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Abstract

Background: There is great interest in understanding whether interventions on sugar-sweetened 

beverage (SSB) consumption through pregnancy and early childhood affect adolescent body mass 

index (BMI). Without data from randomized trials, unbiased estimation of such effects might be 

achieved with observational data given sufficient and appropriate adjustment for both baseline and 

time-varying confounders.

Objectives: To illustrate the use of inverse probability (IP) weighting of marginal structural 

models (MSM) for estimating the effects of SSB consumption through pregnancy and early 

childhood on the mean early adolescent BMI z-score.

Methods: Our baseline sample consisted of 1584 pregnant women from a pre-birth cohort. We 

defined 6 intervention intervals: early pregnancy, late pregnancy, 3, 4, 5 and 6 years. We fitted a 

MSM via a weighted linear regression with IP exposure and censoring weights to estimate the 

mean difference in BMI z-score under interventions: “maintain SSB consumption below (versus 

above) 0.5 servings/day in all intervals”.

Results: The estimated difference in mean BMI z-score under interventions maintaining SSB 

consumption at or below (versus above) 0.5 servings/day from pregnancy to 6 years was −0.94 
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(95% confidence interval [CI] −1.52, −0.08). The effect estimates in pregnancy, while fixing the 

exposure range in childhood, was −0.05 (95% CI −0.34, 0.23) and in early childhood, while fixing 

the range in pregnancy was −0.89 (95% CI −1.46, −0.11). The effect estimates were largely 

unchanged under sensitivity analyses to different implementation choices except for the choice of 

time interval length.

Conclusions: Under assumptions that include no unmeasured confounding and selection bias, 

and no model misspecification, results of this IP weighting application are in line with a lower 

mean BMI z-score in early adolescence under interventions ensuring lower, versus greater, SSB 

consumption in early life. This application provides a resource for researchers working with 

longitudinal birth cohort studies and interested in similar causal questions.
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Background

Many causal questions unique to pediatric populations involve understanding effects of time-

varying continuous (multi-level) pre- and postnatal exposure interventions on later offspring 

outcomes. For example, sugar-sweetened beverage (SSB) consumption is associated with 

weight gain in childhood and adulthood,1–3 and randomized interventions that reduce SSB 

consumption in 4–11 year-olds and in adolescents demonstrated short-term weight loss.4,5 

Given possible developmental programming of body weight,6,7 there is interest in 

understanding whether reducing SSB consumption in certain windows of early life leads to 

lower body mass index (BMI) in adolescence.

Because randomized trials may be costly, producing results after decisions are needed, pre-

birth cohorts provide an alternative resource. Previous analyses of such cohorts, including 

Project Viva,8 have considered joint exposure effects in pre- and postnatal periods using 

multivariable regression.8–11 However, multivariable regression may fail to have a causal 

interpretation when time-varying confounders are, themselves, affected by past exposure.
12–14 For example, newborn size may be a confounder for a childhood SSB exposure effect 

on adolescent adiposity but may also, itself, be affected by prenatal exposure.

By contrast, g-methods (“g” for generalized) may recover a time-varying exposure effect in 

this setting.13,14 Examples of g-methods include parametric g-computation,12,15 inverse 

probability (IP) weighting16,17 and doubly-robust methods.18–20 While many resources exist 

for implementing g-methods in practice,21–25 few have focused on analysis of (pre-)birth 

cohorts with multi-level exposures. Here, we illustrate an application of IP weighting to 

estimate effects of interventions on SSB consumption through pregnancy and early 

childhood on early adolescent BMI z-score in Project Viva. We detail an implementation 

algorithm, along with background motivation, as a resource for researchers working with 

longitudinal (pre-)birth cohort data and interested in similar questions.
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Methods

The causal question

Consider the causal effect on mean BMI z-score in early adolescence of different time-

varying interventions on SSB consumption in servings/day beginning on the mothers’ 

consumption through pregnancy and continuing on the offspring’s consumption through 

childhood. Many intervention contrasts might be considered. Here, we consider 

representative interventions,25–27 a class of interventions that maintain a multi-level 

exposure within a pre-specified range over time.

Specifically, we consider “maintain daily SSB consumption at or below x servings/day” 

(intervention 1) compared with “maintain above x servings/day” (intervention 2) from early 

pregnancy through 6 years old for a particular choice of x. Under a representative 

intervention,25 SSB consumption for intervention 1 would be assigned as follows: On each 

day of the intervention period, “assign SSB consumption to an individual by randomly 

drawing a value from the distribution of SSB servings on that day in the observed study 

population amongst those who previously maintained SSB at or below x during the 

intervention period and have the same measured confounder and SSB history as that 

individual.“ Interpretation of intervention 2 under a representative intervention is equivalent 

but replacing “at or below x” with “above x”. We will implicitly define all interventions by 

one that additionally “eliminates censoring” (e.g. by loss to follow-up).13,28

The target trial

Ideally, we would conduct a trial to estimate the effect of following intervention 1 versus 2 

on later mean BMI z-score in a study population of pregnant women. We refer to this 

imagined trial as the target trial.13 This trial would recruit a large random sample of mothers 

at conception. Half the sample would be randomized at baseline to intervention 1 and the 

remainder to intervention 2. In an ideal execution of this trial, such that all participants 

perfectly adhered to the study protocol, and censoring of the outcome was eliminated in both 

study arms, an unbiased estimate of this causal effect could be obtained by simply taking the 

mean BMI z-score difference across the two arms. To identify sensitivity periods,29 we 

might include two additional arms: the intervention 1 rule during pregnancy, followed by 

intervention 2 rule during childhood and vice versa.

Observational data: Project Viva

The above trial is unlikely to be conducted, with the multi-arm version particularly 

infeasible. Therefore, we must rely on observational data. Project Viva enrolled 2,670 

pregnant women during their first obstetric care visit between 1999 and 2002 in Eastern 

Massachusetts, USA. Details are available elsewhere.30 Briefly, maternal diet was assessed 

using a 140-item, semi-quantitative food frequency questionnaire (FFQ) once in early 

pregnancy and mid-late pregnancy.31–33 Research staff collected covariate data and assessed 

anthropometry using standard protocols34 during follow-up visits at birth, in infancy 

(median: 6.3 months), early childhood (median: 3.2 years), mid-childhood (median: 7.7 

years), and early adolescence (median: 12.9 years). Age and sex-specific BMI z-scores were 

calculated using Centers for Disease Control and Prevention growth charts.35 Mothers 
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completed annual mailed questionnaires on children’s diet and lifestyle factors beginning at 

age one.

Motivation for g-methods

Unlike in an ideal execution of our target trial, Project Viva investigators did not assign SSB 

exposure at any time. Further, whether a participant is censored at a given time likely 

depends on both baseline and post-baseline risk factors for the outcome. Regardless of 

whether the data come from an observational study or an inadequately executed trial, 

appropriate adjustment for baseline and post-baseline confounders and selection factors for 

censoring is required to recover causal effects.12,36 Under the assumptions of positivity, 

consistency and no unmeasured confounding and selection bias due to censoring given 

measured covariates (i.e. exchangeability), g-methods can be used to target contrasts in the 

population outcome mean had we implemented different time-varying exposure 

interventions specified in the target trial protocol.13,14

Briefly, consider the causal directed acyclic graph (DAG)37 in Figure 1 representing a 

simplified assumption on the mechanisms that produced the data in Project Viva. No 

unmeasured confounding given measurement of newborn size and baseline covariates holds 

in Figure 1 by the absence of an arrow from U, an unmeasured outcome risk factor, into SSB 

exposure at any time. This is a strong assumption in Project Viva. Still, even if this 

assumption were to hold, the coefficients on time-varying SSB exposure in a multivariable 

regression model will fail to have a causal interpretation even after adjustment for newborn 

size and baseline covariates (Supplemental materials 1).

IP weighted estimation

IP weighted estimation, one g-method, is an approach to estimating the effect that would be 

observed in an ideal implementation of the target trial using observational data. Informally, 

in our example, weighting can create a pseudo-population in which an individual’s exposure 

range (at or below, versus above, x) at each time is independent of past measured covariates. 

Fitting an outcome regression in this pseudo-population is equivalent to fitting a weighted 

outcome regression in the original study population. Under the aforementioned assumptions 

and no model misspecification, these weighted model parameters will equal the parameters 

of a marginal structural model (MSM), a counterfactual outcome mean model. Below we 

give a step-by step description of an IP weighted algorithm for estimating effects of 

representative interventions on multi-level exposures on a continuous outcome. 

Supplementary e-materials provide annotated SAS code.

Step 1: Data set construction

Denote n as the size of the baseline sample who, as closely as possible, meet eligibility 

criteria for the target trial. We selected these individuals as those meeting eligibility for 

study enrollment at the first prenatal visit, completing the early pregnancy FFQ at or before 

24 weeks and had complete baseline exposure and confounder data. This gave n=1584 

(Figure S2). By restricting to those with complete baseline data the study population is 

changed without reliance on a missing completely at random (MCAR) assumption.38 
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Multiple imputation can relax this assumption but requires further study in the case of g-

methods (Supplemental materials 2).39,40

Let k=0,1,2… denote a measurement interval with k=0 the baseline interval and k = K + 1 

the last interval in the follow-up period (in which the outcome is measured). We defined K = 

5, with k=0 the early pregnancy questionnaire, k = 1 the late pregnancy questionnaire, k = 

2,3,4, and 5 the 3-, 4-,5-, and 6-year old questionnaire intervals, respectively. Because few 

participants reported any SSB consumption in the 1- or 2-year old questionnaires, we 

modified the original question and consider intervention only through pregnancy and 

childhood ages 3 to 6.

For k = 0, … , K, Ak denotes measured SSB exposure (servings/day), and Lk the interval k 
assumed confounders (Table 1), measured either in interval k or between the end of interval 

k - 1 and the start of interval k. Y denotes the early teen visit BMI z-score and Rk an 

indicator that SSB consumption is at most x servings/day in interval k (Rk = 1 if Ak ≤ x and 

Rk = 0 if Ak > x). For our primary analysis, we chose x = 0.5 because most children 

consumed less than 1 serving per day (e-Table 1). While a higher cutoff may be of interest, 

these result in near positivity violations (few individuals with data that support the 

interventions under consideration).41

Define Ck+1as an indicator of censoring by interval k + 1 (Ck+1 = 1 if censored, and Ck+1 = 0 

otherwise). We allowed a missing value of a confounder to be carried forward up to twice 

for covariates measured in more than one interval. We censored participants in the first 

interval of missing exposure, the outcome, or confounders (including 46 women who had no 

subsequent covariate measurements due to pregnancy loss). We considered other approaches 

to handling pregnancy loss as sensitivity analysis (Supplemental materials 2).42 We also 

censored participants in interval k if the questionnaire for that interval was returned after the 

corresponding age (e.g. if the 3-year old questionnaire was returned after the child turned 4). 

We rely on an assumed temporal order (Ck, Lk, Ak) in each k.

The data set containing these variables can be constructed in either 1) a “wide” format with 

one line per id or 2) a “long” format data set with one record per id and interval. The latter 

allows for “pooled over time” models (Step 2). In either case, additional functions of past 

values of exposure and confounders relative to k need to be created based on the approach to 

Step 2. Given covariate distributions vary between mothers and children at different ages, we 

used the wide format.

Step 2: Weight computation16,25

For each participant i = 1, … , n estimate a weight Wi defined as follows. For an uncensored 

participant i:

W i
r = ∏k = 0

k = 5 P Ri, k |Ck = 0, Rk − 1 = Ri, k − 1, V = V i
P Ri, k |Ck = 0, Ak − 1 = Ai, k − 1, Lk = Li, k

Equation 1.
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W i
c = ∏k = 0

k = 5 P Ck + 1 = 0|Ck = 0, Rk = Ri, k, V = V i
P Ck + 1 = 0|Ck = 0, Ak = Ai, k, Lk = Li, k

Equation 2.

W i = W i
rxW i

c Equation 3.

For a censored participant i:

W i=0

We now explain the equations above:

Exposure weight (W i
r−)

Each denominator component of the product in Equation 1 is the probability of having 

participant i’s value of Rk (i.e., if her/his value is 1, this is the probability that Rk=1 ; 

otherwise, that Rk = 0) among those remaining uncensored through k (Ck=0) and with this 
participant’s history of SSB consumption through k-1 (A−i, k − 1) and confounders through k 

(L−i, k). To estimate this probability, we can first fit a logistic regression using all participants 

still uncensored by k (including those censored later) with dependent variable Rk and 

independent variables a user-chosen function of past SSB (A−k − 1) and confounder history 

(L−k). In practice, the flexibility of this function and the choice of confounders Lk, may be 

limited by sample size (Supplemental materials 3). We use the estimated coefficients from 

this model to “predict” participant i’s probability at k. The denominator of Equation 1 is the 

product of these over all intervals.

Each numerator component of Equation 1 is the same as its denominator counterpart but, 

instead of conditioning on the participant’s exposure and confounder history, it is 

conditioned on her/his exposure range history (R−i, k − 1) and Vi her/his values of a user-

selected subset of the baseline confounders L0 which we can choose to include no 

components or some/all components of L0. Estimation proceeds as for the denominator. 

Unbiasedness of the algorithm requires only that the denominator model is correctly 

specified. The numerator serves only to stabilize the weights, which, in principle, may have 

smaller variability the more components of L0 included in V but at the expense of a more 

complex MSM (Step 3).16 We chose V to include all L0 components (see Table 1).

Censoring weight (W i
c

Each component of the denominator of Equation 2 is the probability of remaining 

uncensored through k + 1 among those who remained uncensored through k and also had 

participant i’s history of SSB consumption and confounders through k. Analogously, 

estimation can proceed by fitting a logistic regression using all participants still uncensored 
by k (even those who may be censored later) with dependent variable Ck+1 and independent 

variables a function of past SSB and confounder history. The numerator is analogously 
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interpreted and estimated with unbiasedness only reliant on correct specification of the 

denominator model.

Overall weight (Wi)

An uncensored participant’s weight is the product of her/his exposure and censoring weights 

(Equation 3). We truncated weights greater than the 99th percentile of the weight distribution 

to mitigate the influence of extreme weights.21 Censored participants receive a zero weight. 

As above, these participants contribute data through their censoring time to weight 

estimation for uncensored participants.

Step 3: Weighted outcome regression

E Y rK |V = β0 + β1rk = 0 + β2rk = 1 + β3rk = 2 + β4rk = 3 + β5rk = 4
+ β6rk = 5 + β7

TV
Equation 4

where rk is a possible realization of Rk(either 1 or 0)

Denote E Y r−k  as the mean of the outcome under an intervention that sets 

R−K = R0,  R1, R2, R3, R4, R5  equal to some set of fixed values r−K = r0, r1, r2, r3, r4, r5  via a 

representative intervention. The average causal effect of an intervention “maintain SSB at or 

below 0.5 servings/day” versus “above 0.5” via representative interventions is then 

E Y r−K = 1,1, 1,1, 1 − E Y r−K = 0,0, 0,0, 0 . Additional comparisons can be conveniently 

computed and precision gained by the assumption of an MSM for E Y r−k . 16Note this model 

must be further conditioned on levels of V selected in Step 2 (unless V is chosen empty).

Equation 4 is one possible MSM for E Y r−K V . If the model is correct, precision is gained. 

If incorrect, effect estimates will incur some bias. To estimate the MSM coefficients, we fit a 

weighted linear regression with dependent variable Y and independent variables functions of 

R1 through R5 and V, with weights from Step 2.

Step 4: Estimating the intervention mean and mean differences

Given exchangeability, positivity and consistency, correctly specified weight denominator 

models and the MSM and no measurement error, the estimated coefficients of the weighted 

regression model above can be used to estimate causal effects. Under Equation 4, the sum of 

the weighted estimates β1 + β2 + β3 + β4 + β5 + β6 estimate the difference in mean BMI z-

score had all participants maintained SSB consumption at ≤ 0.5 serving/day, versus >0.5 

serving/day, in all 6 intervals under the representative intervention. By Equation 4, effects 

conditional on V and population-level effects (averaged over V) are equal because 1) 

Equation 4 includes no interaction terms between any rk and components of V and 2) linear 

models are collapsible.43 Generally, additional steps are needed to covert estimated MSM 

coefficients to time-varying causal effect estimates (Supplemental materials 3).
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Using the MSM, we also estimated effects of interventions “maintain SSB consumption at or 

below 0.5 servings/day” versus “above 0.5 servings/day” under representative interventions 

in a time window t1 holding the exposure range in remaining windows t2 fixed under both 

interventions. By the absence of interactions in our MSM, this effect is assumed the same 

regardless of the range held fixed in t2 (either above or below the cutoff x). We estimated 

two versions of this effect: 1) t1 defined as pregnancy and t2 defined as early childhood 

(β1 + β2) and 2) t1 defined as early childhood and t2 defined as pregnancy (β3 + β4 + β5 + β6 .

We constructed 95% confidence intervals (CIs) using a nonparametric bootstrap by sampling 

with replacement from the original n participants 500 times. In each of these samples we 

repeated steps 2 through 4 giving 500 effect estimates. We computed 95% CIs by sorting 

these estimates, with the 2.5% percentile the lower bound and the 97.5% percentile the 

upper bound. The above algorithm required several choices. Below and in Supplemental 

materials 2 we discuss sensitivity analysis to some of these choices.

We compared our IP weighted estimates to those obtained from two comparable unweighted 

linear regressions applied to our sample: (i) adjusted only for baseline confounders among 

those with an outcome measure and (ii) adjusted for both baseline and post-baseline 

confounders only among uncensored participants.

Ethnics approval

The study protocol was approved by the Institutional review boards of Harvard Pilgrim 

Health Care. All participants signed an informed consent.

Results

Table 2 summarizes baseline characteristics of the baseline sample. Over the follow-up, 75% 

of subjects were censored in the primary analysis (sensitivity analysis considered less 

stringent censoring rules; eFigure 2). eTable 1 shows the number of participants remaining 

uncensored by the start of each interval and the distributions of SSB consumption in these 

participants.

The IP weighted estimates of the BMI z-score mean difference under interventions 

maintaining SSB consumption at or below (versus above) 0.5 servings/day through 

pregnancy and 3–6 years old was −0.94 (95% CI −1.52, −0.08) (Table 3). Estimates in 

pregnancy only, holding the range in childhood fixed, and in early childhood, holding 

pregnancy fixed were −0.05 (95% CI −0.34, 0.23) and −0.89 (95% CI −1.46, −0.11), 

respectively. Estimates remained largely consistent in sensitivity analyses enumerated in 

Table 3. However, an analysis based on wider interval lengths substantially attenuated effect 

estimates (Table 3; see Supplemental materials 2 for discussion of tradeoffs in information 

loss related to the interval length). Effect estimates were somewhat attenuated by changing 

the cutoff x to the 75th percentile in each interval; in pregnancy this was slightly higher than 

0.5 and in childhood slightly lower. Estimates using unweighted regression with or without 

conditioning on post-baseline confounders were also attenuated compared to the IP weighted 

estimates (Table 4).
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Comment

Principal findings

We illustrated an application of IP weighting to estimate effects of time-varying exposure 

interventions that maintain SSB consumption within a pre-specified range through 

pregnancy and early childhood on mean BMI z-score in early adolescence. Under 

assumptions, estimates were in line with a protective effect of consuming at most 0.5 

servings/day (versus more servings) over these periods (beta=−0.94; 95% CI −1.52, −0.08) 

on adolescent mean BMI z-score. Analyses assessing sensitivity periods suggest this effect is 

mostly explained by effects in childhood. Our results were robust to various sensitivity 

analyses with the largest discrepancies seen with wider measurement intervals and changing 

the pre-specified range.

Strengths of the study

Previous analyses of the effects of early life SSB exposure on later metabolic outcomes have 

relied primarily on multivariable regression without explicit definition of a target causal 

effect or attention to underlying causal assumptions. Here, we defined a causal effect 

through conceptualizing a target trial which motivated the analysis.13 The causal 

interpretation of our estimates relies on weaker assumptions than multivariable regression, 

allowing for the realistic assumption that post-baseline confounders are affected by 

exposure.

Limitations of the data

In observational analysis, causal inference rests on many untestable assumptions, including 

no unmeasured confounding and selection bias which reasonably fails in our case; for 

example, only limited measures of diet at 4–6 years were available in Project Viva. Further, 

SSB consumption was self-reported, thus subject to measurement error, and over year-long 

intervals. This design not only fails to capture time-varying changes in exposure but also 

potential important confounder changes within an interval.44

Sensitivity analysis can in principle be constructed under violation of causal assumptions but 

generally require specific assumptions on relationships between measured and unmeasured 

variables.45,46 More work is needed to develop sensitivity analysis for cohorts like Project 

Viva, taking into account assumptions on these particular data structures under realistically 

complex causal DAGs.

Further, few participants in our baseline sample consistently returned questionnaires. We 

censored participants to handle this missing data problem, resulting in high attrition rates. 

This motivated our choice to limit consideration to interventions through early childhood, 

rather than through adolescence.

Interpretation

Because our analysis was motivated by a target trial, the desired interpretation of our 

estimates is clear: given no unmeasured confounding and selection bias, consistency, 

positivity, correctly specified models and no measurement error, our estimates suggested 
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maintaining SSB intake below (versus above) 0.5 serving/day in pregnancy and early 

childhood may lower BMI z-score in adolescents. The findings support the American 

Academy of Pediatrics’ dietary recommendations on limiting SSB below 4 to 6 oz per day 

(equivalent to 0.33–0.5 serving per day) for children 1 to 6 years.47 Previous literature from 

both observational studies and randomized trials have suggested that SSB consumption in 

young childhood promotes weight gain in children.1–3 However, very few studies have 

considered both maternal and child’s SSB intake on later BMI in children. A previous 

multivariable regression analysis in Project Viva came to different conclusions than the 

current study, reporting stronger associations in pregnancy than early childhood on later 

childhood BMI z-score.8 This analysis did not account for post-baseline confounders but 

also differed from the current analysis in other ways (Supplemental materials 4). In a more 

comparable multivariable regression analysis, we found results consistent in direction but 

weaker in magnitude, regardless of adjustment for post-baseline confounders (Supplemental 

materials 4).

Conclusions

We emulated a target trial of interventions from pregnancy through childhood on adolescent 

outcomes using IP weighting in a pre-birth cohort. Explicit consideration of the causal 

question and needed assumptions aids transparency, informing selection of less biased 

analytic approaches, sensitivity analysis and directions for future work when the goal is 

causal inference using (pre-birth) longitudinal cohort data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Synopsis

Study question

• Whether reducing sugar-sweetened beverage (SSB) consumption throughout 

early-life, or only in certain windows of early life, leads to lower body mass 

index (BMI) in adolescence

What’s already known

• SSB consumption is associated with childhood obesity.

What this study adds

• Under assumptions that include no unmeasured confounding and selection 

bias, and no model misspecification, we estimated that these children would 

have a lower mean BMI z-score in early adolescence had they and their 

mothers maintained SSB below (versus above) half serving per day through 

pregnancy to early childhood

• This effect is mostly explained by effects in childhood

• This application provides a resource for researchers working with longitudinal 

birth cohort studies and interested in similar causal questions.
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Figure 1. 
Causal directed acyclic graph representing simplified assumption mechanisms that produced 

Project Viva data
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Table 1.

Choices of Lk for the primary analysis.

Interval (k) Confounders

Baseline (L0) maternal BMI (<25, 25–29, ≥30 kg/m2), college graduate (yes, no), maternal smoking during pregnancy (yes, no), white 
race/ethnicity (yes, no), annual household income (>$70,000, ≤$70,000), and paternal BMI (<25, 25–29, ≥30 kg/m2).

Late pregnancy 
(L1)

SSB intake during early pregnancy (tertiles), caloric intake during early pregnancy (tertiles)

3 years (L2) average SSB intake during early and late pregnancy (tertiles),
average caloric intake during early and late pregnancy (tertiles)
caloric intake at age 2 years (tertiles)
birthweight for gestational age z-score (tertiles)
BMI z-score at age 3 (tertiles)
TV watching at age 3 years (<1.6 vs ≥1.6 hours/week)

4 years (L3) Average SSB intake during early and late pregnancy (tertiles)
SSB intake at 3 years (<1.5 servings/week vs. ≥1.5 servings/week)
average caloric intake during early and late pregnancy (tertiles)
average caloric intake at age 2 and 3 years (tertiles)
birthweight for gestational age z-score (tertiles)
BMI z-score at age 3 (tertiles)
average hours of TV watching at age 3 and 4 years (tertiles)

5 years (L4) average SSB intake during early and late pregnancy (tertiles),
cumulative average SSB intake at 3 and 4 years (tertiles)
average caloric intake during early and late pregnancy (tertiles)
average caloric intake at age 2 and 3 years (tertiles)
birthweight for gestational age z-score (tertiles)
BMI z-score at age 3 (tertiles)
average hours of TV watching at age 3 ,4 and 5 years (tertiles)

6 years (L5) average SSB intake during early and late pregnancy (tertiles)
cumulative average SSB intake at 3, 4, and 5 years (tertiles)
average caloric intake during early and late pregnancy (tertiles)
average caloric intake at age 2 and 3 years (tertiles)
birthweight for gestational age Z score (tertiles)
BMI z-score at age 3 (tertiles),
average hours of TV watching at age 3, 4, 5, and 6 years (tertiles)
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Table 2.

Characteristics of 1584 participants in the baseline sample

Mean (SD) or %

 Baseline SSB consumption Total (n=1584) ≤0.5 >0.5

Maternal

 Age at enrollment (years) 32.6 (4.5) 33.3 (4.2) 31.4 (4.8)

 Pre-pregnancy BMI (kg/m2)

  <25 64.3% 67.5% 58.9%

  25–29 21.3% 21.2% 21.6%

  ≥30 14.4% 11.3% 19.5%

 Gestational age 1st FFQ (weeks) 11.7 (2.9) 11.6 (2.9) 11.8 (3.0)

 Gestational age 2nd FFQ (weeks) 29.1 (2.4) 29.1 (2.4) 29.2 (2.4)

  Race/ethnicity

  Black 10.4% 8.6% 13.5%

  Hispanic 6.1% 4.7% 8.6%

  Asian 5.6% 7.3% 2.9%

  White 74.6% 76.7% 71.0%

  Other 3.2% 2.7% 4.0%

 College graduate

  No 28.1% 21.9% 38.4%

  Yes 71.9% 78.1% 61.6%

 Annual household income >$70,000/year

  No 35.7% 31.5% 42.8%

  Yes 64.3% 68.5% 57.2%

Smoking status

  Never 67.3% 68.1% 66.0%

  Former 22.2% 23.7% 19.7%

  Smoked during pregnancy 10.5% 8.2% 14.3%
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Table 3.

IP weighted estimates of the difference in mean BMI z-score under representative interventions.

Δ in mean BMI z-score in early adolescence

Maintain at or below 0.5 
servings/day vs above during 
pregnancy and early childhood 
(3–6 years)

At or below 0.5 servings/day 
through pregnancy, fixing 
range of early childhood 
consumption

At or below 0.5 servings/day 
through early childhood, 
fixing range of pregnancy 

consumption

Primary analysis
1
,

−0.94 (−1.52, −0.08) −0.05 (−0.34, 0.23) −0.89 (−1.46, −0.11)

Sensitivity analyses (i): missingness in baseline confounders

Exclude paternal BMI and household 

income from baseline confounders
2

−0.83 (−1.39, −0.12) −0.04 (−0.34, 0.26) −0.78 (−1.25, −0.19)

Sensitivity analyses (ii): interval lengths

Wider intervals: pregnancy, 3 to 4 years, 
5 to 6 years

−0.33 (−0.67, 0.01) −0.04 (−0.21, 0.15) −0.29 (−0.67, 0.05)

Sensitivity analyses (iii): selection of measured confounders

 1+ maternal age (<30, 30 to <35, ≥ 35 
years)

−0.92 (−1.53, −0.06) −0.02 (−0.31, 0.27) −0.90 (−1.45, −0.16)

 1+ total gestational weight gain 
(tertile)

−1.02 (−1.56, −0.09) −0.03 (−0.32, 0.25) −0.99 (−1.49, −0.16)

 1+ breast feeding duration (spline 
with 3 knots)

−0.91 (−1.47, 0.008) −0.02 (−0.32, 0.25) −0.89 (−1.38, −0.04)

 1+ time to introduction of solid food 
(4 months, 4–5 months, ≥ 6 months)

−0.89 (−1.41, −0.03) −0.08 (−0.37, 0.20) −0.80 (−1.32, 0.06)

 1+ juice intake
3 −1.08 (−1.61, −0.25) −0.21 (−0.52, 0.16) −0.87 (−1.42, −0.08)

 1+ hours of sleep
4 −1.00 (−1.52, −0.08) −0.04 (−0.34, 0.23) −0.95 (−1.46, −0.11)

 1+ newborn size z-score
5 −0.98 (−1.84, −0.03) 0.06 (−0.33, 0.40) −1.04 (−1.76, −0.18)

 1+ newborn BMI z-score but exclude 
birth weight adjust for gestational age z-

score
6

−0.77 (−1.67, 0.04) 0.10 (−0.30, 0.44) −0.87 (−1.70, −0.12)

 1but exclude concurrent covariates 
(measured in the same questionnaire as 
SSB) from the models

−0.92 (−1.50, −0.08) −0.06 (−0.34, 0.24) −0.85 (−1.42, −0.006)

Sensitivity analyses (iv): weight model specification

 Model 1
7 −0.91 (−1.58, −0.16) −0.04 (−0.33, 0.25) −0.87 (−1.48, −0.11)

 Model 2
8 −0.91 (−1.54, −0.12) −0.05 (−0.34, 0.25) −0.86 (−1.38, −0.06)

 Model 3
9 −0.93 (−1.46, −0.02) −0.02 (−0.31, 0.27) −0.91 (−1.42, −0.04)

Sensitivity analyses (v): definition of censoring

Censor upon first interval of any missing 
covariates

−0.86 (−1.50, −0.07) −0.12 (−0.34, 0.24) −0.74 (−1.44, −0.11)

Restrict analysis to livebirths −0.95 (−1.50, −0.18) −0.06 (−0.38, 0.26) −0.89 (−1.40, −0.18)

Sensitivity analyses (vi): choice of the cutoffs

Maintaining at or below 75th 

percentile vs. above during 
pregnancy and early childhood

Effect through pregnancy, 
fixing early childhood 
consumption

Effect through early 
childhood, fixing pregnancy 
consumption

Using 75th percentiles
10

 as the 
thresholds

−0.71 (−1.33, −0.04) −0.04 (−0.41, 0.37) −0.67 (−1.15, −0.09)
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All 95%CIs were based on bootstrap with 500 samples.

1
Covariates in the primary analysis are listed in the Table 1. The beta coefficients were 0.09 in early pregnancy, −0.14 in late pregnancy, −0.50 in 

age 3, −0.03 in age 4, −0.36 in age 5, and −0.001 in age 6.

2
Eligibility criteria do not require complete data on paternal BMI and household income (n=1955 at baseline)

3
Include mother’s average juice intake during early and late pregnancy (tertiles) and children’s cumulative average juice intake up to time k 

(tertiles).

4
Include children’s cumulative average hours of sleep up to time k (tertiles).

5
Include newborn length z-score (tertiles).

6
Include newborn BMI z-score (tertiles) instead of birthweight for gestational age z-score

7
Model maternal BMI as a spline model with 4 knots (instead of categorical variables).

8
Model birthweight for gestational age z-score and BMI z-score at age 3 as a spline model with 4 knots (instead of categorical variables).

9
Model children’s cumulative average of TV watching as a spline model with 3 knots (instead of including categorical variables).

10
75th cutoffs were 0.83 servings/day for early pregnancy, 0.79 servings/day for late pregnancy, 0.21 servings/day for 3 and 4 years, and 0.43 

servings/day for 5 and 6 years.
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Table 4.

Comparisons of standard regression versus IP weighted estimates under representative interventions.

Δ in mean BMI z-score in early adolescence

Maintain at or below 0.5 
servings/day vs. above during 
pregnancy and early childhood

At or below 0.5 servings/day 
through pregnancy, fixing range of 
early childhood consumption

At or below 0.5 servings/day 
through early childhood, fixing 

range of pregnancy consumption

IP weighted estimate
1 

(primary analysis)

−0.94 (−1.52, −0.08) −0.05 (−0.34, 0.23) −0.89 (−1.46, −0.11)

Standard Regression, 
adjusting for baseline 

covariates
2

−0.41 (−0.86, 0.03) 0.03 (−0.19, 0.25) −0.44 (−0.88, −0.01)

Standard Regression, 
adjusting for both baseline 
and post-baseline 

covariates
1

−0.51(−0.92, −0.10) −0.07 (−0.28, 0.15) −0.44 (−0.83, −0.05)

1
Covariates in the primary analysis are listed in the Table 1.

2
Adjusting for maternal BMI (<25, 25–29, ≥30 kg/m2), college graduate (yes, no), maternal smoking during pregnancy (yes, no), white race/

ethnicity (yes, no), annual household income (>$70,000, ≤$70,000), and paternal BMI (<25, 25–29, ≥30 kg/m2).
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