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SUMMARY

Grouping auditory stimuli into common categories is essential for a variety of auditory tasks, 

including speech recognition. We trained human participants to categorize auditory stimuli from a 

large novel set of morphed monkey vocalizations. Using fMRI-rapid adaptation (fMRI-RA) and 

multi-voxel pattern analysis (MVPA) techniques, we gained evidence that categorization training 

results in two distinct sets of changes: sharpened tuning to monkey-call features (without explicit 

category representation) in left auditory cortex, and category selectivity for different types of calls 

in lateral prefrontal cortex. In addition, the sharpness of neural selectivity in left auditory cortex, 

as estimated with both fMRI-RA and MVPA, predicted the steepness of the categorical boundary, 

whereas categorical judgment correlated with release from adaptation in the left inferior frontal 

gyrus. These results support the theory that auditory category learning follows a two-stage model 

analogous to the visual domain, suggesting general principles of perceptual category learning in 

the human brain.

INTRODUCTION

Object categorization is a crucial cognitive task occurring across all sensory modalities. At 

its core, it involves the learning and execution of a mapping of sensory inputs to 

behaviorally relevant labels (e.g., “friend” versus “foe”). A particular challenge in object 

recognition is that physically dissimilar stimuli can have the same label (e.g., the same 

phoneme spoken by different speakers, or the same face viewed under different lighting 

conditions), while physically similar stimuli might be labeled differently (e.g., based on the 

small differences in voice onset time that distinguish /d/ from /t/). In audition, higher 

mammals, including humans, have highly developed mechanisms to discriminate fine 
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acoustic differences among complex sounds and use them for auditory communication. This 

is one of the most remarkable achievements of auditory cortex and one that probably shapes 

its overall architecture. However, the underlying neural mechanisms are only poorly 

understood.

While there is now broad support among neurophysiologists and cognitive neuroscientists 

for the concept of a hierarchy of cortical areas subserving auditory processing, there is 

substantial disagreement about how this anatomical hierarchy supports the acquisition of 

auditory object categorization. For instance, several auditory categorization learning studies 

have revealed an involvement of the left superior temporal gyrus/sulcus (STG/STS), leading 

to the suggestion that the anterior part of auditory-sensory cortex is the key region in the 

identification and categorization of auditory “objects” (Binder et al., 2004; Griffiths and 

Warren, 2004; Kumar et al., 2007; Scott, 2005; Tsunada et al., 2011; Zatorre et al., 2004). In 

contrast, using functional magnetic resonance imaging (fMRI) techniques, other studies in 

which participants were trained to categorize non-speech sounds have reported learning 

effects in posterior STS (Leech et al., 2009), or category-selective tuning in “early” auditory 

areas (Ley et al., 2012). Yet, identifying the neural mechanisms that achieve the 

transformation from auditory representations based on acoustic similarity to representations 

reflecting category-based similarity necessary for perceptual categorization requires more 

informative fMRI imaging paradigms and analyses than the traditional univariate analysis of 

BOLD responses, which cannot quite measure neural selectivity and probe neural 

representations. By contrast, techniques like multivariate pattern analysis (MVPA) (Carp et 

al., 2010; Haxby et al., 2001; Norman et al., 2006) and fMRI rapid adaptation (fMRI-RA) 

(Grill-Spector et al., 2006; Jiang et al., 2007, 2013) have proven their ability to probe neural 

selectivity more directly than conventional fMRI techniques. Indeed, using MVPA (Ley et 

al., 2012) and fMRI rapid adaptation (fMRI-RA) (Glezer et al., 2015; Jiang et al., 2007) 

along with well-controlled pre-/post-training comparison scans, we and others have 

identified and isolated learning-induced neural changes in related brain regions that are less 

likely confounded by the tasks performed during the acquisition of fMRI data.

Motivated by a computational model of object recognition in the cerebral cortex 

(Riesenhuber and Poggio, 2002), we previously used fMRI-RA (Jiang et al., 2007) (later 

confirmed in a human electroencephalography-rapid adaptation (EEG-RA) study (Scholl et 

al., 2014)) to provide support for a two-stage model of perceptual category learning in vision 

(Riesenhuber and Poggio, 2002; Serre et al., 2007), involving a perceptual learning stage in 

visual cortex in which neurons come to acquire sharper tuning with a concomitant higher 

degree of selectivity for physical (e.g., visual shape) features of the training stimuli, with 

these stimulus-selective neurons then providing input to neural circuits located in higher 

cortical areas, such as prefrontal cortex (Freedman et al., 2003), which can learn to perform 

different functions on these stimuli, such as identification, discrimination, or categorization. 

A computationally appealing property of this hierarchical model is that the high-level 

perceptual representation in the sensory cortices can be used in support of other tasks 

involving the same stimuli (Riesenhuber and Poggio, 2002), permitting transfer of learning 

to novel tasks. Given that, from a computational point of view, categorization of both visual 

and auditory stimuli involves the same mapping problem from a sufficiently selective 

stimulus representation to a representation selective for the perceptual labels, we 
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hypothesized that the same two-stage model of perceptual category learning from vision 

might also apply to the auditory domain.

To test this hypothesis, we adopted an approach similar to our prior study of visual 

categorization learning (Jiang et al., 2007; Scholl et al., 2014), to study the learning of 

auditory categories by using an auditory morphing system that could precisely control for 

acoustic features. This allowed us to dissociate semantic (category) similarity from physical 

(acoustic) similarity (Chevillet et al., 2013). We combined two independent fMRI 

techniques, fMRI-rapid adaptation (fMRI-RA) and multi-voxel pattern analysis (MVPA). 

The results show that learning an auditory categorization task leads to the sharpening of 

stimulus representations in left auditory cortex. Both fMRI-RA and MVPA results support a 

direct link between the neural selectivity in this region and behavioral performance 

measured outside of the scanner. Moreover, both fMRI-RA and searchlight MVPA analyses 

revealed category-selective responses in lateral prefrontal cortex, but not in sensory 

(auditory) cortex. Our results provide strong support for the aforementioned model of two-

stage perceptual categorization, indicating that similar learning strategies underlie perceptual 

categorization across sensory domains.

RESULTS

Stimuli, Category Training, and Categorical Judgment

Participants were trained to categorize stimuli from an auditory “morph space” continuum 

spanned by four auditory monkey call exemplars (two “coos” and two “harmonic arches”, 

Figure 1A & 1B), using a two-alternative forced-choice (2AFC) task with feedback. The 

auditory stimuli within the (mathematical) space of morphed monkey calls were linear 

combinations of the four prototype exemplars (see STAR Methods). By blending differing 

prototype amounts from the two categories, we could continuously vary the acoustic features 

and precisely define the category boundary (with an equal 50% contribution from both 

categories). After an average of approximately six hours of training, participants (n=16) 

were able to reliably judge the membership of the morphed sound stimuli (see STAR 

Methods and Figure 2).

Following training, we fit each individual’s categorization data on each morph line with a 

sigmoid function (solid lines in Figure 2),

f x = 1/ 1 + exp −α × x−β ; (1)

to estimate the individual category boundary location (β) and steepness (α) (see STAR 

Methods for details). The steepness of individual morph lines was calculated for each 

subject individually, and used in the brain-behavioral correlation analyses described below. 

The average boundary steepness, a, and boundary location, b, for each of the four morph 

lines are shown in Figure S1.
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FMRI-RA reveals sharpened neural selectivity in the left auditory cortex after 
categorization training

To probe neuronal selectivity using fMRI, we adopted an event-related fMRI-RA paradigm 

(Chevillet et al., 2013; Jiang et al., 2006, 2007) in which a pair of sounds of varying acoustic 

similarity was presented in each trial. The fMRI-RA approach is motivated by findings from 

monkey electrophysiology experiments reporting that when pairs of identical stimuli are 

presented sequentially, the second stimulus evokes a smaller neural response than the first 

(Miller et al., 1993). Additionally, it has been suggested that the degree of adaptation 

depends on stimulus similarity, with repetitions of the same stimulus causing the greatest 

suppression. In the fMRI version of this experiment, the BOLD-contrast response to a pair 

of stimuli presented in rapid succession is measured for pairs differing in specific perceptual 

aspects (e.g., shape or acoustic similarity), and the combined response level is assumed to 

predict the dissimilarity of the stimulus representations at the neural level (Grill-Spector et 

al., 2006). Indeed, we (Chevillet et al., 2013; Jiang et al., 2006, 2007, 2013) and others 

(Gilaie-Dotan and Malach, 2007; Murray and Wojciulik, 2004) have provided evidence that 

parametric variations of stimulus parameters can be linked to systematic modulations of the 

BOLD-contrast response in relevant sensory areas, and that fMRI-RA can be used as an 

indirect measure of neural population tuning. Furthermore, using the fMRI-RA technique, 

we have found that training-induced changes in behavioral performance can be linked to 

changes in neuronal tuning in corresponding brain regions (Glezer et al., 2015; Jiang et al., 

2007). We hypothesized that following training, stimulus representations in auditory cortex 

should show increased selectivity, indicated by increased release from adaptation post-

training relative to pre-training for similar stimulus pairs. For this study, we scanned 

participants using an event-related fMRI-RA paradigm presenting them with pairs of 

morphed auditory stimuli that varied in acoustic and categorical similarity (see Figure 1C). 

We created pairs of identical sounds (condition M0), pairs of sounds differing by 30% 

acoustic change (where 100% corresponded to the difference between two prototypes), with 

both sounds in a pair either belonging to the same category (i.e., 95%-65%, or 35%-5%), 

M3within, or to different categories (i.e., 35%-65%, with the category boundary at the 50% 

mark), M3between, and pairs of sounds differing by 60% acoustic change (i.e., 5%-65%, or 

35%-95%), M6. In the scanner, subjects had to perform an attentionally demanding offset 

delay matching task (Chevillet et al., 2013) (see STAR Methods) for which the category 

labels of stimuli were irrelevant (“bottom-up” scan), thus avoiding potentially confounding 

influences due to difference in task difficulty across pairing conditions and other potential 

confounds caused by top-down effects of the task itself (Freedman et al., 2003; Grady et al., 

1996; Sunaert et al., 2000). FMRI data using this paradigm were obtained both pre- and 

post-training. The contrast of (M6 > M0) x (Post > Pre), masked by Stimuli>Silence 

(p<0.001, uncorrected, see Figure S2A) was used to identify regions that showed increased 

neural selectivity (as evidenced by increased release from adaptation) to acoustic features 

post-training. This contrast revealed several clusters, including one cluster in the left, but not 

the right, superior temporal gyrus (termed “auditory cortex” here for brevity) (p<0.01, 

uncorrected, cluster size, 50 voxels, Table 1, also see Figure S2B). Similar results were 

observed with the contrast of (M6&M3between&M3within > M0) x (Post > Pre) (Table 1 and 

Figure S2C).
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We then investigated the relationship between the fMRI-RA-estimated neural selectivity for 

acoustic features and the behavioral performance measured by the steepness, α, of subjects’ 

categorization curves obtained outside the scanner. First, we identified an ROI in the left 

auditory cortex (MNI: −56 −36 2) using the contrast of M6>M0 (see Table 1 and Figure 3A) 

from the post-training scans, and extracted fMRI responses from this ROI (Figure 3B). 

Repeated-measures ANOVA with one within-subject factor, experimental condition (M0, 

M3within, M3between, and M6), revealed a significant difference between conditions, F(3,45) 

= 5.224, p<0.01. Post-hoc paired t-tests revealed a significant difference between M6 and the 

other three conditions, M0, p<0.004, M3within, p<0.044, and M3between, p<0.010 (two-

tailed), but not amongst the other three conditions. Furthermore, there was a significant 

correlation between fMRI adaptation in this ROI (measured as M6-M0) and the steepness 

(α) of subjects’ categorization curves obtained outside the scanner, suggesting a direct link 

between behavioral performance and the acoustic selectivity in the left auditory cortex, 

r=0.554, p<0.026 (Figure 3C).

These results are in agreement with our hypothesis of training-induced neural sharpening of 

stimulus- but not explicitly category-selective representations in sensory cortex. The 

relatively weak effect in the whole-brain analysis might be due to the small sample size 

together with the variability associated with between-group comparison (Pre- vs. Post-

training, see STAR Methods), and/or the lack of separate localizer scans for an ROI-based 

analysis, which is expected to increase the sensitivity in detecting differences (Saxe et al., 

2006). To further validate the finding of sharpened neural tuning in left auditory cortex after 

training and the link between neural selectivity in this ROI and behavioral performance, we 

therefore conducted an independent analysis on the same data set using a different 

technique, multi-voxel pattern analysis, MVPA (Haxby et al., 2001).

MVPA reveals an increase in the distinctiveness of response patterns in the left auditory 
cortex to morphed monkey calls that correlates with behavioral performance

Compared to the univariate approach in traditional fMRI data analyses, multivariate analyses 

offer the potential for increased sensitivity (Norman et al., 2006). We adopted a method 

originally proposed by Haxby and colleagues (Haxby et al., 2001) and used by that group 

and others to estimate neural tuning (Carp et al., 2010; Haxby et al., 2001; Park et al., 2004). 

Briefly, we first estimated the fMRI responses to each distinct stimulus pair (n=14, see 

STAR Methods) using the General Linear Model for even and odd runs separately. We then 

calculated the correlations across activation maps between all 14 distinct stimulus-pairs of 

the odd and even runs. The correlation coefficients were Z-transformed, and the sharpness of 

neural tuning was estimated via the “distinctiveness” of activation patterns, which was 

defined as the difference between the mean same- and different-pairs’ Z-transformed 

correlation coefficients, averaged over all such pairwise comparisons (Carp et al., 2010; Park 

et al., 2004). We limited our analysis to left and right auditory cortex – using the auditory 

ROIs defined by the contrast of stimuli > silence from the group whole-brain analysis (see 

STAR Methods and Figure S3A). The left and right auditory cortices were analyzed 

independently. For each individual subject, we used the N most strongly activated voxels 

(selected by the t-map of stimuli > silence, N=10, 20, 50, 100, 150, 200, 250, 300, 400, 500, 

600, 800, 1000, 1500, 2000) within each ROI (left or right auditory cortex, Figure S3A and 
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S3B), as in previous studies (Park et al., 2004). The result with N=200 is shown here and 

used for the correlation analysis (Figure 4), results for other choices of N are shown in 

Supplementary Materials (Figure S3C and S3D). Similar results were obtained when using 

the anatomically defined superior temporal cortex (including Heschl’s gyrus) (Figure S3E 

and S3F).

Two-sample t-tests revealed an increase in the distinctiveness of activation patterns after 

training, defined as the difference between the mean same- and different-pairs correlation 

coefficients, in the left (p<0.039), but not the right (p>0.360), auditory cortex (Figure 4A). 

Repeated-measure ANOVA with one within-subject factor, left vs. right hemisphere, and one 

between-subject factor, pre- vs. post-training scans, revealed a significant difference between 

the left and right hemisphere, F(1,28) = 9.859, p<0.005, a marginal effect between the pre- 

and post-training scans (p<0.084), and, critically, a significant interaction between the two 

factors, F(2,28) = 4.085, p<0.029, suggesting that training sharpened neural tuning in the 

left, but not the right, auditory cortex, in line with the fMRI-RA data. Furthermore, similar 

to the fMRI-RA data, there was a significant correlation between MVPA-derived 

distinctiveness of activation patterns in the left auditory cortex and the steepness, α, of 

subjects’ categorization curves obtained outside the scanner, r=0.56, p<0.025 (Figure 4B), 

providing additional support for a direct correlation between behavioral performance and 

neuronal tuning selectivity as estimated by the distinctiveness of BOLD activation patterns 

(Williams et al., 2007).

To probe the consistency and location of training effects in auditory cortex, we computed a 

heat map of the number of times each individual voxel in the left auditory cortex was chosen 

for the N=200 analysis, shown in Figure 4C, ranging from n=1 (i.e., this specific voxel was 

only included in one subject) to n=10 (i.e., this specific voxel was included in a total of ten 

subjects). We then conducted additional analyses to compare the categorization training-

induced changes in the distinctiveness of activation patterns in primary (A1) and non-

primary (non-A1) auditory cortices in the left hemisphere; left A1 was defined anatomically 

(Tzourio-Mazoyer et al., 2002), and the left non-primary auditory cortex (non-A1) was 

defined as the region in Figure S3A minus A1. The result with N=200 is shown here, and the 

results for other choices of N are shown in Supplementary Materials (Figure S3G and S3H). 

Two-sample t-tests revealed an increase in the distinctiveness of activation patterns after 

training, defined as the difference between the mean same- and different-pairs correlation 

coefficients, in left non-A1 (p<0.035), but not left A1 (p>0.781)(Figure 4D). Repeated-

measures ANOVA with one within-subject factor, A1 vs. non-A1, and one between-subject 

factor, pre- vs. post-training scans, revealed a marginal effect of interaction between the two 

factors, F(2,28) = 2.795, p=0.105, suggesting that training might have sharpened neural 

tuning more in non-primary than in primary auditory cortex. In addition, there was a 

significant correlation between MVPA-derived distinctiveness of activation patterns in the 

left non-A1 region and the steepness (α) of categorization curves, r=0.55, p<0.026 (Figure 

4E). These results are in line with the presumed hierarchical structure of auditory cortical 

processing (Chevillet et al., 2011; Cohen et al., 2009, 2016; Tsunada and Cohen, 2014). The 

lack of a training effect in primary auditory cortex, as had been found in some previous 

studies (Hui et al., 2009; Ley et al., 2012; Yin et al., 2014), is likely due to the complex 

auditory stimuli used in the present study.
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To further probe the specificity of training effects, we applied the MVPA technique to the 

five clusters shown in Figure 3A, using all voxels from each of the ROIs. Out of the five 

ROIs, only the one in the left auditory cortex (MNI: −56 −36 2) showed an increase in the 

distinctiveness of activation patterns after training (p=0.043), but not any of the other four 

ROIs (at least p>0.497) (Figure S3I), providing additional evidence that training refined 

neural tuning in the left auditory cortex, but not any other regions.

Training-induced category selectivity in task circuits as revealed by fMRI-RA

To probe which brain regions exhibited category-related selectivity and thus might include 

category-selective neurons, we scanned participants following training using the same fMRI-

RA paradigm and stimuli, this time while they were performing a categorization task 

requiring them to judge whether the two auditory stimuli in each trial belonged to the same 

or different categories. Thus, the pair of auditory stimuli in the M0 and M3within conditions 

belonged to the same category, while the pairs of auditory stimuli in the M3between and M6 

conditions belonged to different categories. We predicted that brain regions containing 

category-selective neurons should show stronger responses in the M3between and M6 trials 

than in the M3within and M0 trials, as the stimuli in each pair in the former two conditions 

should activate different neuronal populations while they would activate the same group of 

neurons in the latter two conditions (Jiang et al., 2007). The average behavioral performance 

is shown in Figure 5A.

We first conducted a whole-brain analysis (see STAR Methods) to examine the brain regions 

that were involved in the categorization task, using the contrast of Stimuli > Silence. This 

contrast revealed a broad network of brain regions, including auditory cortex, superior/

middle temporal pole, supplementary motor area (SMA), dorsal and ventral premotor cortex, 

motor cortex, cerebellum, lateral prefrontal cortex, inferior parietal cortex, angular/

supramarginal gyrus, precuneus, occipital cortex, hippocampus, insular cortex, putamen, and 

thalamus (see Figure S4A for more detailed information).

To probe the brain regions that were sensitive to category differences, we first compared the 

activation of M6 versus M0, since participants could very reliably judge the category 

memberships of the pair of auditory stimuli in the M0 and M6 conditions. As listed in Table 

2, several brain regions, including prefrontal and parietal cortices, showed stronger 

activations to M6 than to M0 (also see Figure S4B). To further examine the differential 

activations to trials in which the two calls belonged to the same (M3within and M0) versus 

different categories (M6 and M3between), a comparison of M6 and M3between versus M3within 

and M0 was conducted, and similar brain regions were found (Table 2 and Figure S4C), 

further supporting the involvement of these brain areas in the representation of learned 

stimulus categories. We then extracted the fMRI responses in the left inferior frontal gyrus 

(IFG) ROI (MNI: −48 8 18). There were significant differences between M0 and the three 

other conditions (at least p<0.0003), but not between the three conditions, M3within, 

M3between, and M6 (at least p>0.33) (Figure 5B). Yet, this lack of a difference between the 

M3within and M3between conditions might have been due to the low performance on these 

conditions (Figure 5A), suggesting the fMRI response in this region might correlate with the 

subjects’ categorical decision. To test this hypothesis, i.e., that a link exists between 
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activations in the regions identified in the category-selective whole-brain analysis and 

behavioral performance on the categorization task, we followed the approach used in our 

earlier visual study (Jiang et al., 2007) and examined the correlation of the difference 

between the fMRI response for the M3between and M3within conditions in this ROI (as an 

index of how sharply neurons in this area differentiated between the two categories) and the 

average of the behavioral categorization accuracy on those trials within the scanner (as a 

measure of behavioral performance), predicting a positive correlation between the two 

variables. It is worth noting that the ROI definition, M6 versus M0, was independent of the 

conditions involved in the correlation analysis, M3between versus M3within. This analysis 

revealed a significant correlation between behavioral performance in the M3within and 

M3between conditions and the fMRI adaptation effects (M3between - M3within) in the left 

lateral prefrontal cluster (r=0.562, p<0.024) (Figure 5C), suggesting a direct link between 

category judgment decisions and category selectivity in these areas. By contrast, there were 

no significant correlations between behavioral performance and responses in the other brain 

regions identified in Table 2 (M6>M0), with the lowest p value for the right IFG ROI 

(r=0.33, p<0.207, see Figure S4D–H).

Previously we (Jiang et al., 2007; Roy et al., 2010) and others (van der Linden et al., 2014) 

have shown that category tuning in prefrontal cortices was task-dependent. Specifically, 

responses indicated category selectivity when subjects were performing a categorization 

task, but no such selectivity was found when subjects were performing a spatial localization 

task (Jiang et al., 2007). Hence, we examined the responses in these ROIs when subjects 

were performing the offset detection task post-training for which category membership of 

stimuli was irrelevant, by extracting the fMRI signal from this left IFG ROI using the data 

from fMRI Experiment 2 (Figure 5D). Repeated-measure ANOVA with two within-subject 

factors, task (offset detection vs. categorization) and experimental conditions (M0 vs. 

M3within vs. M3between vs. M6), revealed a significant difference between experimental 

conditions, F(3,45)=17.347, p<0.001, but not between tasks, F(1,15)=0.438, p=0.518, and, 

critically, a significant interaction between the two factors, F(3,45) = 8.999, p=0.001, 

suggesting the adaptation at this IFG ROI is task-dependent. For the offset detection task 

(Figure 5D), post-hoc paired t-tests revealed no significant difference between the M0 and 

M6 conditions or any other comparisons, except M3between vs M6 (p<0.001).

Category-selective circuits revealed via MVPA

To further investigate brain regions that were selective for the trained categories, we 

employed a searchlight approach using the MVPA methodology described above. Briefly, 

the fMRI responses to each distinct pair were estimated, but analysis was limited to the four 

distinct M0 pairs (each consisting of two identical stimuli that are close to one of the four 

prototypes, see Figure 1C), with two distinct stimulus pairs for each category: Call-1-1, 

Call-2-2, Call-3-3, and Call-4-4, with the first two sets belonging to one category, and the 

last two belonging to the other category. We then calculated the correlations across 

activation maps for M0 trials that belonged to the same- and different-categories between 

odd and even runs (see STAR Methods). Category selectivity was defined as the difference 

in Z-transformed correlation coefficients between same- (e.g., Call-1-1 vs Call-2-2) and 

different-category (e.g., Call-1-1vs Call-3-3) pairs. A 7x7x7 voxel cubic searchlight 
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approach (see STAR Methods) revealed four category-selective clusters (Figure 6A) 

(p<0.005, uncorrected, at least 50 contiguous voxels), masked by fMRI-RA (M6>M0) and 

functional connectivity analysis (see below) (a conjunction of p<0.05, uncorrected). It might 

be worth noting that all four ROIs were in frontal regions of the brain, including one in the 

left IFG, two in the right IFG, and one in the SMA, whereas none were found in superior 

temporal cortex (STC) nor in more posterior brain regions, suggesting a central role of 

frontal cortex in making category decisions, providing converging evidence in support of the 

aforementioned two-stage model of categorization. The fMRI response profiles in these 

ROIs (during the top-down scans) are shown in Figure 6B.

To investigate whether these category-selective regions (identified via fMRI-RA and MVPA) 

were indeed part of the brain regions involved in the categorization of the morphed monkey 

calls, we further investigated the overlap between the searchlight MVPA-revealed category-

selective regions (Figure 6C, shown in red), the fMRI-RA-revealed category-selective 

regions (M6>M0) (in green), and the regions functionally connected to left auditory cortex 

(in blue) identified using functional connectivity analysis (see STAR Methods) (Figure 6C). 

For illustration purposes, a reduced threshold was used (p<0.01 for fMRI-RA and MVPA, 

and p<0.001 for functional connectivity, uncorrected, at least 20 contiguous voxels). A 

strong overlap was found to exist between the brain maps revealed by the three techniques, 

suggesting category-selective regions (identified from both fMRI-RA and MVPA analyses) 

were part of a broader network of brain regions connected to auditory cortex when subjects 

were categorizing the auditory stimuli.

DISCUSSION

The present study tackles an important problem of auditory perception: How do we form 

categories of sounds? This task requires generalizing over dissimilar sounds that belong to 

the same category, while remaining sensitive to small differences that distinguish categories. 

Work on category learning in visual perception has established that the process consists of 

two essentially separate sub-processes: an improvement in tuning of neurons in sensory 

regions, and a change in top-down projections from frontal regions to sensory regions. In 

this study, we adopted an experimental paradigm used previously in related studies of the 

visual system (Jiang et al., 2007; Scholl et al., 2014) and trained human participants to 

categorize auditory stimuli from a large novel set of morphed monkey vocalizations and 

measured tuning before and after training. Training-induced changes in neuronal selectivity 

were examined using two independent fMRI-techniques: fMRI-rapid adaptation (fMRI-RA) 

and multi-voxel pattern analysis (MVPA). Both of these techniques have been used 

previously to measure neuronal tuning. The two approaches revealed independently that 

categorization training with the novel monkey calls sharpened the neural tuning to acoustic 

features of the auditory stimuli in the left auditory cortex while inducing task-dependent 

category tuning in lateral prefrontal cortex. Furthermore, functional connectivity analysis 

revealed that task-dependent category-selective regions were part of a broad network of 

brain regions connected to auditory cortex, suggesting they are situated at a higher level in 

the auditory categorization process. Similar to the findings in the visual domain (Jiang et al., 

2007), the present study also finds a significant correlation between neural selectivity in the 

lateral prefrontal cortex with behavioral categorization ability. It appears, therefore, that 
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perceptual category learning makes use of identical neural mechanisms in the visual and 

auditory domains.

Compared to the visual system, much less is known about category learning in the auditory 

system. This is surprising, because learning to distinguish and produce speech sounds in 

one’s own language depends heavily on categorical perception (Repp, 1984). Early accounts 

have emphasized the importance of motor representations of what were thought to be the 

elements of speech (“phonemes”) (Liberman et al., 1967). Categorical perception is invariant 

against changes in motor representations, so perceptual invariance was thought to be based 

on these motor representations. Although the theory of direct perception through the motor 

system (the “motor theory of speech perception”) has long been discredited, modern 

terminology has turned to the concept of sensorimotor integration and control as a closed-

loop system or internal model, in which speech perception and production are closely 

intertwined (Chevillet et al., 2011; Rauschecker, 2011; Rauschecker and Scott, 2009). It has 

been argued that the conversion of perceptual into articulatory representations (and vice 

versa) occurs in inferior frontal regions (“Broca’s area”; (Rauschecker and Scott, 2009)).

In the dual-stream model of auditory perception, as originally formulated in the rhesus 

macaque (Rauschecker, 1998; Rauschecker et al., 1995), auditory perception, including the 

recognition of “auditory objects”, is achieved in the auditory ventral stream, which 

originates in the anterolateral belt areas of auditory cortex and projects to ventrolateral 

prefrontal cortex (Romanski et al., 1999). The hierarchical structure of auditory cortical 

processing in the ventral stream of the monkey has led to similar models of auditory and 

speech perception in man (Hickok and Poeppel, 2007; Leaver and Rauschecker, 2010, 2016; 

Norman-Haignere et al., 2015; Rauschecker and Scott, 2009). It makes sense, therefore, that 

exposure to unfamiliar sounds in the present study leads, first of all, to tuning changes at the 

level of the auditory cortex. The fact that the changes were strongest on the left, even though 

the stimuli were not human speech, may be seen as an indication that communication sounds 

almost universally use information-bearing elements that are in a similar spectro-temporal 

space across species and speaks for the gradual evolution of human speech from more 

primitive animal communication systems. Even though human articulators are vastly more 

diverse and refined than those in monkeys, some of the most basic elements of speech, such 

as frequency-modulated (FM) sweeps and band-passed noise bursts, are also contained in 

monkey calls and have a rich representation in rhesus monkey auditory cortex (Rauschecker 

and Tian, 2004; Tian and Rauschecker, 2004; Tian et al., 2001). Lateralization of learning to 

the left hemisphere could also have been influenced by the use of verbal category labels, as 

has been hypothesized for the visual domain (van der Linden et al., 2014). Indeed, our prior 

visual study that did not use verbal labels found right-lateralized learning (Jiang et al., 

2007), while our previous visual learning study using the same stimuli with verbal labels 

(Scholl et al., 2014) found learning effects predominantly in the left hemisphere. It will be 

interesting in future studies to investigate how verbal vs. non-verbal category labels 

influence the lateralization of learning, and whether these effects are again similar in visual 

and auditory learning.

There are some obvious limitations of the present study. First, while training duration in the 

present study was comparable to studies of category learning in the visual domain (Gillebert 
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et al., 2009; Jiang et al., 2007; van der Linden et al., 2014; Scholl et al., 2014), this amount 

of exposure is small compared to the brain’s accumulated exposure to environmental or 

speech sounds such as phonemes or words, and it will be interesting to probe in future 

studies if extensive experience with novel stimuli is associated with different learning 

effects. Second, while our study focused on stimulus categorization, a cognitive task found 

across sensory domains, the auditory domain offers the additional opportunity to study the 

interaction of perception and production, and future studies might investigate how training to 

categorize not just acoustic-phonetic stimuli but also their articulatory counterparts leads to 

additional changes in other brain areas (Rauschecker et al., 2008).

Taken together, the very similar visual and auditory category learning results further enhance 

the concept that sensory systems function according to similar principles, once sensory 

information reaches the level of the cortex. This begins with receptive field organization of 

simple- and complex-like cells in primary areas (Tian et al., 2013) as an early indicator of 

hierarchical processing; it is further evident from the existence of dual anatomical and 

functional processing streams (Rauschecker and Tian, 2000; Ungerleider and Haxby, 1994); 

and culminates in the role of prefrontal cortex, which translates sensory into task-based 

representations (Goldman-Rakic et al., 1996).

STAR*METHODS

GENERAL

Please see below.

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Maximilian Riesenhuber (mr287@georgetown.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects—A total of twenty-eight subjects were enrolled in the study (16 females, 18–32 

years of age). There were three fMRI-scans, a pre-training scan with a dichotic listening task 

(Experiment 1), a post-training scan with the same task (Experiment 2), and a post-training 

scan with a categorization task (Experiment 3). Out of the 28 subjects, ten subjects only 

participated in Experiment 1 (dropping out of the study before finishing up training, mostly 

due to boredom), eleven subjects (enrolled to compensate for the dropped-out subjects – 

budget constraints did not allow pre-training scans in those replacement subjects) only 

participated in Experiments 2 and 3, one subject only participated in Experiments 1 and 2, 

and six subjects participated in all three scans (Experiment 1, 2, and 3). Data from two 

subjects were excluded, including the subject who only participated in Experiment 1 and 2, 

due to chance-level categorization performance after training, and another subject who 

participated in all three scans due to missing behavioral data. In the end, for pre-training 

dichotic, post-training dichotic, and post-training categorization scans, data from 15, 16, and 

16 subjects were included, respectively. Among them, five subjects finished all three scans, 

nine subjects only finished the pre-training scan (Experiment 1), and 11 subjects only 

finished the two post-training scans (Experiment 2 and 3). The Georgetown University 
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Institutional Review Board approved all experimental procedures, and all subjects gave 

written informed consent before participating. All subjects were right-handed, and reported 

no history of hearing problems or neurological illness.

METHOD DETAILS

Stimuli—To probe neuronal tuning for a novel (and yet natural) class of sounds, we 

generated acoustic continua between natural recordings of monkey calls using the MATLAB 

toolbox STRAIGHT. STRAIGHT allows for finely and parametrically manipulating the 

acoustic structure of high-fidelity natural voice recordings (Kawahara and Matsui, 2003). 

Using this toolbox, it is possible to create an acoustic continuum of stimuli that gradually 

“morph” from one prototype stimulus to another. Monkey call stimuli were recordings of 

natural monkey calls from an existing digital library (Hauser, 1998; Shannon et al., 1999). 

As shown in Figure 1, we created a novel acoustic stimulus space, defined by two “harmonic 

arch” calls and two “coo” calls. To do this, we extended the STRAIGHT toolbox to 

accommodate four prototype stimuli, and to assign each prototype a weight in the morphing 

calculation, creating a four-dimensional monkey call “morph space”. By morphing different 

amounts of the prototypes we could generate thousands of unique morphed monkey calls, 

and precisely define a category boundary (see Figure 1). The category of a stimulus was 

defined by whether “harmonic arch” or “coo” prototypes contributed more (>50%) to a 

given morph. Thus, stimuli that were close to, but on opposite sides of, the boundary could 

be similar, whereas stimuli that belonged to the same category could be dissimilar. This 

careful control of acoustic similarity within and across categories allowed us to disentangle 

the neural signals for acoustic vs. category selectivity explicitly. For training, stimuli were 

selected from the whole morph space (see below), whereas for testing, we created four 

cross-category “morph lines” by generating stimuli at 5% intervals between all pairs of 

prototypes from different categories (where 100% is the total acoustic difference between 

prototypes). Morphed stimuli were generated up to 25% beyond each prototype, for a total 

of 301 stimuli per morph. All stimuli were then resampled to 48 kHz, trimmed to 300 ms 

duration and root-mean-square (RMS) normalized in amplitude. A linear amplitude ramp of 

10 ms duration was applied to sound offsets to avoid auditory artifacts. Amplitude ramps 

were not applied to the onsets, however, to avoid interfering with the natural onset features 

of the monkey calls.

Categorization Training and Testing—Subjects were trained to categorize sounds from 

the monkey call auditory morph space using a 2AFC (two alternative-forced choice) task 

with feedback. Training utilized a web-based training paradigm that allowed subjects to train 

themselves on the auditory categorization task from home (Scholl et al., 2014). Training 

progress was monitored remotely, ensuring high compliance and increasing efficiency. In 

each trial during training, a single sound was presented as well as two possible labels 

(“joizu” and “eheto”) presented side by side (“joizu + eheto”, or “eheto + joizu”), randomly 

chosen to avoid a fixed link between category label and motor response.

When a subject chose an incorrect label, the subject received visual feedback that an error 

was made. The sound was then repeated once, along with the correct label. Similar to our 

previous studies in monkeys and humans (Freedman et al., 2003; Jiang et al., 2007), subjects 
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were initially trained on the regions of the morph space farthest from the category boundary. 

Stimuli were randomly selected from the regions where stimuli contained 90–100% 

contribution from one category. The task was then gradually made more difficult by 

extending the training region closer to the category boundary in 5% increments per training 

block. Subjects were required to correctly categorize > 90% of the 200 stimuli presented 

from each region before moving on to the next level of difficulty. There were 200 trials per 

online training session. After participants reached the highest level of task difficulty, their 

categorization performance along the four morph lines was measured at a morph step 

discretization of 20 steps (in increments of 5% morph difference) between the two 

prototypes using the same 2AFC paradigm as in the training period but without feedback. 

Note that, as in our visual studies (Jiang et al., 2007; Scholl et al., 2014) different stimuli 

were used during training (where auditory stimuli were randomly chosen from the morph 

space) and testing (where auditory stimuli were constrained to lie on the relevant morph 

lines).

We then fit the resulting data with a sigmoid function to estimate the boundary location as 

well as boundary sharpness for each subject (see Equation 1 and Figure 2).

Event Related Adaptation Experiments 1 & 2 (“Bottom Up”, Dichotic Listening 
Task)—To observe responses largely independent of category processing, we scanned 

subjects while they performed an attention-demanding distractor task using the same 

experimental design as in our previous fMRI-RA study of phoneme processing (Chevillet et 

al., 2013). In each trial, subjects heard pairs of sounds, each of which was 300 ms in 

duration, separated by 50 ms (as used in previous studies (Chevillet et al., 2013; Joanisse et 

al., 2007; Myers et al., 2009)). Each of these sounds persisted slightly longer in one ear than 

in the other (~30 ms between channels). The subject was asked to listen for these offsets, 

and to report whether the two sequentially played sounds persisted longer in either the same 

or different ears. Subjects held two response buttons, and an “S” and a “D,” indicating 

“same” and “different,” were presented on opposing sides of the screen to indicate which 

button to press. Their order was alternated on each run, to disentangle activation due to 

decisions from motor activity (i.e., to average out the motor responses). The nature of this 

task required that subjects listen closely to all sounds presented, but was independent of the 

category nature of the sounds. The average performance across subjects was 69.8±4.2% in 

pre-training and 70.9±4.8% in post-training scans (no significant difference between the four 

conditions in both pre- and post-training scans, nor between the pre- and post-training scans, 

at least p>0.1), indicating that the task was attention-demanding, minimizing the chance that 

subjects covertly categorized the stimuli in addition to doing the dichotic listening task. 

Images were collected for 6 runs, each run lasting 669 s. Trials lasted 12 s each, yielding 4 

volumes per trial, and there were two silent trials (i.e., 8 images) at the beginning and end of 

each run. The first 4 volumes of each run were discarded. Analyses were performed on the 

52 trials – 10 to 11 each of the five different conditions defined by the change of acoustics 

and category between the two stimuli presented in each trial: M0, same category and no 

acoustic difference; M3within, same category and 30% acoustic difference; M3between, 

different category and 30% acoustic difference; M6, different category and 60% acoustic 

difference; and null trials (Fig. 1C). All stimuli were from morph lines 1 and 4. Trial order 
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was randomized and counterbalanced using M-sequences (Buracas and Boynton, 2002), and 

the number of presentations was equalized for all stimuli in each experiment.

Event Related Adaptation Experiment 3 (“Top Down”, Categorization Task)—
To assess the neural mechanisms underlying the auditory categorization process, participants 

also participated in one more fMRI-RA experiment following Experiment 2 after 

categorization training, using the same design as in Experiments 1 and 2, except that 

participants now were asked to judge whether the two auditory stimuli within each trial 

belonged to the same or different categories, with “same category” and “different category” 

buttons switched across runs, to unconfound motor responses from category selectivity, 

following a similar rationale as in the dichotic listening task (see the previous section).

fMRI Data Acquisition—All MRI data were acquired at the Center for Functional and 

Molecular Imaging at Georgetown University on a 3.0-Tesla Siemens Trio Scanner using 

whole-head echo-planar imaging (EPI) sequences (Flip Angle = 90°, TE = 30 ms, FOV = 

205, 64x64 matrix) with a 12-channel head coil. In both fMRI-adaptation experiments, a 

clustered acquisition paradigm (TR = 3000 ms, TA = 1500 ms) was used such that each 

image was followed by an equal duration of silence before the next image was acquired. 

Stimuli were presented after every fourth volume, yielding a trial time of 12.0 s. In all 

functional scans, 28 axial slices were acquired in descending order (thickness = 3.5 mm, 0.5 

mm gap; in-plane resolution = 3.0 x 3.0 mm2). Following functional scans, high-resolution 

(1x1x1 mm3) anatomical images (MPRAGE) were acquired. Auditory stimuli were 

presented using Presentation (Neurobehavioral Systems) via customized STAX electrostatic 

earphones at a comfortable listening volume (~65–70 dB) worn inside ear protectors 

(Bilsom Thunder T1) giving ~26 dB attenuation.

QUANTIFICATION AND STATISTICAL ANALYSIS

fMRI Data Analysis—Data were analyzed using the software package SPM8 (http://

www.fil.ion.ucl.ac.uk/spm/software/spm8/). After discarding images from the first twelve 

seconds of each functional run, EPI images were temporally corrected to the middle slice, 

spatially realigned, resliced to 2 x 2 x 2 mm3, and normalized to a standard MNI reference 

brain in Talairach space. Images were then smoothed using an isotropic 6 mm Gaussian 

kernel. For whole-brain analyses, a high-pass filter (1/128 Hz) was applied to the data. We 

then modeled fMRI responses with a design matrix comprising the onset of predefined non-

null trial types (M0, M3within, M3between and M6) as regressors of interest using a standard 

canonical hemodynamic response function (HRF), as well as six movement parameters and 

the global mean signal (average over all voxels at each time point) as regressors of no 

interest. The parameter estimates of the HRF for each regressor were calculated for each 

voxel. The contrasts for each trial type against baseline at the single-subject level were 

computed and entered into a second-level model (ANOVA) in SPM8 (participants as random 

effects) with additional smoothing (8 mm). For all whole-brain analyses, thresholds of at 

least p < 0.001 (uncorrected) and at least 20 contiguous voxels were used unless specified 

otherwise.
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Multi-Voxel Pattern Analysis (MVPA)—To further investigate the change in neural 

encoding in auditory cortex after categorization training, we used multi-voxel pattern 

analysis (MVPA) to examine the pattern of neural activations to different stimulus pairs, 

following the method developed by Haxby and colleagues (Haxby et al., 2001) and used by 

others (Carp et al., 2010; Park et al., 2004). There were a total of 14 unique stimulus pairs, 7 

from each of two morph lines (including one of each from the M3between condition, and 2 of 

each from M0, M3within, and M6 conditions, see Fig. 1C). Previous studies have provided 

evidence that overlap in BOLD response patterns to difference stimuli is related to neural 

tuning (Carp et al., 2010; Park et al., 2004). For this analysis, we first re-modeled fMRI 

responses with a design matrix comprising the onset of the fourteen unique stimulus pairs 

(regardless of trial types) as regressors of interest using a standard canonical hemodynamic 

response function (HRF), as well as six movement parameters and the global mean signal 

(average over all voxels at each time point) as regressors of no interest. We then obtained the 

neural responses to each unique stimulus pair (n=14) relative to the null trials from the even 

and odd runs. Next, we obtained the correlations across activation maps for all pairs of 

stimulus pairs for both left and right auditory cortex (using activation maps (stimuli > null 

trials) from the group analysis) – there were 196 (14odd x 14even) sets of correlation 

coefficients, with 14 sets from the correlation of the same stimulus pairs (e.g., even run 

stimulus pair 1, 5%Call1_95%Call3 (prime) & 35%Call1_65%Call3 (target), correlated with 

odd run stimulus pair 2, 5%Call1_95%Call3 (prime) & 35%Call1_65%Call3 (target)) of 

even and odd runs, and 182 from that of different stimulus pairs (e.g., even run stimulus pair 

1, 5%Call1_95%Call3 (prime) & 35%Call1_65%Call3 (target), correlated with odd run 

stimulus pair 2, 35%Call2_65%Call4 (prime) & 65%Call2_35%Call4 (target)). Correlation 

coefficients were Fisher Z-transformed and the difference between the mean same- and 

different-stimulus pair correlations was calculated as an indirect measure of neural tuning. 

The difference in neural tuning in pre- and post-training data was analyzed with two-sample 

t-tests for left and right auditory cortex separately, using different numbers of voxels (10, 20, 

50, 100, 150, 200, 250, 300, 400, 500, 600, 800, 1000, 1500, and 2000) to assess the 

robustness of the observed effects. Voxels were chosen based on their response amplitude 

relative to null trials (selecting the voxels with the highest responses, as in previous studies 

(Carp et al., 2010; Park et al., 2004)).

MVPA Searchlight Analysis for Categorical Representations—To further 

investigate the brain regions selective to the trained categories, we employed a searchlight 

approach using the MVPA methodology described above. First, the fMRI responses to each 

distinct pair (n=14) were estimated for the top-down scans, but unlike the MVPA analysis 

for stimulus selectivity above, here we limited the analysis to the four distinct M0 pairs 

(each consisting of two identical stimuli close to one of the four prototypes, see Figure 1C) – 

with two distinct pairs in each category: Call-1-1, Call-2-2, Call-3-3, and Call-4-4, with the 

first two belonged to one category, and the last two belonged to the other category. Subjects 

were able to make reliable categorical judgments on the four M0 pairs (see Fig. 5A). We 

then calculated the correlations across activation maps for the four distinct pairs (with two 

pairs from each category) between odd and even runs, which led to 16 (4x4) sets of 

correlation coefficients, with 8 sets from two pairs of stimuli that belonged to the same 

category and 8 sets from two pairs of stimuli that belonged to the different categories. The 
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correlation coefficients were Z-transformed, and the categorical selectivity was then 

estimated via the “distinctiveness” of categorical activation patterns, which was defined as 

the difference between the mean same-(e.g., Call-1-1 vs Call-2-2) and different-category 

pairs (e.g., Call-1-1 vs Call-3-3) Z-transformed correlation coefficients.

A 7x7x7 voxel cubic searchlight was used, and the difference between the mean same- and 

different-category pairs Z-transformed correlation coefficients was assigned to the center 

voxel. The resulting “categorical” map from each subject was then smoothed with an 

additional isotropic 8 mm Gaussian kernel, and entered into a second-level whole brain 

analysis (one-sample t-test with a gray matter mask). To exclude voxels that were less likely 

to be involved in the categorization judgment, a mask with the contrast of stimuli > silence 

was applied (using the t-map with a threshold at 0.85, approximately corresponding to 

p<0.2, uncorrected), and only voxels that survived this threshold were used to calculate the 

correlation coefficients. Similar results were obtained using different thresholds and 

different searchlight sizes.

Functional Connectivity Analysis—To examine a network of brain regions involving in 

the categorization task, a functional connectivity analysis was conducted using the left 

auditory cortex ROI (Figure S3A) as the seed region (Whitfield-Gabrieli and Nieto-

Castanon, 2012). Briefly, we first extracted the time series from the seed region, then 

calculated the pairwise correlations between the seed region and each individual voxel from 

the whole brain, after controlling for nuisance factors, including head motion, signal from 

white matter and CSF, and whole brain global signal. The correlation coefficients were then 

z-transformed and further smoothed with an additional isotropic 8 mm Gaussian kernel 

before entering into second-level group analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Prototype stimuli and morph space.
(A) Multi-exemplar audio morphing. Stimulus morphing using the software STRAIGHT 

(Kawahara and Matsui, 2003) was previously restricted to those points along a single vector 

between two prototype sounds. We have extended this method to allow generation of stimuli 

throughout an arbitrary morphing “space” defined by a given set of sounds. Here, a morph 

space is defined by four monkey calls (two harmonic arches, and two coos). By 

manipulating the degree to which each stimulus contributes to a morph, stimuli can be 

generated at any location throughout this auditory morph space. Individual morph lines 

crossing the defined category boundary are generated for post-training identification testing. 

(B) Sample morph line. This is an example morph line between one harmonic arch and one 

coo. The category boundary that subjects learn is located between the third and fourth sound. 

There were four “cross-category” morph lines, which were used in post-training 

psychophysics experiments. Two of them, lines 1 and 4, with best performance (based on 
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piloting data) were used in fMRI experiments. (C) Stimuli for fMRI conditions. Stimuli 

were generated along two independent morph lines (Line 1 and 4, Fig. 1A) using sound 

“morphing” software (STRAIGHT toolbox for MATLAB), and a total of 14 stimulus pairs 

were constructed to probe acoustic and category selectivity. Pairs were arranged to align 

with the category boundary at the 50% morph-point between the two prototypes. Four 

different conditions were tested: M0, M3within, M3between, and M6.
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Figure 2. Behavioral performance.
Behavioral categorization performance outside the scanner (n=16). After training and prior 

to post-training MRI scanning, we measured subjects’ ability to categorize the morph stimuli 

along four morph lines using stimuli varying by 10% steps (shown in dashed lines). We then 

fitted the categorization performance to a sigmoid function (Eq. 1). The fitting curves of all 

morph lines and all subjects are shown as solid lines. Error bars represent SEM.
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Figure 3. fMRI-RA reveals increased neural selectivity for acoustic features in the left auditory 
cortex.
(A) fMRI adaptation results using the contrast of M6 > M0, at a threshold of p<0.01, 

uncorrected, at least 50 contiguous voxels, masked by Auditory Stimuli > Silence (p<0.001, 

uncorrected). The left auditory ROI (MNI: −56 −36 2, circled as O in the figure) was used 

for the analyses in (B) and (C). (B) fMRI-responses in the left auditory ROI during the post-

training bottom-up scans. (C) The steepness of the category boundary in behavioral testing 

conducted outside of the scanner (measured as the α values in Equation 1) correlated with 

fMRI adaptation (measured as the difference between M6 and M0 condition), an indirect 

measure of neural tuning. Error bars represent SEM.
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Figure 4. MVPA reveals increased neural selectivity for acoustic features in the left auditory 
cortex.
(A) MVPA revealed an increase in BOLD response pattern distinctiveness in the left, but not 

the right STC (corresponding to auditory cortex), following training (p<0.039 and p>0.360, 

respectively, paired t-test). (B) The steepness of the category boundary in behavioral testing 

(measured as the α values in Equation 1) correlated with MVPA-estimated neural tuning in 

the left auditory cortex, in line with fMRI-RA results in Figure 3C. (C) Heat map of the 

voxels used in the MVPA analyses shown in Fig. 4A and 4B. Voxel color indicates number 

of participants whose set of most significant voxels included that particular voxel. (D) 

MVPA revealed an increase in BOLD response pattern distinctiveness in the left non-

primary (L non-A1), but not the left primary (L A1) auditory cortex, following training 

(p<0.035 and p>0.781, respectively, paired t-test). (E) The steepness of the category 

boundary in behavioral testing (measured as the α values in Equation 1) correlated with 

MVPA-estimated neural tuning selectivity in the left auditory cortex after excluding voxels 

in the primary auditory cortex (L non-A1). Error bars represent SEM.

Jiang et al. Page 24

Neuron. Author manuscript; available in PMC 2020 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. FMRI-RA reveals training-induced neural plasticity for category selectivity.
(A) Behavioral performance of category judgment inside scanner. (B) fMRI responses in left 

dorsolateral prefrontal cortex (MNI: −48 8 18, defined via the contrast of M6>M0, see Table 

2) during the top-down scans. (C) The significant correlation between fMRI adaptation 

(M3between minus M3within) in the same left prefrontal ROI as in 5B and the average 

performance of M3between and M3within. (D) fMRI responses in the same left prefrontal ROI 

during the bottom-up scans. Error bars represent SEM.
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Figure 6. MVPA reveals training-induced neural plasticity for category selectivity.
(A) Category-selective brain regions revealed by search-light MVPA analysis. (B) fMRI 

response profiles during the top-down categorization scans in the four ROIs in (A). (C) 

Overlap between regions showing category selectivity (from fMRI-RA and MVPA analyses) 

and regions functionally connected to the left auditory cortex. (Red) MVPA-identified 

category selective regions using a searchlight approach (7x7x7 voxels), p<0.01 (uncorrected, 

20 contiguous voxels; for illustration purpose, less stringent thresholds are used here). 

(Green) Category-selective regions as defined by fMRI-RA with the contrast of M6 > M0 

(p<0.01, uncorrected, at least 20 contiguous voxels), masked by Stimuli > Silence (p<0.005) 

from fMRI Scan 3. (Blue) Brain regions functionally connected to left auditory cortex 

(p<0.001, uncorrected, at least 20 contiguous voxels). Regions of overlap between the three 

analyses. (Yellow) MVPA & fMRI-RA. (Violet) MVPA & functional connectivity. (Cyan) 

fMRI-RA & functional connectivity. (White) MVPA & fMRI-RA & functional connectivity. 
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The MNI coordinates of the peak of each cluster are shown next to the clusters. Error bars 

represent SEM.
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Figure 7. 
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Table 1.

FMRI-RA results of Experiment 1 and 2. Brain regions with increased release from adaptation after training, 

using a threshold of p<0.01, uncorrected, 50 contiguous voxels, masked by Stimuli > silence (p<0.001, 

uncorrected).

 Region mm3 Zmax

MNI Coordinates

X Y Z

M6 > M0 x Post > Pre

 L/R SMA / L Mid Cingulum/ 3472 3.78 8 14 54

2.98 −8 −6 52

 L Supramarginal/L Sup Temporal 936 3.34 −62 −16 16

 L Mid/Sup Temporal 864 3.14 −56 −36 2

 L Sup Parietal 560 3.03 −20 −60 46

2.63 −18 −62 56

 L Postcentral 480 2.78 −54 −18 58

M6/M3b/M3w > M0 & Post > Pre

 L Supramarginal/L Sup Temporal 1096 3.36 −64 −18 16

 L Mid/Sup Temporal* 192 2.91 −70 −24 −4

2.49 −64 −32 0

M6 > M0 & Pre > Post

 None

M6/M3b/M3w > M0 & Pre > Post

 None

M6 > M0 (Post)

 L/R SMA / LR Sup Frontal/L Mid Cingulum/ 11640 4.81 6 18 56

3.89 −2 16 56

3.83 10 −4 58

 L Inf Parietal 976 3.57 −24 −56 46

 R Pallidum/Putamen/Caudate 1224 3.23 14 10 −10

3.06 20 16 −2

 L Mid/Sup Temporal 1080 3.15 −56 −36 2

 L Cuneus/Lingual 1784 3.15 −18 −80 14

3.12 −14 −76 4

M0 > M6 (Post)

 None

*
24 voxels.
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Table 2.

FMRI-RA results of Experiment 3. Brain regions with categorical selectivity to the trained auditory stimuli, 

using the contrast of M6 > M0 (p<0.001, uncorrected, at least 50 contiguous voxels), or the contrast of M6& 

M3between > M0&M3within (p<0.005, uncorrected, at least 50 contiguous voxels), masked by Stimuli > Silence 

(p<0.005, uncorrected).

  Region mm3 Zmax

MNI Coordinates

X Y Z

M6>M0

  L Lingual/Mid Occipital 992 4.71 −16 −94 2

  L/R SMA/Sup Med Frontal 7040 4.67 8 20 50

3.91 −2 22 44

3.86 −8 24 38

  L Mid/Inf Frontal 2168 4.17 −48 8 18

3.80 −46 4 34

  L Inf/Sup Parietal 856 3.72 −32 −46 42

3.45 −28 −56 42

  R Inf Frontal 512 3.63 46 12 36

  R Inf/Mid Frontal 640 3.45 56 32 26

3.33 44 26 20

M6 & M3between > M3within & M0

  L Inf Frontal 848 4.08 −30 28 2

  L Inf Frontal 1328 3.58 −50 8 20

2.87 −48 4 32

  L/R SMA/Sup Med Frontal 6768 3.49 8 16 52

3.39 −2 16 52

3.38 −6 2 60

  R Cuneus 764 3.17 16 −98 2

2.93 18 −86 12

2.89 16 −88 4

  R Inf/Mid Frontal 400 3.08 42 28 26

M0 > M6

  R Sup Temporal 472 4.21 48 −34 18

  R Sup Temporal/ R Postcentral 1296 3.63 58 −14 4

3.32 66 −18 16

3.30 50 −14 12

  L Heschl/Insula 432 3.61 −40 −16 6

M3within & M0 > M6 & M3between
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  Region mm3 Zmax

MNI Coordinates

X Y Z

  R Inf/Mid/Sup Temporal 3600 3.95 54 −14 −2

3.19 54 −2 −12

  R Sup Temporal/R 2.89 52 −10 −14

  Supramarginal 920 3.27 62 −36 26

3.24 70 −34 18

  L Sup Temporal 904 3.14 −52 −20 10
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

SPM8 The Wellcome Trust Centre for 
Neuroimaging

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/

MATLAB R2015B The MathWorks Inc. http://www.mathworks.com

MarsBaR 0.44 Matthew Brett https://sourceforge.net/projects/marsbar/files/

SPSS Version 24 IBM http://www-01.ibm.com/support/docview.wss?
uid=swg24041224
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