
ical variables were analyzed using the χ2 test or Fisher’s 
exact test. The Kaplan-Meier method was used to esti-
mate OS, DFS and DMFS and differences were compared 
using the log-rank test. HRs were calculated using univar-
iate Cox regression analysis. Multivariate Cox regression 
analysis with backward selection was performed to test 
the independent significance of different factors. Signif-
icant variables (p≤0.1) were included in the multivariate 
analysis, and only independent prognostic factors were 
retained in the multivariate model. Moreover, nomo-
grams predicting 3 years or 5 years OS were established 
based on independent variables. The concordance index 
(C-index) was used to evaluate the accuracy of the nomo-
gram, and its calibration capacities was evaluated by the 
calibration plot. In addition, bootstraps with 1000 resam-
ples were applied to these activities.

All statistical tests were two sided and considered 
significant when the p value was less than 0.05. Statis-
tical analyzes were performed using SPSS, V.22.0 (IBM). 
The key raw data have been uploaded to Research Data 
Deposit public platform (​www.​researchdata.​org.​cn), with 
an approval number of RDDA2019001317.

Results
Patient characteristics and infiltrating lymphocytes
We included 336 pretreatment, paraffin-embedded NPC 
specimens in our study. Table 1 shows the characteristics 
of the patients in the Guangzhou training cohort (n=221) 
and the Guilin external validation cohort (n=115).

We investigated the numeration of lymphocyte popu-
lations for total T cells (CD3+), cytotoxic T cells (CD8+) 
and memory T cells (CD45RO+) both in the tumor and 
stroma per mm2. A wide spectrum of immune infiltrate 
densities in the tumor and stroma areas were revealed by 
slides stained with CD3, CD8 and CD45RO antibodies. 

Bivariate analysis showed significant association between 
the positive density of each marker in the tumor with posi-
tive density in the stroma. Besides, 153 of 172 (89.0%) 
NPC patients with high CD3+ density (either in the tumor 
or stroma) showed high CD8+ density, while only 24 of 
49 (49.0%) NPC patients with low CD3+ density showed 
high CD8+ density (p<0.001). Similarly, CD3+ cell density 
and CD8+ cell density showed a positive correlation with 
CD45RO+ cell density (both p<0.001).

Prognostic value of each biomarker
We then explored the prognostic value of each marker 
both in the tumor and stroma, and the combination of 
the two areas. The presence of abundant intratumoral 
and stromal CD3+ T cells was associated with improved 
OS (I-CD3: HR 0.39, 95% CI 0.21 to 0.75, p=0.005; S-CD3: 
HR 0.33, 95% CI 0.13 to 0.84, p=0.02, figure  2A–B). 
Patients with high-infiltrating CD8+ tumor-infiltrating 
lymphocytes (TILs) either in the tumor or stroma had a 
lower risk for death (I-CD8: HR 0.43, 95% CI 0.22 to 0.82, 
p=0.01; S-CD8: HR 0.39, 95% CI 0.20 to 0.73, p=0.003, 
figure 2D–E). In addition, when patients were stratified 
by either intratumoral or stromal CD45RO, there were 
significant differences in OS between two groups in the 
training cohort (I-CD45RO: HR 0.47, 95% CI 0.25 to 
0.88, p=0.018; S-CD45RO: HR 0.37, 95% CI 0.18 to 0.79, 
p=0.01, figure 2G–H).

Furthermore, we defined subgroups with a cut-off value 
based on the expression of I-CD3 and S-CD3 (high I&S-
CD3: high density of I-CD3 and/or S-CD3 vs low I&S-CD3: 
low density of I-CD3 and S-CD3). A statistically significant 
association was observed between the high I&S-CD3 and 
prolonged OS (HR 0.39, 95% CI 0.21 to 0.75, p=0.005). 
Using a similar method, we divided patients into high 
I&S-CD8 and low I&S-CD8; a positive association was also 
observed between high I&S-CD8 and prolonged OS (HR 
0.39, 95% CI 0.20 to 0.75, p=0.005). Besides, patients with 
high I&S-CD45RO also had longer OS (HR 0.46, 95% CI 
0.24 to 0.86, p=0.015, figure 2C,F,I).

IS and association with prognosis
According to the definition of IS (see method), 8.6%, 
8.1%, 14.0%, 14.5%, 14.9%, 19.9% and 19.9% of the 
patients were classified as IS-0, IS-1, IS-2, IS-3, IS-4, IS-5 
and IS-6, respectively. We aimed to explore the prognostic 
value of IS in the training cohort. X-tile software was used 
to generate the optimal cut-off value to stratify patients at 
different risk. In total, 153 (69.2%) patients had a high 
(IS: 3–6), while 68 (30.8%) patients had a low (IS: 0–2) 
in the training cohort. Patients with high IS had longer 
OS (88.2% vs 69.1%, respectively, HR 0.34, 95% CI 0.18 
to 0.64, p=0.001), DFS (83.0% vs 66.2%, respectively, HR 
0.44, 95% CI 0.25 to 0.78, p=0.005) and DMFS (89.5% vs 
77.9%, respectively, HR 0.43, 95% CI 0.21 to 0.87, p=0.018) 
compared with patients with low IS (figure 3A-C). In the 
external validation cohort of 115 NPC patients, CD3, 
CD8 and CD45RO were also evaluated. With the same 
threshold, IS categorized 66 (57.4%) patients into the 
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Table 1  Clinicopathological characteristics of the patients in the training and validation cohorts stratified by immune score

All

Training cohort (n=221) Validation cohort (n=115)

Low High P value Low High P value

Total population 336 (100) 68 (30.8) 153 (69.2) 49 (42.6) 66 (57.4)  �

Age 0.69  �   �  0.037

 � ≤45 years 163 (48.5) 34 (50.0) 81 (52.9) 15 (30.6) 33 (50.0)  �

 � >45 years 173 (51.5) 34 (50.0) 72 (47.1) 34 (69.4) 33 (50.0)  �

Sex 0.76  �   �  0.12

 � Male 254 (75.6) 52 (76.5) 114 (74.5) 41 (83.7) 47 (71.2)  �

 � Female 82 (24.4) 16 (23.5) 39 (25.5) 8 (16.3) 19 (28.8)  �

WHO pathological type 0.51  �   �   � 0.26

 � Ⅰ/Ⅱ 8 (2.4) 1 (1.5) 4 (2.6) 0 (0.0) 3 (4.5)  �

 � Ⅲ 328 (97.6) 67 (98.5) 149 (97.4) 49 (100.0) 63 (95.5)  �

T stage 0.61  �   �  0.021

 � T1–T2 136 (40.5) 22 (32.4) 55 (35.9) 19 (38.8) 40 (60.6)  �

 � T3–T4 200 (59.5) 46 (67.6) 98 (64.1) 30 (61.2) 26 (39.4)  �

N stage 0.59  �   �  0.61

 � N0–N1 200 (59.5) 50 (73.5) 107 (69.9) 17 (34.7) 26 (39.4)  �

 � N2–N3 136 (40.5) 18 (26.5) 46 (30.1) 32 (65.3) 40 (60.6)  �

TNM stage 0.90  �   �  0.13

 � I–II 87 (25.9) 19 (27.9) 44 (28.8) 7 (14.3) 17 (25.8)  �

 � III–IV 249 (74.1) 49 (72.1) 109 (71.2) 42 (85.7) 49 (74.2)  �

Treatment 0.56  �   �  0.35

 � RT alone 31 (9.2) 5 (7.4) 15 (9.8) 3 (6.1) 8 (12.1)  �

 � RT +chemo 305 (90.8) 63 (92.6) 138 (90.2) 46 (93.9) 58 (87.9)  �

EBV-DNA load (copy/mL) 0.46  �   �  NA

 � ≤2000 122 (55.2) 35 (51.5) 87 (56.9) NA NA  �

 � >2000 99 (44.8) 33 (48.5) 66 (43.1) NA NA  �

Death 0.001  �   �  0.004

 � Yes 74 (22.0) 21 (30.9) 18 (11.8) 22 (44.9) 13 (19.7)  �

 � No 262 (78.0) 47 (69.1) 135 (88.2) 27 (55.1) 53 (80.3)  �

Distant metastasis 0.022  �   �   � 0.004

 � Yes 56 (16.7) 15 (22.1) 16 (10.5) 17 (34.7) 8 (12.1)  �

 � No 280 (83.3) 53 (77.9) 137 (89.5) 32 (65.3) 58 (87.9)  �

Locoregional failure 0.28  �   �   � 0.044

 � Yes 51 (15.2) 9 (13.2) 13 (8.5) 17 (34.7) 12 (18.2)  �

 � No 285 (84.8) 59 (86.8) 140 (91.5) 32 (65.3) 54 (81.8)  �

Disease progression 0.005  �   �  <0.001

 � Yes 94 (28.0) 23 (33.8) 26 (17.0) 29 (59.2) 16 (24.2)  �

 � No 242 (72.0) 45 (66.2) 127 (83.0) 20 (40.8) 50 (75.8)  �

Bold values were considered significant
EBV, Epstein-Barr virus; NA, not applicable; RT, radiotherapy; TNM, tumor-node-metastasis.

high-infiltrating group and 49 (42.6%) patients into the 
low-infiltrating group. The patients with high IS also had 
longer OS (80.3% vs 55.1%, respectively, HR 0.38, 95% CI 
0.19 to 0.75, p=0.006), DFS (75.8% vs 40.8%, respectively, 
HR 0.34, 95% CI 0.19 to 0.63, p=0.001) and DMFS (87.9% 

vs 65.3%, respectively, HR 0.30, 95% CI 0.13 to 0.69, 
p=0.005) than those with low IS (figure 3D-F).

In the training cohort, univariate analysis showed that 
IS, TNM stage and pre-EBV DNA levels were significantly 
associated with OS, DFS and DMFS (figure 4). We then 
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Figure 2  Kaplan-Meier curves for OS according to CD3, CD8 and CD45RO expression. Plots show (A) I-CD3; (B) S-CD3; 
(C) I&S-CD3; (D) I-CD8; (E) S-CD8; (F) I&S-CD8; (G) I-CD45RO; (H) S-CD45RO; and (I) I&S-CD45RO in the training cohort. I, 
intratumoral; S, stromal; I&S, intratumoral and stromal.

performed multivariate Cox regression analysis, which 
showed that the IS remained significant for OS, DFS and 
DMFS in the training cohort (OS: HR 0.34, 95% CI 0.18 to 
0.63, p=0.001; DFS: HR 0.44, 95% CI 0.25 to 0.78, p=0.005; 
and DMFS: HR 0.43, 95% CI 0.21 to 0.87, p=0.019). This 
was the same as in the validation cohort (OS: HR 0.42, 
95% CI 0.21 to 0.84, p=0.014; DFS: HR 0.37, 95% CI 0.20 
to 0.68, p=0.001; and DMFS: HR 0.32, 95% CI 0.14 to 0.75, 
p=0.008). In addition, the TNM stage and pretreatment 
EBV-DNA levels were also significantly associated with OS, 
DFS and DMFS in multivariate analysis (table 2).

Development of nomogram with IS
Since IS, TNM stage and pretreatment EBV-DNA were 
independent prognostic variables in the multivariate 
analysis, we constructed nomogram A to predict the 
3 years and 5 years OS of NPC patients using all inde-
pendent variables in the training cohort: IS, TNM stage 

and EBV-DNA (figure  5A). In addition, we also estab-
lished nomogram B using TNM stage and EBV-DNA in 
the training cohort. The Harrell’s concordance index 
(C-index) for the nomogram A to predict OS was 0.713 
(95% CI 0.635 to 0.791), while the C-index for the nomo-
gram B was 0.653 (95% CI 0.580 to 0.726) in the training 
cohort. The addition of IS to nomogram A significantly 
enhanced the accuracy compared with nomogram B 
(p<0.001). Meanwhile, the calibration plot of nomo-
gram A for the probability of 3 years or 5 years OS 
showed optimal agreement between the prediction by 
nomogram and actual observation for nomogram in the 
training cohort (figure 5B,C). As pretreatment EBV-DNA 
level was not tested at the Affiliated Hospital of Guilin 
Medical University before 2015, therefore, this nomo-
gram could not be validated due to the lack of EBV-DNA 
data in the validation cohort.
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Figure 3  Kaplan-Meier curves for OS, DFS and DMFS according to the immune score. Plots show (A) OS, (B) DFS and (C) 
DMFS in the training cohort and (D) OS, (E) DFS and (F) DMFS in the validation cohort.

Discussion
In this study, we detected the density of different CD3, 
CD8 and CD45RO lymphocyte populations in the tumor 
and stroma using digital pathology and evaluated their 
prognostic value in NPC patients. Moreover, we deter-
mined the IS of each patient based on the density of these 
three markers. Then, we evaluate the prognostic value of 
IS in two NPC patient cohorts. Our results demonstrated 
that IS is a powerfully independent predictor of OS, DFS 
and DMFS for NPC patients. In addition, we constructed a 
nomogram to predicted the 3 years and 5 years OS of NPC 
patients using all independent variables: IS, TNM stage 
and EBV-DNA. To the best of our knowledge, this study 
provided the first dataset that both evaluates and validates 
the prognostic significance of IS in NPC patients.

Since the early 1900s, immune infiltration in cancers 
has gained considerable attention, and a variety of studies 
have explored the prognostic value of immune cells.23 
Based on H&E slides, the density and distribution of 
TILs is a valuable prognostic biomarker in various types 
of cancers.24–26 In addition, several studies indicate that 
TIL density is useful in predicting response to neoadju-
vant chemotherapy in breast cancer.27 28 However, the 
ability to identify the density of TILs using H&E slides is 
highly subjective, less reproducible and contains unde-
fined cell populations with possible opposing func-
tions.9 Thus, by comparing the differences between 
TIL and Immunoscore, Galon et al demonstrated that 
Immunoscore was highly reproducible, objective and 

robust when quantifying specific T-cell subsets in specific 
tumor regions.9 Many studies have presented the prog-
nostic predictive value of Immunoscore in various types 
of cancers.8 10 29 However, unfortunately, little is known 
about the prognostic value of IS in NPC patients. Here, we 
determined the density of CD3, CD8 and CD45RO cells 
both in the tumor and stroma using digital pathology. 
Moreover, IS was able to predict the survival of NPC 
patients in a training cohort, before then being validated 
in an external cohort.

Our study has shown that the density of different CD3, 
CD8 and CD45RO lymphocyte populations both in 
the tumor and stroma could predict prognosis of NPC 
patients. Moreover, NPC patients with high IS had signifi-
cantly longer OS, DFS and DMFS than those with low 
IS. The positive prognostic value of Immunoscore has 
been shown to be consistent in a variety of cancers.9–11 
With a number of different types of immune cells that 
are capable of infiltrating into tissues, the tumor micro-
environment is both diverse and complicated. Immune 
contexture represents the analysis of the location, density 
and functional orientation of the different immune cell 
populations, which can provide comprehensive details 
of the immune microenvironment.6 However, due to 
its complexity and difficulty of routine clinical practice, 
the application value of immune contexture is limited. 
Derived from the immune contexture, immunoscore is 
based on the density of lymphocyte populations (CD3, 
CD8 and CD45RO), both in the core of the tumor 
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Figure 4  Univariate analysis of factors associated with overall survival, disease-free survival and distant metastasis-free 
survival in the training and validation cohorts. Plots show (A) overall survival, (B) disease-free survival and (C) distant metastasis-
free survival. EBV, Epstein-Barr virus; IS, immune score; TNM, tumor, node and metastasis.

and in the invasive margin (IM) of tumors. Currently, 
immunoscore has become a clinically useful prognostic 
marker in a variety of cancers, such as colorectal cancer, 
non-small-cell lung cancer and others.9 12 30 Until now, 
the prognostic significance of IS was unknown in NPC 
patients. As radiotherapy and/or chemotherapy are now 
the standard treatments for locoregional NPC, surgery is 
not recommended.31 It is only possible to obtain biopsies 
for analysis, which could not be used to evaluate the IM. 
Therefore, we believe it is more significant to identify IS 
for NPC patients based on the density of CD3, CD8 and 
CD45RO in the tumor and stroma. Since the evaluation 

method is not fully identical as Immunoscore proposed 
by Galon et al, we name it IS.

Recently, digital pathology has gained great attention 
due to its accurate, quantitative evaluation of whole-
slide sets. This permits automatic and objective eval-
uation.32 Particularly for IS, it demands accurate and 
quantitative evaluation of CD3+, CD8+ and CD45RO+ T 
cells both in the tumor and stroma. However, due to the 
extremely huge number of lymphocytes infiltrating into 
NPC, the number of positive T cells is almost impossible 
to be enumerated by a pathologist. Digital pathology 
highlights the obvious advantages in accelerating the 
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Table 2  Multivariable Cox regression analysis of factors associated with overall survival, disease-free survival and distant 
metastasis-free survival in the training and validation cohorts

Training cohort (n=221) Validation cohort (n=115)

HR (95% CI) P value HR (95% CI) P value

Variable

Overall survival  �   �

 � IS (3–6 vs 0–2) 0.34 (0.18 to 0.63) 0.001 0.42 (0.21 to 0.84) 0.014

 � TNM Stage (III–IV vs I–II) 3.49 (1.23 to 9.87) 0.019 10.7 (1.46 to 78.9) 0.020

 � EBV-DNA (>2000 vs ≤2000) 1.96 (1.01 to 3.78) 0.045 NA NA

Disease-free survival  �   �

 � IS (3–6 vs 0–2) 0.44 (0.25 to 0.78) 0.005 0.37 (0.20 to 0.68) 0.001

 � TNM stage (III–IV vs I–II) 2.79 (1.18 to 6.62) 0.020 7.01 (1.68 to 29.2) 0.007

 � EBV-DNA (>2000 vs ≤2000) 2.13 (1.18 to 3.86) 0.013 NA NA

Distant metastasis-free survival  �   �

 � IS (3–6 vs 0–2) 0.43 (0.21 to 0.87) 0.019 0.32 (0.14 to 0.75) 0.008

 � TNM stage (III–IV vs I–II) 3.52 (1.06 to 11.7) 0.040 7.68 (1.02 to 58.0) 0.048

 � EBV-DNA (>2000 vs ≤2000) 2.31 (1.08 to 4.93) 0.031 NA NA

Bold values were considered significant
EBV, Epstein-Barr virus; IS, immune score; NA, not applicable; TNM, tumor-node-metastasis.

process of quantification, facilitating the analysis of 
more complex spatial patterns and providing standard-
ized metrics.33 In this study, we evaluated the density 
and distribution of CD3+, CD8+ and CD45RO+ T cells 
through digital pathology. Our digital pathology 
process was based on a state-of-the-art deep neural 
network architecture. Not only did this allow for accu-
rate classification of cell types but it also achieved good 
performance in identifying tumor and stroma areas. 
Thus, our digital pathology process made it possible to 
quickly determine the IS of each patient.

In addition to prognostic value, immunoscore was 
suggested to be an attractive tool to help in guiding treat-
ment selection. Recently, a standardized and univocal 
tumor classification based on the Immunoscore has 
been proposed, which stratified tumor as hot (high 
immunoscore), altered-immunosuppressed, altered-
excluded (Intermediate Immunoscore) and cold (low 
Immunoscore).34 By displaying a high degree of T cell 
infiltration, hot tumors represent a fertile ground for 
effective immune checkpoint blockade inhibitors (ICIs) 
based monotherapy or combination therapy; while cold 
tumors characterized by low immunoscore, a proposed 
approach to treat these patients is combining a priming 
therapy that enhances T cell responses and removal 
of coinhibitory signals and/or supply of costimulatory 
signals.34 35 By stratifying these major groups based on 
T cell infiltration, the immunoscore might be used as 
a tool to identify phenotypes responding to distinct 
classes of monotherapies or combinational therapies. 
Therefore, we think IS might help stratify patients 
with different types of immunosuppressive and be 

suitable for different treatments, which would poten-
tially improve the clinical management of NPC patients.

Previously, we have constructed an immune 
checkpoint-based signature (ICS), which can also 
provide prognostic information for NPC patients.17 
The published study provided the expression and 
coexpression information of targetable immune check-
point molecules, which can help us to understand indi-
vidual tumor immune evasion mechanism and identify 
rational ICIs for NPC patients.36 By contrast, IS is based 
on the density of certain lymphocyte populations, which 
provided a new tumor classification method and corre-
sponding potential therapeutic strategies.34 The differ-
ence between the two models lies in the guidance of 
clinical trials and treatment. In general, we could first 
evaluate the IS of NPC patients. For patients with low IS, 
priming therapy combined with ICIs would be helpful. 
However, for patients with high IS, the expression 
information of immune checkpoints should be tested 
to choose suitable ICIs based mono-therapy or combi-
nation therapy.34–36 Combined with IS, the expression 
of immune checkpoints could guide more appropriate 
immunotherapy for NPC patients.

In this study, we systemically evaluated the densities 
of CD3+ T cells, CD8+ cytotoxic T cells and CD45RO+ 
memory T cells both in intratumoral and stromal tissue 
for NPC patients using digital pathology. Furthermore, 
we determined the survival prognostic value of each 
marker in the tumor and stroma, and the combination 
of the two areas. IS constructed based on the expression 
status of these three markers, was demonstrated to be 
a good tool to predict prognosis of NPC patients and 
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Figure 5  Nomogram and calibration plots for predicting 3-year and 5-year OS. (A) Nomogram A including IS, TNM stage and 
EBV-DNA; (B, C) showed the calibration plots for predicting 3-year and 5-year OS in NPC patients from the training cohort. EBV, 
Epstein-Barr virus; IS, immune score; NPS, nasopharyngeal carcinoma; OS, overall survival; TNM, tumor, node, and metastasis.

might be an attractive option to help guide treatment 
selection.

Conclusions
Our study demonstrated that IS, which was based on 
the density of certain lymphocyte populations (CD3, 
CD8 and CD45RO), could predict risk of individual 
death, disease progress and distant metastasis. More-
over, we established a nomogram with the integration 
of all independent variables that might offer clinicians 
a useful tool for predicting prognosis of NPC patients.
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