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Abstract

Prostate cancer (PCa) is the most frequently diagnosed non-cutaneous malignancy and leading 

cause of cancer mortality in men. At the initial stages, prostate cancer is dependent upon 

androgens for their growth and hence effectively combated by androgen deprivation therapy 

(ADT). However, most patients eventually recur with an androgen deprivation-resistant phenotype, 

referred to as castration-resistant prostate cancer (CRPC), a more aggressive form for which there 

is no effective therapy presently available. The current review is an attempt to cover and establish 

an understanding of some major signaling pathways implicated in prostate cancer development 

and castration-resistance, besides addressing therapeutic strategies that targets the key signaling 

mechanisms.
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1. Introduction

Prostate cancer (PCa) is the most common cancer among men with worldwide detection of 

more than 8,90,000 new cases and over 2,58,000 deaths each year [1]. Genetic preferences, 

inflammation, and increased cell proliferation are some of the predeterminant factors for 

PCa initiation. The occurrence of these processes in the epithelium of normal prostate 

initiates a cascade of events that lead to the formation of lesions, which can either directly 

progress to primary PCa or proliferative inflammatory atrophy (PIA) or induce an 

intermediate stage called prostatic intraepithelial neoplasia (PIN), in which basal cell layers 

lose their proliferation capacity resulting in increased activity of luminal secretory cells [2]. 
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Molecular and pathological analysis of human PCa samples and studies with PCa animal 

models have shown that infectious agents, estrogenic hormones to dietary carcinogens, age, 

race, genetics and other occupational factors can cause damage to the prostate epithelium 

and elicit inflammatory responses leading to chronic or recurrent condition of PCa [2].

Androgen deprivation therapy (ADT) via chronic administration of gonadotropin-releasing 

hormone analogs, anti-androgens or their combination is considered as the standard choice 

of treatment for men with de novo or recurrent metastatic disease [3]. However, most 

patients invariably relapse and develop castration resistant PCa (CRPC) within 18–24 

months despite maintenance of castrate testosterone serum levels, due to amplification or 

mutations in androgen receptors allowing their activation by progesterone, estrogens and 

androgen antagonists, generation of alternative splicing variants or to androgen neosynthesis 

in prostate tumor or adrenals. Besides, a host of molecular alterations also contribute to 

androgen-independence of PCa cells thereby stimulating disease progression [4,5].

2. In vitro and in vivo reports signifying the involvement of intracellular 

signaling cascades in PCa development/progression

The role of AR signaling in PCa development and progression has been well established [6–

10]. In addition, several in vitro and in vivo studies have established the role of other 

signaling cascades in PCa development and progression. Earlier in 2002, Gasparian et al. 

[11] reported constitutive activation of nuclear factor kappa- light chain- enhancer of 

activated B cells (NF-κB) ‘survival signaling’ pathway in androgen-independent PCa cells. 

Studies by Zhang et al. demonstrated that activation of NF-κB pathway and subsequent 

downstream targets contributes to the progression and metastasis of PCa [12]. Huang et al. 

showed that blockade of NF-κB in human PCa cells is associated with suppression of 

angiogenesis, invasion, and metastasis [13]. Recently Jin et al. [14] demonstrated that 

activation of NF-κB signaling increases the expression of androgen receptor splicing 

variants (ARVs) in PCa cells and converts androgen-sensitive PCa cells to become 

androgen-insensitive, whereas downregulation of NF-κB signaling inhibits ARV expression 

and restores responsiveness of CRPC to anti-androgen therapy. In addition to NF-κB, 

constitutive activation of phosphoinositide-3-kinase/AKT (PI3K/Akt) has also been 

documented during PCa progression in autochthonous transgenic mouse model [15]. Shukla 

et al. [16] reported that treatment of human PCa cells LNCaP, PC-3 and DU145 with PI3K 

pharmacological inhibitor, LY294002, potentially suppressed the invasive properties in each 

of these cell lines. Chen et al. discussed that epidermal growth factor (EGF) and its receptor 

(EGFR)/Akt or EGFR/mitogen-activated protein kinase (MAPK) signaling path- ways are 

critical for maintaining cell survival in PCa [17]. Gan et al. studied the effects of 

extracellular signal-regulated kinases (ERK) and Akt pathways on EGF-mediated EGFR 

signaling, trafficking and cell motility in DU145 and PC3 cell lines and confirmed the 

significance of the EGFR signaling in PCa via ERK as well as Akt-dependent down 

streaming signaling [18]. Studies with NSK01105, a sorafenib derivative in human PCa cells 

and xenograft model indicated that this compound inhibited tumor growth and 

neovascularization by disrupting the EGFR activation [19]. Lorenzo et al. demonstrated the 

involvement of growth factor receptors of EGFR family in PCa development and 
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progression to androgen independence [20]. Recent studies by whang et al., on lapatinib, a 

dual EGFR and HER-2 tyrosine kinase inhibitor [21] gave a new shape to the EGFR 

signaling concept in the PCa that revealed the potent role of cross-talk of growth factors and 

their correlation with androgen-mediated development of PCa [22]. Drake et al. 

experimented on mouse model and projected that elevated tyrosine kinase signaling in 

advanced PCa [23]. Studies with antagonist of growth hormone inhibitors have also been 

shown to down-regulate PCa progression via down-regulation and inactivation of Akt and 

ERK kinases [24]. Deregulation in the expression of downstream effectors of PI3K/and 

RAS/MAPK pathways, specifically MNK have not only been documented during PCa but 

are also reported to contribute significantly to PCa growth and development [25–27]. Atala 

et al. showed that phosphorylation of eukaryotic translation initiation factor 4E (eIF4E), a 

key downstream target of MNK promotes PCa development and progression [28]. Studies by 

Feng et al. established that targeting fibroblast growth factor receptor (FGFR) signaling 

could be a promising approach for treating aggressive PCa [29]. Muñoz-Moreno et al. 

demonstrated treatment of PC-3 cells with Growth Hormone-Releasing Hormone (GHRH) 

antagonists significantly decreased the level of gonadotropin-releasing hormone (GnRH); 

vascular endothelial growth factor (VEGF); and hypoxia-inducible factor 1-alpha (HIF-1a) 

expressions [30]. Yamamoto et al. identified that Wnt5, a critical ligand that activates the β-

catenin-independent pathway in Wnt signaling promotes the rapid proliferation and 

metastasis of PCa [31]. Recently Valkenburg et al. demonstrated that activation of Wnt/β-

catenin signaling is sufficient to produce high-grade prostate intraepithelial neoplasia 

(HGPIN) in hormonally normal mice [32]. Heidegger et al. demonstrated that 

overexpression of insulin receptor IGF1R promoted tumor growth and enhanced 

angiogenesis in human PCa cells [33]. Zengerling et al. reported that inhibition of IGF-1R 

diminishes transcriptional activity of the androgen receptor and its constitutively active, C-

terminally truncated counterparts Q640X and AR-V7 via down-regulation of ARΔLBD 

signaling [34]. Shodeinde et al. disclosed that PCa growth development depend upon 

activated signal transducer and activator of transcription-3 (STAT3) [35]. Martin et al. 

showed that STAT3 activation drives CRPC progression via mediating loss of p53, a key 

tumor repressor [36]. Tyrosine phosphorylation of AR protein by non-receptor tyrosine 

kinases Src and Ack1 (activated cdc42-associated kinase) has been reported to activate AR 

even in low androgen environment, thereby promoting CRPC development [37,38].

3. Key molecular pathways promoting PCa development and progression

From the above studies, it is evident that besides AR signaling multiple intracellular 

signaling circuits play critical roles in the development and progression of PCa (Fig. 1), 

essentially influencing the transition of PCa cells from androgen dependent to castration 

resistant (CR) stage. This section summarizes alterations in key intracellular signaling 

pathways that promote PCa progression and the mechanisms by which they may influence 

therapeutic action of drugs targeting them.

3.1. Androgen receptor (AR) mediated signaling pathway

The AR signaling is vital for normal functioning of the prostate, and initiation and 

maintenance of spermatogenesis [6]. AR is a member of the steroid hormone receptor family 
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of ligand-activated nuclear transcription factors comprising of four distinct functional 

domains, a poorly conserved N-terminal domain (NTD) with transcriptional activation 

function; a highly conserved deoxyribonucleic acid (DNA)-binding domain (DBD) liable for 

DNA binding specificity and dimerization/stabilization of AR-DNA complex; a moderately 

conserved ligand-binding domain (LBD) that facilitates binding to steroid hormones. A short 

amino acid sequence called the ‘hinge region’ separates the LBD from the DBD and also 

contains part of a bipartite ligand-dependent nuclear localization signal (NLS) for AR 

nuclear transport [6,39].

Androgenic steroids are 19-carbon steroids with testosterone being the prototype. 

Testosterone is produced primarily by the testes with a small contribution from the adrenal 

glands. Testosterone is converted to DHT (highly expressed in prostate and genital tissues) 

by the action of the cytochrome P450 enzyme, 5α-reductase. Under physiological 

conditions, both testosterone and DHT can bind to and activate AR signaling.

In the absence of ligand, AR resides primarily in the cytoplasm in association with heat 

shock proteins (HSPs), cytoskeletal proteins and other chaperones.

Binding of ligand to the AR induces conformational changes in the LBD facilitating 

intramolecular and intermolecular interaction between N-terminal and C-terminal domains. 

This subsequently results in AR homo-dimerization, phosphorylation and nuclear 

translocation. In the nucleus, ligand bound AR binds to specific recognition sequences 

known as “androgen response elements” (AREs) in the promoter and enhancer regions of 

target genes along with its coregulators thereby modulating gene expression [6,39].

Deregulated AR signaling is common during PCa development and CRPC progression due 

to overexpression of AR arising due to amplification/mutations, co-activator and co-

repressor modifications, aberrant activation/post-translational modification, altered 

steroidogenesis, and generation of AR splice variants [40]. Mutations in the AR although 

rare during initial stages of PCa are common during CRPC. These mutations permit 

continued androgen-axis activation even in the presence of low levels of androgen in the 

prostate microenvironment [41,42]. In addition, point mutations in AR besides facilitating 

increased AR activity in the prostate environment also broaden the ligand pool to which AR 

responds. In advanced PCa, growth factors such as transforming growth factor β (TGF-β), 

bone morphogenetic proteins (BMPs), insulin-like growth factor-1 (IGF-1), EGF, VEGF, 

fibroblast growth factor (FGF), interleukins (ILs), and other cytokines also act to promote 

synergistic activities of the androgen receptor [43,44]. Besides, more than 200 molecules 

have been identified as co-activators and co-repressors to the AR. Mutations in the various 

components of the co-regulator complex have also been reported to improve androgen-

stimulated AR activation and disease progression of disease [45,46]. Aberrant activation of 

AR also occurs via alterations in the steroidogenesis pathways which permits PCa cells to 

bypass testosterone, and utilize adrenal androgens to generate functionally potent DHT via 

the 5α-dione pathway [47,48]. ARVs, the splice variants of full length AR generated as a 

result of alternative splicing such as exon skipping, cryptic exon inclusion, and cryptic 

splicing donor or acceptor usage also play a crucial role in promoting PCa progression. 

These splice variants although retain NTD and DBD of full-length AR, lack LBD ensuing in 
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acquisition of hormone-independent activity to the AR. Besides localization in the nucleus, 

some AR variants also exhibit exclusive cytoplasmic function that is sufficient enough for 

transcriptional effects. In addition, ARVs can freely enter the nucleus without association 

with the Hsp90 chaperone complex [49–51]. Aside from the above described mechanisms 

that induce changes in the activity of AR, various transcription factors such as the proto-

oncogene Myc, c-Jun, Sp1, FOXO3a, lymphoid enhancer binding factor 1 (LEF1), sterol 

regulatory element-binding proteins (SREBPs), cAMP response element-binding (CREB), 

NF-κB and twist-1 also have a crucial role in promoting AR expression via gene regulation 

[52].

3.2. NF-κB signaling

NF-κB is a protein complex that regulates expression of key genes required for innate and 

adaptive immunity, cell proliferation and survival, and lymphoid organ development. In 

humans, the NF-κB family comprises of five proteins namely p65 (RelA), RelB, p105/p50 

(NF-κB1), p100/p52 (NF-κB2) and c-Rel. These proteins associate with each other to form 

homo- or heterodimeric complexes that are transcriptionally active. Although 15 different 

Rel dimer complexes can be made, the p50/65 heterodimer is the most abundant one and 

occurs in almost all cell types. The Rel proteins are activated by divergent stimuli including 

pro-inflammatory cytokines, T-and B-cell mitogens, bacteria and lipopolysaccharides, 

viruses, viral proteins, double stranded RNA, and physical and chemical stressors. In the 

unstimulated state, NF-κB dimers are retained in the cytosol as inactive proteins bound to 

IκB (inhibitor of kappa) proteins. In the canonical pathway of activation, degradation of the 

IκB inhibitory protein occurs through phosphorylation at specific serine residues (Ser 

177/181 or Ser 176/180) by IκB kinase complex (IKKα or IKKβ). As a consequence, free 

NF-κB dimer enters the nucleus, binds to κB enhancer sites in the DNA and activates 

transcription of a wide array of genes participating in the immune and inflammatory 

response, cell growth, adhesion, metastasis, and apoptosis evasion. In contrast, the non-

canonical NF-κB pathway activated by stimuli such as lymphotoxin-β (LTβ) and B cell-

activating factor (BAFF) involves IKKα-dependent p100 processing instead of IκB 

degradation [53,54].

In prostate tumor cells, NF-κB is found frequently stimulated due to augmented levels of 

receptors such as tumor necrosis factor (TNF) that radically increase IκB degradation [55]. 

In androgen-independent prostate tumors, NF-κB expression is increased at both mRNA and 

protein level due to increased IL-6 expression that occurs as a result of constitutive NF-κB 

activation promoted by signal transduction via NF-κB inducing kinase (NIK) and IKK [56]. 

NF-κB also targets a transcription regulatory element of the prostate specific antigen PSA, a 

vital marker for development and progression of PCa [57,58]. NF-κB signaling in PCa cells 

also correlates with cancer progression, chemoresistance, and PSA recurrence [59]. Reports 

also indicate that NF-κB activation contributes to soft-tissue or bone metastasis in PCa 

[60,61]. TNF-α, a proinflammatory cytokine and prototypical NF-κB inducer along with its 

receptors TNFR1 and TNFR2 are found to be highly expressed in PCa. In Pca cells, 

amplified TNF-α expression has been correlated with increased proliferation and survival, 

angiogenesis, metastasis, and resistance to chemotherapeutic agents [62,63]. Recent studies 

have also demonstrated the existence of cross-talk between NF-κB and AR signaling. NF-
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κB expression has been shown to augment with increased AR expression and activity in 

androgen-independent xenografts. The p65/RelA subunit of NF-κB activity is also reported 

to increase both the gene and protein expression of AR. Furthermore, p65 of NF-κB could 

increase endogenous AR expression and its associated downstream target genes enhancing 

growth and survival in human PCa cells [64,65].

3.3. Growth factor signaling

PCa progression is often interrelated with deregulation of specific growth factors and their 

respective signaling pathways [66]. Growth factors are of three categories: positive growth 

factors, which promote growth and proliferation; negative growth factors, which regulate 

and inhibit cell growth/proliferation and induce apoptosis, and angiogenic growth factors, 

that provide growth factors necessary to build vascular and oxygen supplies necessary for 

tissue growth and survival. Growth factor receptors have receptor tyrosine kinase (RTK) 

activity. Ligand binding to growth factor receptors, triggers signaling pathways resulting in 

the activation of transcription factors and altered expression of numerous genes responsible 

for cell growth, proliferation and survival. While IGF-1 and its associated signaling pathway 

functions as a positive growth-promoting signal transduction pathway, FGF family of growth 

factors plays the role of both a positive growth factor and an angiogenic growth factor. 

Transforming growth factor-β (TGF-β) functions as a negative growth factor thereby 

regulating cell differentiation and proliferation [66,67]. Table 1 summarizes the role of 

various growth factors in PCa development and progression.

During ADT, increase in autocrine and paracrine growth factor loops results in deregulation 

of essential growth and survival pathways. EGF, TGF-α, IGF-1, keratinocyte growth factor 

(KGF) or basic fibroblast growth factor (bFGF) as well as their corresponding receptors are 

found to be overexpressed in CRPC [68–71]. IGF-1 is commonly overexpressed in the 

prostatic stroma and exerts mitogenic action on prostatic epithelial cells in a paracrine 

manner. High serum levels of IGF-1 is considered as a predictor for PCa and increased risk 

of malignancy [71,72]. In addition, bFGF such as FGF-2, FGF-7, and FGF-8 are 

overexpressed in both benign and malignant prostate cells and are indicative of uncontrolled 

proliferation, tumor metastasis, and exceedingly low survival rates [73,74]. TGF-β1 is often 

augmented in the serum of PCa patients and is related with bone metastasis and poor clinical 

outcome [75–77]. Numerous other studies have also recognized that changes in the levels of 

TGF-β and its pathway components contribute to PCa progression and cellular responses 

[78,79]. Overexpression of the EGF receptor (EGFR, ErbB-1) has also been documented 

during PCa and strongly correlates with biochemical relapse [80,81]. RTK Her-2/neu 

(ErbB-2) is also reported to be overexpressed in androgen-independently growing cell lines 

as well as in sublines that have been xenografted into castrated mice [82,83]. This in turn 

leads to activation of AR related genes through the Akt pathway resulting in enhanced 

metastatic and angiogenetic potential [84,85].

3.4. Phosphoinositide-3-kinase/AKT signaling

PI3K/AKT pathway, a chief intracellular signal transduction mechanism that links diverse 

classes of membrane receptors essentially plays a central role in cellular quiescence, cell 

growth, proliferation, differentiation, motility, survival and angiogenesis. In humans, PI3K 
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exists as a heterodimer of 110 kDa catalytic subunit and a 85 kDa regulatory subunit. 

Following stimulation by tyrosine kinase growth factor receptors such as EGFR; IGF-1R; G-

protein-coupled receptors (GPCRs); cell adhesion molecules or oncogenic Ras, PI3K 

induces conscription and stimulation of the serine/threonine-specific protein kinase AKT via 

phosphorylation of the D3 position of phosphoinosities generating biologically active 

phosphatidylinositol (4,5) bisphosphate (PIP2) into phosphatidylinositol (3,4,5) 

trisphosphate (PIP3). PIP3 subsequently binds to AKT resulting in membrane translocation 

and its activation via phosphorylation. Activated AKT in turn phosphorylates and galvanizes 

several other proteins including mammalian target of rapamycin (mTOR) ultimately 

inducing and regulating a wide array of cellular processes [86]. Besides this, activation of 

mTOR by AKT can phosphorylate and inactivate 4E-BP1 (for eIF4E-Binding Proteins), a 

family of small acidic proteins that function as translational repressors of eIF4E. 

Phosphorylation of 4E-BP1 by mTOR releases 4E-BP1 from eIF4E thereby activating eIF4E 

involved translation-initiation complex and consequently the translational repertoire of a cell 

toward malignancy [87].

In 30%–50% of PCa patients, PI3K/AKT pathway is often augmented due to the loss of 

tumor suppressor PTEN (phosphatase and tensin homolog) that negatively regulates 

PI3K/AKT signaling by dephosphorylating PIP3 to PIP2 [86] [88]. In PCa cells, aberrant 

PI3K/AKT pathway disturbs the action of ERKs thereby favoring AR-independent growth. 

Congruently, AR target genes might impede PI3K/AKT pathway to favor AR-dependent 

growth in PCa cells [89,90]. Several mechanisms of cross-talk have been reported between 

AR and PI3K/AKT signaling. AKT can phosphorylate AR directly and inhibit activation of 

AR target genes, or PI3K/AKT signaling can regulate AR transcription via mechanisms 

other than AR phosphorylation [91,92]. Aberrations in PI3K pathway are also likely to 

constrain Ras/MEK/ERK pathway via amplified AKT activation. Besides, interrelationship 

between AKT and IGF signaling has also been reported in PCa cells. Upregulation of IGF, 

an upstream effector on AKT promotes PCa development in vivo [93,94]. Myc, a 

downstream PI3K/AKT target also interacts with AKT to endorse PCa development and 

progression. PI3K/AKT pathway can also act alongside with other proteins such as MST1, 

acetate Kinase (Ack1) and Bmi1 increasing their oncogenic potential [95,96]. PI3K/AKT is 

also known to increase the expression of MT1-MMP which are metalloproteinase receptors, 

thereby favoring PCa invasion and metastasis [90].

3.5. Janus Kinase/signal transducers and activators of transcription (JAK/STAT) signaling

JAK/STAT pathway is an imperative and pleiotropic membrane-to-nucleus cascade that 

transduces multitude of signals for normal development, cellular homeostasis, cell 

proliferation, differentiation, migration and apoptosis following stimulation by a wide 

variety of stimuli including reactive oxygen species, cytokines, and growth factors [97,98]. 

Briefly, activation of JAK/STAT pathway occurs when ligand binding induces 

multimerization of receptor subunits resulting in signal propagation via phosphorylation of 

receptor-associated JAK tyrosine kinases (JAK1, JAK2, JAK 3 and Tyk2). Principally, JAK 

activation occurs only upon receptor oligomerization as two JAKs are in close proximity 

ensuring trans-phosphorylation. Activated JAKs subsequently induce phosphorylation of 

other additional targets comprising both the receptors and STAT proteins. STATs reside in 
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the cytosol as dormant transcription factors and become activated following phosphorylation 

by JAKs at conserved C-terminal tyrosine residue. Phosphorylation in turn induces 

dimerization of STATs through conserved SH2 domain subsequently allowing their entry 

into the nucleus through importin α-5 and the Ran nuclear import pathway. In the nucleus, 

STATs bind to specific sequences in the DNA to stimulate or suppress transcription of target 

genes [99].

Inhibition of JAK/STAT3 signaling is reported to suppress PCa cell growth and induces 

apoptosis [100]. The DNA repair gene BRAC1 can induce cell proliferation and inhibit 

apoptotic cell death in PCa cells through interaction with JAK1/2 and STAT3 

phosphorylation [101]. AR can also associate with STAT3 and activate JAK/STAT pathway 

to stimulate cell proliferation and antiapoptotic effects. In addition, activation of STAT3 in 

PCa cells also stimulates various other genes that are associated with cell cycle progression, 

anti-apoptosis, angiogenesis and tumor invasion [102–104]. Besides, JAK2 can activate 

STAT5a/b in PCa cells via phosphorylation on conserved tyrosine residues Y694Stat5a and 

Y699Stat5b. This results in STAT5a/b dimerization and ensuing nuclear translocation where 

the dimer binding to specific response elements of target genes promotes prostate cancer 

growth, tumor progression and distant metastases [104–107]. Components of JAK-STAT 

pathway specifically pJAK-1 and pSTAT-3 function as predictors of biochemical relapse and 

poor prognosis of PCa [100].

3.6. MAPK pathway

MAPKs are serine-threonine kinases comprising of three distinct groups specifically ERKs, 

Jun N-terminal kinases (JNKs), and p38 isoforms. MAPK signaling links extracellular 

signals to the machinery that controls fundamental cellular processes such as growth, 

proliferation, differentiation, migration, apoptosis and transformation. Each MAPK 

signaling axis comprises of a three-tier kinase module: a MAPK kinase kinase (MAP3K), a 

MAPK kinase (MAP2K), and a MAPK. MAP3Ks phosphorylate and activate MAP2Ks, 

which in turn phosphorylate and activate MAPKs [108–110]. MAPK pathways are activated 

either by a sequence of binary interactions between the kinase components or via formation 

of a signaling complex containing multiple kinases guided by a scaffold protein. While 

kinase suppressor of Ras-1 (KSR) and MEK partner 1 (MP1) function as scaffold proteins 

for the ERK pathway, JNK-interacting proteins (JIPs) serve as scaffold proteins for the JNK 

pathway. β-Arrestin 2 acts as a scaffold protein for both the ERK and JNK signaling 

pathway [111]. Upon activation, the MAPKs phosphorylate various substrate proteins 

including transcription factors such as c-Jun, c-Fos, ATF2, and p53. Erk or p38 MAPKs can 

also activate MAPK interacting protein kinases 1 and 2 (MNK1 and MNK2) that play 

important roles in controlling signals involved in mRNA translation [112]. Phosphorylation 

of MNKs 1 and MNK2) by MAPK activates its kinase activity as well as to enhances its 

binding to the eukaryotic initiation factor 4G (eIF4G) which functions as a scaffolding 

protein. Additionally MNK mediated phosphorylation of eIF4E regulates its release from 

eIF4G which along with its binding partners and the small ribosomal subunits constitute 

vital components of the 48S initiation complex required for cap-dependent translation 

initiation. Activation of the eIF4E by MNKs promote the translation of a subset of mRNAs 

are referred to as ‘eIF4E-sensitive’ most of which includes proliferation and survival-
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promoting proteins such as cyclin D1 and D3, c-Myc, MDM2 (mouse double minute 2), 

VEGF, survivin and Bcl-2 (B-cell lymphoma 2) [113,114].

Overexpression of EGF, FGF, IGF, and KGFs in PCa frequently results in activation of 

endogenous Ras and MAPK pathways [115–117]. Overexpression of Ras and its mutant 

form also promotes castration resistance in LNCaP cells endorsing tumorigenicity [118]. 

p38 signaling chiefly activated at later stages of PCa increases the expression of aquaporins 

which are pore-forming proteins thereby enabling PCa cells survive through hypoxia 

[119,120]. Besides, MNKs and p-eIF4E are also found to be highly overexpressed in PCas 

[25–27] [25–27]. The Oncomine database documents that MNK2 is overexpressed 1.5 to 

4.4-fold in hormone resistant and metastatic prostate tumors [121]. Increased MNK activity 

is documented to promote proliferation in PCa cells [25–27,122].

3.7. Wnt/β-catenin signaling

Wnt/β-catenin pathway is a highly conserved developmental signaling pathway comprising 

of secreted glycoproteins that play a vital role in tissue homeostasis, cell proliferation, 

differentiation, migration, and epithelial-mesenchymal communications, polarity and 

asymmetric cell division [123]. Based on the ability to stabilize the multifunction protein β-

catenin, Wnt signaling is subdivided into canonical pathway and the noncanonical (planar 

cell polarity or Wnt/calcium) pathway. β-catenin predominantly exists in the cytosol in 

complex with adenomatous polyposis coli (APC), axin, casein kinase 1 (CK1), and glycogen 

synthase kinase 3β (GSK-3β). In the absence of Wnt signal, GSK-3β and CK1, 

phosphorylate β-catenin at specific serine/threonine residues leading to its ubiquitination 

and proteasomal degradation via F-box/WD repeat-containing protein 1A (FBXW1A)/S-

phase kinase-associated protein (SKP) complex. In contrast, binding of Wnt ligands to 

frizzled receptors (FZD) hyperphosphorylates and activates disheveled proteins (DVL). 

Activated Dvl in its turn displaces GSK-3β from the β-catenin complex thereby averting 

GSK-3β-mediated phosphorylation and consequent degradation of β-catenin. As a result, 

free β-catenin accumulates in the perinuclear region forming a pool of free signaling 

molecules which ultimately interact with lymphoid enhancer factor/T cell factor (LEF/TCF) 

in the DNA to stimulate transcription of various target genes including that of c-Myc, p300, 

Foxo, Bcl9–2, c-Jun, CtBP, and cyclin D1 through displacement of groucho-HDAC co-

repressors [124–128].

Increased expression of β-catenin occurs quite commonly in PCa due aberrant AKT 

signaling which results in phosphorylation and inactivation of GSK3β which favours 

formation of uncomplexed cytosolic β-catenin [129]. Besides, mutant forms of β-catenin 

have also been discovered in PCa. The mutant forms of β-catenin surpass normal 

mechanisms of phosphorylation by GSK3b and further degradation via the ubiquitin 

pathway [130,131]. During PCa, β-catenin is also found to associate with AR thereby 

enhancing expression of various growth and proliferative genes [132]. Expression of Wnt 

ligands is high in PCa and correlates with disease progression, higher Gleason scores, 

augmented PSA, and metastasis [133–135]. In addition to Wnts, frizzled receptors are also 

upregulated during PCa. Specifically, FZD4 overexpression is common in PCa and favours 

epithelial-to-mesenchymal transition [135,136].
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4. Novel therapeutics targeting key signalling pathways in PCa

So far, Food and Drug Administration (FDA) has approved 19 agents for PCa therapy and 

treatment [137–158]. Fig. 2 represents the chemical structures of some of the drugs 

approved and in advanced development for PCa treatment. The majority of these agents are 

hormonal modulators targeting the androgen pathway. The gonadotropin-releasing agonists 

such as leuprolide (Lupron), goserelin (Zoladex), and triptorelin (Trelstar) that block the 

release of LHRH, and anti-androgens such as bicalutamide (Casodex), flutamide (Eulexin), 

and nilutamide (Nilandron) that help block the action of testosterone in PCa cells have been 

the backbone of PCa treatment [137–143]. However, for advanced PCa specifically CRPC 

limited treatment options exist providing avenues for the development of newer agents 

targeting AR and other major signaling cascades.

4.1. Inhibitors of AR signaling

In depth understanding of AR signaling and the mechanisms of castration resistance in PCa 

has resulted in the development of novel agents that can more efficiently retract AR 

signaling. Abiraterone acetate (Zytiga) is a selective, oral agent that can irreversibly inhibit 

the enzymatic activity of CYP17A1, a key member of the cytochrome p450 family with dual 

functions of 17a-hydroxylase and C17,20-lyase activity. It catalyzes the 17α-hydroxylation 

of steroid intermediates that is critical in testosterone biosynthesis. The blockade of 

CYP17A1 by Abiraterone thus decreases androgen synthesis in adrenal glands, testes, and 

tumor cells. Abiraterone has been shown to reduce serum testosterone levels to below a 

detection threshold of 1 ng/dL [159]. Abiraterone is 10- to 30-fold more potent CYP17 

inhibitor than ketoconazole, a broad spectrum antifungal agent that has been extensively 

used as second-line hormonal therapy for PCa due to its ability to inhibit 11-β 
hydroxylation, cholesterol side chain cleavage to pregnenolone and CYP17 [160,161]. 

MDV3100 (Enzalutamide) is a potent oral antagonist. As opposed to firstgeneration anti-

androgens, MDV3100 is an anti-androgen with multiple effects on AR- it is a competitive 

inhibitor of the C-terminus ligand-binding domain, besides it also prevents AR nuclear 

translocation, AR binding to DNA, and co-activator recruitment. MDV3100 exhibits a 5- to 

8-fold greater activity than bicalutamide and only 2- to 3-fold reduced activity compared 

with the native ligand dihydrotestosterone [162–164]. While abiraterone and enzalutamide 

show survival benefit in castrate-resistant disease, PCa cells eventually develop resistance 

[165–167]. Galeterone (VN/124–1, TOK-001) developed by Tokai Pharmaceuticals is a 17-

heteroazole steroidal analogue currently in pivotal phase 3 clinical trial for men with 

metastatic, castration-resistant PCa or CRPC, whose prostate tumor cells express the AR- 

V7 splice variant [168]. Galeterone disrupts the androgen receptor signaling by functioning 

in 3 ways: (i) androgen receptor degradation, which reduces the amount of androgen 

receptor in tumor cells (ii) CYP17 enzyme inhibition, which blocks the synthesis of 

testosterone (iii) androgen receptor inhibition, which blocks the binding of testosterone or 

DHT with the androgen receptor [169–171].

4.2. Inhibitors of growth factor signaling, RTK and PI3K/AKT/mTOR pathway

Several inhibitors of key intracellular signaling pathways that are aberrant in PCa such as 

IGF, RTK and PI3K/AKT/mTOR signaling are also being actively investigated either as 
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single agents or in combination for PCa treatment and therapy. Drugs targeting IGF-1R 

signaling are broadly classified as (A) neutralizing antibodies and (B) small molecule 

inhibitors of the IGF-1R tyrosine kinase activity (eg: BMS-754807, NVP-ADW742, NVP-

AEW541, OSI-906, XL228). Besides blocking IGF-1R activity, the neutralizing antibodies 

(AMG-479, cixutumumab or IMC-A12, figitumumab or CP751,871, MK0646, R-1507, 

Sch-717454) also down-regulate IGF-1R overtime by promoting receptor internalization 

[172]. Inhibitors of PI3K/Akt pathway are also in clinical development. They are grouped 

into four main classes as PI3K inhibitors, Akt inhibitors, mTOR inhibitors and dual PI3K–

mTOR inhibitors. The PI3K inhibitors are further divided into isoform-specific inhibitors or 

pan-PI3K inhibitors and include XL147, PX866, GDC0941, BKM120, and CAL101. Akt 

inhibitors comprise of ATP mimetics and non-catalytic site inhibitors. Examples of Akt 

inhibitors include perifosine, GSK690693, VQD002 and MK2206. Dual PI3K–mTOR 

inhibitors target the p110α, β and δ isoforms, mTORC1 and mTORC2 as the p110 subunits 

of PI3K and mTOR share similar structures. Examples of this class of inhibitors include 

BEZ235, BGT226, XL765, SF1126 and GSK1059615. mTOR inhibitors directly inhibit 

catalytic site of mTOR including mTORC1 and mTORC2. Examples of this kind include 

OSI027, AZD8055, CCI-779, and RAD-001 (Everolimus) [173–176].

Several small molecule inhibitors of Src family of kinases (SFKs), a group of non-receptor 

tyrosine kinases that play crucial role in PCa development, progression and metastasis have 

been developed and are under clinical testing. Of these, Dasatinib is the first FDA approved 

SFK/ABL dual inhibitor. Dasatinib in addition to inhibiting Fyn, Yes, Src, and Lyk- the Src 

family of kinases, also obstructs BCR-ABL, EphA2, platelet-derived growth factor receptor, 

c-Kit, MAPKs and RTKs resulting in suppression of cell adhesion, migration and invasion. 

Other SFK inhibitors under clinical testing include saracatinib (AZD0530) and bosutinib 

(SKI-606) [177–181]. A phase II trial of AZD0530 induced durable PSA responses in 

patients with advanced CRPC [182].

4.3. RANKL inhibitors

Preclinical studies in prostate cancer xenografts have firmly established that blockade of 

receptor activator of nuclear factor-κB (RANK) signal instigated by binding of RANK 

ligands (RANK-L) impairs the establishment and progression of bone metastasis [183]. 

Denosumab, a fully human monoclonal antibody is an FDA approved drug for treating 

metastasis in men with PCa. It binds specifically binds to and antagonizes RANK-L function 

thus alleviating bone reabsorption. Besides, Denosumab can also directly inhibit osteoclasts 

to abrogate bone reabsorption [183,184].

4.4. Taxanes and epothilones

Taxanes [Paclitaxel (Taxol) and Docetaxel (Taxotere)] encompass a class of cytotoxic 

chemotherapeutic agents that has been shown to provide a survival benefit in advanced PCa, 

inhibiting tumor development and decreasing prostate-specific antigen (PSA) levels. The 

mechanism of action of taxanes involves the stabilization of microtubules. Taxanes block 

cell cycle progression through centrosomal impairment, stimulation of abnormal spindle 

formation and destruction of spindle microtubule dynamics. Taxanes are also suggested to 

influence AR function by reducing the expression of AR-activated genes [185]. Tubulin 

Ramalingam et al. Page 11

J Steroid Biochem Mol Biol. Author manuscript; available in PMC 2020 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mutations and overexpression of ATP-dependent drug efflux pump P-glycoprotein are key 

factors chemoresistance to taxanes [186]. Efforts to overawe resistance to taxanes have 

resulted in the development of epothilones and cabazitaxel, which are novel tubulin-binding 

agents [187,188]. Epothilones are macrolide antibiotics which are structurally different from 

taxanes in their tubulin-binding site. They induce stabilization of microtubules via binding 

near the taxane-binding site resulting in cell death and tumor regression [187]. Ixabepilone, 

a semisynthetic derivative of the natural epothilone B is reported to be active against 

metastatic CRPC in chemo-naive and docetaxel-refractory CRPC [189]. Cabazitaxel 

(Jevtana) is a potent, second-generation, semisynthetic taxane. Although it functions as a 

microtubule inhibitor similar to docetaxel and paclitaxel and binds to tubulin, leading to 

microtubule stabilization, inhibition of mitosis and cell death, it exhibits poor affinity for P-

glycoprotein-mediated efflux pumps. Hence cabazitaxel benefits patients with demonstrated 

taxane resistance. Besides it can also penetrate the blood brain barrier to a greater extent 

than docetaxel and paclitaxel, further augmenting its ability to target metastatic brain lesions 

[188]. Table 2 summarizes the mechanism of actions of some of the approved/ in 

development PCa drugs.

5. Conclusions and prospects

A search of clinicaltrials.gov for new PCa protocols registered during the past 3 years 

identified 783 protocols (search criteria: search term = PCa; study type = interventional; first 

received = from 01/01/2013 to 01/28/2016). Of these, drug interventional studies total to 

452, of which 45 protocols were for CRPC [190]. Hence a great deal of effort has been made 

in the past few years to develop new therapeutic options for PCa, in particular CRPC. A 

constellation of “potential PCa targets” have been uncovered in recent years resulting in a 

large number of new agents specifically belonging to the innovative classes of targeted 

therapy. However, it is still not sure whether a multi-targeted approach that concurrently 

inhibits diverse signaling cascades including their feedback activation will result in a well-

tolerated additive/synergistic therapeutic effect. Besides, another major challenge is the 

identification of appropriate biomarkers that will predict clinical response from targeted 

novel therapeutics in heterogeneous PCa patients. Hence, it is foremost to identify 

biomarkers that correlate well with overall survival and promising antitumor activity in 

conjunction with the development of targeted agents. Thus, with the development of 

effective targeted therapeutics that block key signaling cascades aberrant during PCa and its 

progression, and identification of biomarkers that accurately validates the efficacy of these 

therapeutics, we anticipate that survival and well-being in patients with PCa will improve 

significantly in the years ahead.
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Fig. 1. 
Chief signaling pathways involved in PCa development and progression. (1) Wnt/β-catenin 

signaling, (2) AR signaling, (3) NF-κB signaling, (4) JAK/STAT signaling and (5) receptor 

tyrosine kinase signaling. Abbreviations: AKT, akt serine/threonine kinase; AR, androgen 

receptor; ARE, androgen responsive elements; β-Cat, beta-catenin; DHT, 

dihydrotestosterone; GF, growth factor; Fz, Frizzled receptor; IκB, inhibitor of kappa B; ILs, 

interleukins; MAPK, mitogen-activated protein kinase; NF-κB, nuclear factor kappa B; 

PI3K, phosphoinositide-3-kinase; Ras, rat sarcoma protein; RTK, receptor tyrosine kinase; 

STAT, signal transducers and activators of transcription; TCF/LEF-1, t-cell specific 

transcription factor/lymphoid enhancer-binding factor; Wnt, wnt ligands.
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Fig. 2. 
Chemical Structures of some of the approved/in development Prostate Cancer Drugs.
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